
MAPLE
ANIMATION

© 2003 by Chapman & Hall/CRC

CHAPMAN & HALL/CRC
A CRC Press Company

Boca Raton London New York Washington, D.C.

J O H N F. P U T Z

MAPLE
ANIMATION

© 2003 by Chapman & Hall/CRC

This book contains information obtained from authentic and highly regarded sources. Reprinted material
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and information, but the author and the publisher cannot
assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, microfilming, and recording, or by any information storage or
retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for
creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC
for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2003 by Chapman & Hall/CRC

No claim to original U.S. Government works
International Standard Book Number 1-58488-378-2

Library of Congress Card Number 2002041776
Printed in the United States of America 1 2 3 4 5 6 7 8 9 0

Printed on acid-free paper

Library of Congress Cataloging-in-Publication Data

Putz, John F.
Maple animation / John F. Putz

p. cm.
Includes bibliographical references and index.
ISBN 1-58488-378-2 (alk. paper)
 1. Maple (Computer file) 2. Algebra—Data processing. 3. Computer animation. I. Title.

QA155.7.E4P88 2003
512¢.0285¢6696—dc21 2002041776

© 2003 by Chapman & Hall/CRC

To my wife, Melinda,
and to my sons, Kevin and David

© 2003 by Chapman & Hall/CRC

Preface

On the first day of class, my physics professor stood behind a device mounted
on the lab table at the front of the room. He placed a large, shiny ball bearing
at each end of a spring-loaded plunger, explaining that when he released the
trigger, one of the bearings would be propelled horizontally to our right, while
the other would drop straight toward the floor. The vertical component of the
acceleration given to both objects would be the same, zero, so gravity alone
would be responsible for their vertical positions, and equally so. He released
the trigger. One bearing sailed in a broad half-parabola toward the classroom
door; the other dropped straight downward. When they hit the old wooden
floor, there was a solitary klunk.

Thirty-five years later, I still have the image that my professor gave me
to associate with the concept he was teaching: the motion of an object can
be understood by isolating, then combining, the influences on it in single
directions. In mathematics, our objects are abstractions, not often lending
themselves to such demonstrations. But we do frequently talk about motion,
too: a point travels along a curve toward another, determining various secant
lines as it moves; a horizontal plane descends through a surface, cutting it in
varying level curves. What we do, though, is draw a static figure, describe the
motion, and hope that our students can imagine its effects. It is not always
the weaker ones who cannot.

The capability of computer algebra systems to produce animations provides
a means for teachers of mathematics to produce demonstrations of our own.
Using animation, we can show our students the motion we see in our mind’s
eye. We can give our students a vivid moving image to tie to a concept.

Even when a particular idea does not inherently involve motion, a moving
picture can give students something concrete to associate with it. In linear
algebra, for example, when we teach linear transformations in R2, we usually
show a square at the origin and, next to it, its image, as shown in Figure 0.1.
But if our students are really to understand the geometry of linear transforma-
tions, then they should understand this in the richer context of R3. Although
we could just show a three-dimensional object, then have it snap to its image
under the transformation, this would not demonstrate effectively how it be-
comes transformed. A better way is to cause the object to “morph” gradually
into its image. This way, students can see the space transforming, not just
the space transformed.

In this book, I will show the structures that I use to create animations. Each
example will be a demonstration that can be used directly in the classroom.

vii© 2003 by Chapman & Hall/CRC

viii Preface

–2

–1

0

1

2

–2 –1 1 2

–2

–1

0

1

2

–2 –1 1 2

FIGURE 0.1: A square and its image under a linear transformation

Most of the examples are useful for calculus, especially multivariable calculus,
because it is in that subject that I have found animation to be the most
illuminating.

I know, from experience, that animated demonstrations do work. For me,
one of the most difficult ideas to convey is the geometry of the directional
derivative and gradient vector. I decided to try to write an animation showing
a surface and gradient vector together with all of the following objects rotating
about a point: unit vector, vertical plane determined by the vector and point,
trace of the surface in the plane, and tangent to the trace. I could not quite
make the animation work properly before it was time to teach the topic, so I
taught directional derivatives in the old way, using chalkboard and prepared
transparency. Later that day, I found a way to make the animation work, and
I used it as a classroom demonstration on the following day. After class, two
people thanked me for writing it. “We didn’t understand before,” they said,
“but we do now.”

I cannot imagine, now, teaching without using this wonderful technology, so
significantly has it enhanced my teaching. Particularly for three-dimensional
ideas, I really don’t know what I ever did without it.

One other thing. I believe animations enhance the students’ enjoyment of
a course. Using the computer instead of the chalkboard or overhead projector
helps to add variety. Moreover, the moving images themselves are simply
appealing and, well, fun. I hope you will agree.

Acknowledgement

I thank my son, David, for his careful proofreading of the manuscript and
for his thoughtful and valuable suggestions.

John F. Putz

© 2003 by Chapman & Hall/CRC

How to use this book

As you read, work with a computer at hand. You should have Maple® 7 or
Maple 8.1 All of the examples and demonstrations will work in either version,
but Maple 8 has enhanced features related to animation, and examples of those
are included in this book, too. If you are new to Maple, or if you consider
yourself a novice, begin by typing the commands in the examples into an
open worksheet and watching Maple do its work. Sometimes you will not get
the syntax right, and this is useful because it will help you to learn correct
syntax, and because you will learn from watching what Maple does when you
get it wrong. (If you type flawlessly, make some mistakes on purpose.) When
my students are new to Maple, they often want to enter “sinx” instead of
“sin(x).” Maple dutifully treats sinx as a variable name just as x, y, or t.
Making this mistake helps them to realize that, since the sine is a function,
it needs an argument, as any other function does. If you enter the code in
the examples and experiment—sometimes a little, sometimes a lot—you will
soon become confidently familiar with Maple and its syntax checker.

When you feel that you have arrived at that point, or if you are already
there, the accompanying CD is for you. It has all the Maple examples and
demonstrations in this book. The Maple code on the CD is organized in
sections with the same titles as those in the book. These sections may be
expanded or collapsed. To open (expand) a section, click on the plus sign in
the box next to its title. To close (collapse) it, click on the minus sign in the
box. Within each section, the Maple code is further organized into execution
groups, identified by an enclosing square bracket to the left, that match the
groupings of the examples in the text. Moving the cursor to any point in the
group and pressing the enter key will execute all the commands in the group.

All the Maple commands and other Maple code in this book will appear
in typewriter font so that code is distinguishable from other text. The
appearance of Maple code in the book, then, will reflect that in a Maple
worksheet, unless you have changed the default font for some reason.

I encourage you to begin writing animations of your own, however simple,
as soon as you think you can. A good time to do that would be after you
have read Chapter 4, Simple Animations. This will help you to start thinking
about how you could use animation in your own work. The purpose of this
book is to give you the means to implement your own creative ideas.

1Maple is a registered trademark of Waterloo Maple Inc., 57 Erb Street West, Waterloo,
Ontario N2L 6C2, Canada.

ix© 2003 by Chapman & Hall/CRC

Contents

1 Getting Started 1
1.1 The basic command line . 1
1.2 A few words about Maple arithmetic 2
1.3 Comments . 3
1.4 Assigning names to results 4
1.5 Built-in functions . 5
1.6 Defining functions . 6
1.7 Getting help and taking the tour 7
1.8 Saving, quitting, and returning to a saved worksheet 9

2 The Plot 11
2.1 The basics . 11
2.2 Parametric forms . 13
2.3 Plotting points and using the plots package 15
2.4 Storing and displaying plots 21
2.5 The plot thickens . 22
2.6 Smoothing plots . 23
2.7 Color . 24
2.8 Scaling . 27
2.9 Plotting with style . 28
2.10 Adjusting your point of view 29
2.11 A limited view . 30
2.12 Tailoring the axes . 32
2.13 Toward leaner code . 35
2.14 Context-sensitive menus and context bars 36
2.15 Further details . 38

3 Non-Cartesian Coordinates and Quadric Surfaces 39
3.1 Polar coordinates . 39
3.2 Cylindrical coordinates . 41
3.3 Spherical coordinates and others 43
3.4 Quadrics quickly . 46
3.5 Paraboloids . 50
3.6 Elliptic cones . 52
3.7 Ellipsoids . 53
3.8 Hyperboloids . 55
3.9 Quadric surfaces with axes other than the z -axis 57

xi© 2003 by Chapman & Hall/CRC

xii Contents

4 Simple Animations 61
4.1 Animating a function of a single variable 61
4.2 Outline of an animation worksheet 65
4.3 Demonstrations: Secant lines and tangent lines 66

4.3.1 Secant lines at a point approaching a tangent line . . 67
4.3.2 Secant lines at a corner point 68

4.4 Using animated demonstrations in the classroom 69
4.5 Watching a curve being drawn 69
4.6 Demonstration: The squeeze theorem 70
4.7 Animating a function of two variables 71
4.8 Demonstrations: Hyperboloids 73

4.8.1 Hyperboloid of one sheet 73
4.8.2 Hyperboloid of two sheets 75

4.9 Demonstrations: Paraboloids 76
4.9.1 Elliptic paraboloid . 76
4.9.2 Hyperbolic paraboloid 78

4.10 Demonstration: Level curves and contour plots 79

5 Building and Displaying a Frame Sequence 83
5.1 Sequences . 83
5.2 The student and Student[Calculus1] packages 84
5.3 Displaying a sequence of frames 85
5.4 Building sequences with seq 87
5.5 Demonstrations: Rectangular approximation of the definite in-

tegral . 88
5.5.1 Using seq and rightbox 88
5.5.2 The RiemannSum procedure of Maple 8 89

5.6 Demonstration: Level surfaces 91
5.7 Moving points . 93
5.8 Demonstrations: Projectiles 94

5.8.1 Path of a single projectile 94
5.8.2 Comparison of a dropped object and a propelled object 95

5.9 Demonstration: Cycloid . 96

6 Loops and Derivatives 99
6.1 The for loop . 99
6.2 The while loop . 103
6.3 Derivatives . 104
6.4 The line procedure . 106
6.5 Demonstrations: Newton’s method 107

6.5.1 Using a for loop . 107
6.5.2 The NewtonsMethod procedure of Maple 8 111
6.5.3 Maple 8 demonstrations: Experimenting with Newton’s

method . 113
6.6 Demonstrations: Solids of revolution 115

© 2003 by Chapman & Hall/CRC

Contents xiii

6.6.1 Revolving a region about the vertical axis 115
6.6.2 Revolving a region about the horizontal axis 118

6.7 Demonstrations: Surfaces of revolution 120
6.7.1 Revolving a curve about the vertical axis 120
6.7.2 Revolving a curve about the horizontal axis 122

7 Adding Text to Animations 123
7.1 Titles . 123
7.2 The textplot and textplot3d procedures 125
7.3 Making text move . 128
7.4 Demonstrations: Secant lines and tangent lines with labels . 130

7.4.1 Secant lines at a point approaching a tangent line . . 130
7.4.2 Secant lines at a corner point 132
7.4.3 The NewtonQuotient procedure of Maple 8 134

7.5 Including computed values in text 136
7.6 Demonstration: Rectangular approximation of the definite in-

tegral with annotation . 138
7.7 Constructing Taylor polynomials 140

7.7.1 Taylor series and the convert procedure 140
7.7.2 The TaylorApproximation procedure of Maple 8 . . . 141

7.8 Demonstrations: Taylor polynomials 142
7.8.1 Taylor polynomials of varying degree 142
7.8.2 Maple 8 alternative using TaylorApproximation . . . 144

7.9 Demonstrations: Experimenting with Taylor polynomials . . 145
7.9.1 Taylor polynomials with varying center 145
7.9.2 Maple 8 alternative using TaylorApproximation . . . 147

8 Plotting Vectors 149
8.1 The two arrow procedures 149
8.2 The arrow procedure of the plots package 150
8.3 Dot product and cross product 156
8.4 The arrow options . 157
8.5 Demonstration: The cross product vector 161
8.6 Demonstration: Velocity and acceleration vectors in two di-

mensions . 165
8.7 Demonstration: Lines in space 168

9 Plotting Space Curves 171
9.1 The spacecurve procedure 171
9.2 Demonstration: Curves in space 173
9.3 Demonstration: Directional derivative and gradient vector . 175
9.4 The tubeplot procedure . 179
9.5 Demonstration: Velocity and acceleration vectors in three di-

mensions . 184

© 2003 by Chapman & Hall/CRC

xiv Contents

10 Transformations and Morphing 187
10.1 The plottools package . 187
10.2 The rotate procedure . 190
10.3 The transform procedure 193
10.4 Matrix transformations . 195
10.5 Morphing . 198
10.6 Linear transformations . 200

10.6.1 Demonstrations: Linear transformations of R2 201
10.6.2 Demonstrations: Linear transformations of R3 203

Bibliography 207

© 2003 by Chapman & Hall/CRC

Chapter 1

Getting Started

In this brief chapter, you will learn some Maple fundamentals. These include
Maple’s command line, arithmetic, and built-in functions. You will learn how
to define new functions and how to assign names to Maple objects for storage.
We will be limiting ourselves, in this and the next two chapters, to the features
that are pertinent to our purpose, on the assumption that the reader will want
to begin writing animations as soon as possible. For those who would like a
less focused introduction to Maple, the excellent help facility provides one.
You will learn how to access that, too.

Start the Maple application program now. On most systems, this is done by
just double-clicking the Maple icon, as usual for starting application software.
A blank worksheet will appear, ready for your input.

1.1 The basic command line

Maple’s default prompt is the > sign, which indicates that Maple is waiting
for input. Type commands directly after the prompt, then press the enter key.
For example, the expression 23·85+14/43 is evaluated by the Maple command

> 23*85 + 14/43;

which generates the output

63310
43

Notice that the command (or statement) terminator in Maple is a semicolon.
This signals the end of the input line. The semicolon and the enter key are
easy to forget at first. If you forget the semicolon, you will get an error
message warning of a premature end to the input. If you find yourself staring
expectantly at the screen while nothing is happening, you probably forgot to
press enter. The other command terminator is the colon, which suppresses
output. If we had used a colon to end the statement, Maple would not have
shown us the answer. There are times when we will want to do that, but this
is not one of them.

Exponentiation is denoted by the ^ operator, as in

1© 2003 by Chapman & Hall/CRC

2 Maple Animation

> 5^(1/2);

√
5

and

> 2^50;

1125899906842624

If you need to edit a command line, just make the changes and press the
enter key. Try that now. Move the cursor (insertion point) into the line that
you just typed and change the 50 to 100 so that you have 2^100 now instead
of 2^50. Press enter to execute the new command. Also try 2^(2-7).

If you want to execute or re-execute any command, whether you are editing
it or not, just move the cursor to a point within the statement and press enter.
You can execute all the commands in an entire worksheet by choosing that
option under Execute in the Edit menu.

1.2 A few words about Maple arithmetic

Notice that, in the examples, Maple used exact arithmetic; the answers are
exact real numbers. Because each value entered was in integer form (no dec-
imal points), the assumption is that you would like to see exact arithmetic
where possible. This is consistent with the design goal to make Maple act as
a mathematician might. If you’d rather see answers in floating-point (deci-
mal) form, this is easily arranged. One way is to use a floating-point value
somewhere in the expression. For example, you could enter 14.0 instead of 14
in

> 23*85 + 14.0/43;

1955.325581

or 2.0 instead of 2 in

> 5^(1/2.0);

2.236067977

and

> 2.0^50;

0.1125899907 1016

© 2003 by Chapman & Hall/CRC

Getting Started 3

Another way to do this—and one that makes the instructions explicit—is to
use Maple’s evalf function. This will cause Maple to evaluate the result in
floating-point form.

> evalf(23*85 + 14/43);
> evalf(5^(1/2));
> evalf(2^50);

1955.325581
2.236067977

0.1125899907 1016

The constant is denoted Pi in Maple. Note the upper-case P and lower-
case i. Expressions involving can be converted to floating-point form using
evalf, too. Notice the differences between the following:

> Pi/4;
> evalf(Pi/4);
> Pi/4.0;

4
0.7853981635

0.2500000000

1.3 Comments

When you want to write a note to yourself, you wouldn’t want Maple to try
to process it as input. What you need in this case is a comment. Comments
are indicated by a # sign. Maple ignores everything from the # to the end of
the same line. (Although a particularly nasty or insulting comment might be
difficult to ignore, even for Maple.) For example,

> 2^(89-1)*(2^89-1); # Tenth perfect number. R.E. Powers,
1911.

191561942608236107294793378084303638130997321548169216

You can make the entire line a comment if you like.

> # You can make the entire line a comment if you like.

© 2003 by Chapman & Hall/CRC

4 Maple Animation

1.4 Assigning names to results

Often, it is useful to assign a result to a name so that it can be used
later. A name consists of alphanumeric characters and underscores. So s,
parabola, Inverse_of _f, SecondDerivative, and Surface1 are all names. Names
cannot begin with a number, so 2nd_derivative is not a name. Maple is case-
sensitive, so f and F are two different names. Avoid beginning a name with
an underscore because Maple uses such names for its own purposes. If you
inadvertently use a reserved word, such as evalf, as a name, Maple will tell
you that you can’t do it.

The assignment of a value, or anything else, to a name is accomplished using
the := operator. For example, we can assign a general quadratic equation to
the name y with the command

> y := a*x^2 + b*x + c;

y := ax2 + bx+ c

We can then assign values to the coefficients a, b, and c, which are, themselves,
names:

> a := 2;
> b := 3;
> c := 4;

a := 2
b := 3
c := 4

To see what y contains now, we just enter that name followed, as usual, by a
semicolon,

> y;

2x2 + 3x+ 4

and we see that Maple has made the substitutions. The name y can be used
in other expressions as well. For example,

> 5*y + 1;

10x2 + 15x+ 21

Names can hold all sorts of things. They can store constants, expressions,
equations, inequalities, matrices, sequences, sets, and other objects. We will
often use a name to store a plot or a sequence of them.

© 2003 by Chapman & Hall/CRC

Getting Started 5

1.5 Built-in functions

The trigonometric functions and their inverses, the exponential and nat-
ural logarithmic functions, the hyperbolic trigonometric functions and their
inverses, and practically any other function you are likely to want are all built
in. For example,

> sqrt(256*x);
> abs(4*x);

16
√
x

4 |x|

The parentheses are necessary. They delimit the argument of the function.
Maple will accept the standard notation for n!, however. For example,

> 5!;

120

but this is just shorthand for factorial(5).
Some examples of trigonometric functions and their inverses are

> sin(Pi/4);
> arcsin(sqrt(3)/2);
> evalf(arcsin(sqrt(3)/2));

√
2

2

3
1.047197551

and

> tan(Pi/6);
> arctan(infinity);

√
3

3

2

Examples of the exponential function and natural logarithm are

> exp(2*x);
> ln(3*x^2+1);

© 2003 by Chapman & Hall/CRC

6 Maple Animation

e(2x)

ln(3x2 + 1)

The real number e is not stored in Maple as a constant, so the exponential
function ex is denoted exp(x) and not e^x. Of course, that means that e is
readily available as

> exp(1);
> evalf(exp(1));

e
2.718281828

Incidentally, although we will not need complex values in this book, Maple
uses I (note the upper-case) to denote the complex number isuch that i2 =
−1. For example,

> (5+I)*(2+3*I);

7 + 17I

and—you’ll like this—Euler’s relationship between the five principal constants
of mathematics, 0, 1, , e, and i:

> exp(Pi*I) + 1;

0

Information on these and other functions that are built into Maple is avail-
able by typing ?inifcn at the Maple prompt. This will take you to a per-
tinent page in Maple’s help facility. To get back from the help page to your
worksheet, either close the help window or choose your worksheet under the
Window menu.

1.6 Defining functions

Maple accepts the mapping notation for defining a function. The mapping
arrow, ->, is formed from a hyphen and a greater-than sign. For example,
we can define the functions given by f(x) = x cosx and g(x) = x2 + 1 as the
mappings x �→ x cosx and x �→ x2 + 1 as follows:

> f := x -> x*cos(x);
> g := x -> x^2 + 1;

© 2003 by Chapman & Hall/CRC

Getting Started 7

f := x→ x cos(x)
g := x→ x2 + 1

which establishes f and g as names for mappings that send x to x cosx and
to x2 + 1, respectively. We can then use familiar notation for evaluating
these functions at specific points, forming composite functions, and perform-
ing other algebraic manipulations. For example,

> f(Pi/3);
> f(Pi)*g(2);
> f(g(x));
> g(f(x));
> g(f(Pi/6));

6
−5

(x2 + 1) cos(x2 + 1)
x2 cos(x)2 + 1

2

48
+ 1

Functions of several variables are defined just as naturally. For example,

> f := (x,y) -> x^3 + y^2;

f := (x,y) → x3 + y2

defines f as a mapping that sends each ordered pair (x,y) to the value x3+y2.
Then we can use the usual notation to evaluate a function at a point:

> f(2,3);
> f(3,2);

17
31

1.7 Getting help and taking the tour

Maple has an elaborate, well-organized help facility. You have already ac-
cessed it if you entered ?inifcn at the Maple prompt as suggested above. You
can, of course, also get to it by using the Help menu. For example, choose
Topic Search. . . and enter evalf for the topic. Then highlight evalf in the
list of matching topics and click OK.

© 2003 by Chapman & Hall/CRC

8 Maple Animation

A convenient way to use the help facility is to move the cursor into the
command about which you would like to have more information and then
choose Help on “command” (or the choice may be Help on Context)
from the Help menu. Try this by moving the cursor into exp where you
have typed it into the worksheet. You can place the cursor between letters
or highlight the whole function name, exp. Then choose Help on “exp” (or
Help on Context) from the Help menu.

The Introduction in the Help menu is well worth a look. There is a New
User’s Tour, which can be enlightening even if you don’t fit the description.
It even includes help on Help under the Using Help option.

In this book, we will have occasion to use only a small subset of Maple’s
vast capabilities. Here is a sampling of some of Maple’s other talents:

> factor(x^5+8*x^3-3*x^4-24*x^2+12*x-36);

(x− 3) (x2 + 2) (x2 + 6)

> expand((3*x-5)^4);

81x4 − 540x3 + 1350x2 − 1500x+ 625

> limit(sin(x)/x, x=0);

1

> limit((x^4+5)/(x+2), x=-infinity);

−∞

> solve(x^3-3*x^2-5*x+15=0); # Find exact solutions,
if possible.

3,
√

5,−
√

5

> fsolve(exp(2*x)-3*cos(x)=0, x=0..2); # Find an
approximate solution in the interval [0,2].

0.4874035006

> sum(1/i^4, i=1..infinity);

4

90

© 2003 by Chapman & Hall/CRC

Getting Started 9

> int(x^2*sin(x), x=0..Pi/2); # Evaluate the definite
integral.

− 2

> int(x^2*sin(x), x); # Evaluate the indefinite
integral.

−x2 cos(x) + 2 cos(x) + 2x sin(x)

1.8 Saving, quitting, and returning to a saved worksheet

To save a worksheet or to exit (or quit) Maple, just make those selections
under the File menu. To reopen a saved worksheet, just double-click on its
icon. Alternatively, you can start Maple and open the worksheet from the
File menu.

Whenever you reopen a saved worksheet, although it appears to be in the
state in which you left it, this is not really the case. All the output is there,
including graphs and working animations. However, none of the assignments
that you might have made to names are active and none of the packages called
by with statements (described in Section 2.3) are loaded. You’ll need to re-
execute any of those statements that you would like to have in effect again.
As mentioned in Section 1.1, if you want to re-execute all the statements in
a worksheet, a convenient way to do that is to choose that option under the
Edit menu.

On the other hand, you may have a worksheet that is in good working order,
and you just want to use the output in it—typically graphs and animations.
The output will be ready to use. In this case, there is no need to re-execute
any of the statements.

© 2003 by Chapman & Hall/CRC

Chapter 2

The Plot

Shirley Kolmer of Saint Louis University, whose many talents included dry
wit, once said to our graduate class in number theory, “Primes tend to be
odd.” Similarly, animations tend to be plots. In this chapter, you will learn
to plot functions of one and two variables, curves and surfaces represented by
parametric equations, and individual points. You will also learn many optional
features by which you can produce a high-quality plot that suits your needs
and conforms to your preferences. These options will be your artist’s brushes.

2.1 The basics

In its simplest form, a plotting procedure needs a specification for a function
and a domain. A function of a single variable may be plotted using the two-
dimensional plot procedure, which has the form

plot(f(x), x=a..b, options)

where the options will be described below. For example, the function f(x) =
x sin 3x can be plotted on the interval [0,2] by entering

> plot(x*sin(3*x), x=0..2*Pi);

–4

–2

0

2

4

1 2 3 4 5 6x

Be sure to capitalize Pi.

11© 2003 by Chapman & Hall/CRC

12 Maple Animation

A function of two variables may be plotted with the three-dimensional
plot3d procedure, which has the form

plot3d(f(x,y), x=a..b, y=c..d, options)

For example, we may plot the function f(x,y) = x siny on the rectangular
region [−8,8] × [−�,�] using

> plot3d(x*sin(y), x=-8..8, y=-Pi..Pi);

By clicking and dragging with the mouse, you can rotate a three-dimensional
plot such as this one so that you can see it from any viewpoint. Try it.

To plot two or more functions on the same axes, in the two-dimensional case
you can use either list or set notation. A list is an ordered n-tuple enclosed
in square brackets; a set is an unordered n-tuple enclosed in curly brackets.
For example, sinx and sin 2x can be plotted together using either

> plot([sin(x), sin(2*x)], x=0..2*Pi);

–1

–0.5

0

0.5

1

1 2 3 4 5 6
x

or

> plot({sin(x), sin(2*x)}, x=0..2*Pi);

© 2003 by Chapman & Hall/CRC

The Plot 13

–1

–0.5

0

0.5

1

1 2 3 4 5 6
x

In the three-dimensional case, use only set notation:

> plot3d({4-x^2-2*y^2, 6-4*y}, x=-4..4, y=-3..3);

2.2 Parametric forms

There are three objects defined by parametric equations to consider: curves
in two dimensions, curves in three dimensions, and surfaces in three dimen-
sions. Here, we will discuss curves in two dimensions and surfaces in three.
Chapter 9 is about curves in three dimensions.

A parametric form is represented in Maple as a list. In two dimensions, the
syntax is

plot([f(t), g(t), t=a..b], options)

For example, the curve whose parametric equations are

x = cos3

y= sin3

may be plotted with

© 2003 by Chapman & Hall/CRC

14 Maple Animation

> plot([cos(theta)^3, sin(theta)^3, theta=-Pi..Pi]);

–1

–0.5

0

0.5

1

–1 –0.5 0.5 1

The syntax for surfaces in three dimensions is

plot3d([f(s,t), g(s,t), h(s,t)], s=a..b, t=c..d, options)

For example, the surface defined parametrically by

x = 2t− 3s2 sint
y= st

z= 2s− 3 cost

may be plotted using

> plot3d([2*t-3*s^2*sin(t), s*t, 2*s-3*cos(t)], s=-2..2,
t=-2..2);

Notice where the domains—expressions of the form a..b are called ranges
in Maple—for the parameters are given: inside the list in the two-dimensional
case, but outside in the three-dimensional case. Two-parameter forms are
useful for defining surfaces in three dimensions that, as the previous example,
are not functions of x and y. In particular, we can use them to plot vertical
planes. For example, the plane x = 2 may be plotted using

© 2003 by Chapman & Hall/CRC

The Plot 15

> plot3d([2, s, t], s=-3..3, t=-3..3);

As you will have noticed, Maple does not automatically include axes in
three-dimensional plots, and that makes it difficult to get our bearings and,
in the present case, to verify that the plane we have just plotted is the plane
it is supposed to be. One way to add axes is to include axes=normal in the
call to the plot3d procedure:

> plot3d([2, s, t], s=-3..3, t=-3..3, axes=normal);

–3
–2

0
1
2
3–3

–2
–1

1
2

31
1.5

2
2.5

3

Other options for adding axes are described below in Sections 2.5 and 2.12.

2.3 Plotting points and using the plots package

An individual point is represented as a list. So, in two dimensions, the point
(a,b) is denoted [a,b]. To plot several points, group them as in

> plot({[-1,2],[1,3],[-3,-2],[3,-3]}, style=point);

© 2003 by Chapman & Hall/CRC

16 Maple Animation

–3

–2

–1

1

2

3

–3 –2 –1 1 2 3

and

> f := x -> x^2 + x;
> plot({[1,f(1)],[2,f(2)],[3,f(3)],[4,f(4)]}, x=0..5,

style=point);

f := x→ x2 + x

2
4
6
8
10
12
14
16
18
20

0 1 2 3 4 5
x

where style=point causes the points to be plotted without any line segments
connecting them. (plot’s natural instinct is to connect points with segments.)
The specification of the domain for x is optional.

In three dimensions, the point (a,b,c) is denoted [a,b,c]. For example,

> plot3d({[1,-1,0],[-1,2,0],[2,2,0],[2,1,0],[1,1,1],
[1,2,1]}, x=-1..2, y=-1..2, style=point, axes=normal);

0.2

0.4

0.6

0.8

1

–1 0.5 1 1.5 2
–1

1
2

© 2003 by Chapman & Hall/CRC

The Plot 17

where, this time, the domain specifications are required. If the default repre-
sentations of the points are too tiny to be seen easily, it will help to specify
the symbol to use when plotting them. For example,

> plot3d({[1,-1,0],[-1,2,0],[2,2,0],[2,1,0],[1,1,1],
[1,2,1]}, x=-1..2, y=-1..2, style=point, symbol=box,
axes=normal);

0.2

0.4

0.6

0.8

1

–1 0.5 1 1.5 2
–1

1
2

Other options for the plotting symbol, in both two and three dimensions,
are circle, cross, point, or diamond, the default symbol depending on the
plotting device. You can also specify a size, in units of points, with the
symbolsize option. This option does not affect the symbol point, however.
The default size, in both two and three dimensions, is 10 points.

> plot3d({[1,-1,0],[-1,2,0],[2,2,0],[2,1,0],[1,1,1],
[1,2,1]}, x=-1..2, y=-1..2, style=point, symbol=box,
symbolsize=18, axes=normal);

0.2

0.4

0.6

0.8

1

–1 0.5 1 1.5 2
–1

1
2

Use set notation (or, alternatively in two dimensions, list notation) to group
the points, even if you are only plotting a single point. Otherwise, Maple will
think you want a list of two constant functions to be plotted, and you will get
two horizontal lines of points. You want, for example,

> plot({[1,2]}, style=point);

© 2003 by Chapman & Hall/CRC

18 Maple Animation

1

1.5

2

2.5

3

0 0.5 1 1.5 2

and not

> plot([1,2], style=point);

1.2

1.4

1.6

1.8

2

–10 –8 –6 –4 –2 0 2 4 6 8 10

(Actually, you can get by without the set brackets when plotting a single point
in three dimensions with plot3d because Maple will think you want to plot
a parametric form whose components are constant functions, but it’s a good
idea to use the brackets anyway.)

There is a procedure, pointplot, that eliminates the need for the style=
point specification. To use this procedure, though, we will need to summon
the plots package by issuing the command

> with(plots);
Warning, the name changecoords has been redefined

[animate,animate3d,animatecurve,arrow,changecoords,complexplot,
complexplot3d,conformal,conformal3d,contourplot,contourplot3d,
coordplot,coordplot3d,cylinderplot,densityplot,display,display3d,
fieldplot,fieldplot3d,gradplot,gradplot3d,graphplot3d,implicitplot,
implicitplot3d,inequal,interactive,listcontplot,listcontplot3d,
listdensityplot,listplot,listplot3d,loglogplot,logplot,matrixplot,
odeplot,pareto,plotcompare,pointplot,pointplot3d,polarplot,
polygonplot,polygonplot3d,polyhedra supported,polyhedraplot,

© 2003 by Chapman & Hall/CRC

The Plot 19

replot,rootlocus,semilogplot,setoptions,setoptions3d,spacecurve,
sparsematrixplot,sphereplot,surfdata,textplot,textplot3d,tubeplot]

The pointplot procedure is listed together with the others included in the
plots package. The warning is notification that one of the procedures avail-
able before the with statement was executed has been redefined using the
definition of that procedure as it exists within the plots package. Although
it is useful sometimes to see this list, you will usually want to suppress the
output of the with statement by using a colon instead of a semicolon as the
statement terminator. The with(plots) statement needs to be executed
only once per session for all the procedures in the plots package to be avail-
able for that session. We’re going to include it in each example, however.
That way, small pieces of example code will stand alone. When you refer to
them later, you won’t need to be concerned that you are missing something
from the larger context in which the examples were given. Examples using
pointplot are

> with(plots):
> pointplot({[1,2]});
> f := n -> n/(n+1);
> pointplot({[1,f(1)],[2,f(2)],[3,f(3)],[4,f(4)],[5,f(5)],

[6,f(6)]});

1

1.5

2

2.5

3

0 0.5 1 1.5 2

f := n → n
n+ 1

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

1 2 3 4 5 6

© 2003 by Chapman & Hall/CRC

20 Maple Animation

The pointplot procedure accepts either a set or list of points. It will also
accept a flat list with an even number of elements, which will be paired to
form points. For example,

> with(plots):
> pointplot([1,2]);
> f := n -> n!/n^n;
> pointplot([1,f(1), 2,f(2), 3,f(3), 4,f(4), 5,f(5),

6,f(6)]);

1

1.5

2

2.5

3

0 0.5 1 1.5 2

f := n → n!
nn

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

There is a procedure pointplot3d, also within the plots package, for plot-
ting points in three dimensions. It eliminates the need for both style=point
and domain specifications. The pointplot3d procedure accepts a set or list
of points, or a flat list whose length is a multiple of three. For example,

> with(plots):
> pointplot3d({[1,-1,0],[-1,2,0],[2,2,0],[2,1,0],[1,1,1],

[1,2,1]}, symbol=box, symbolsize=18, axes=normal);
> pointplot3d([1,-1,0, -1,2,0, 2,2,0, 2,1,0, 1,1,1, 1,2,1],

symbol=box, symbolsize=18, axes=normal);

© 2003 by Chapman & Hall/CRC

The Plot 21

0.2

0.4

0.6

0.8

1

–1 0.5 1 1.5 2
–1

1
2

0.2

0.4

0.6

0.8

1

–1 0.5 1 1.5 2
–1

1
2

2.4 Storing and displaying plots

Often, it is useful to assign a plot to a name so that it can be used later.
This is accomplished with the assignment statement, as we have done for
other objects. Typically, plots are stored in names, then displayed later with
the display procedure, which is among the other procedures in the plots
package. An example of this is

> with(plots):
> Surface := plot3d(4-x^2-2*y^2, x=-4..4, y=-3..3):
> TangentPlane := plot3d(6-4*y, x=-4..4, y=-3..3):
> display(Surface);
> display(Surface, TangentPlane);

© 2003 by Chapman & Hall/CRC

22 Maple Animation

Notice the colons at the ends of the lines whose output we don’t need to see.

2.5 The plot thickens

The examples above that included the specifications axes=normal, style=
point, symbol=box, and symbolsize=18 took advantage of some of the op-
tions available in plotting. You can certainly improve the appearance of your
plots and tailor them to your purpose by exercising the available options. For
example, since the two-dimensional plot procedure, by default, displays axes,
but the three-dimensional plot3d procedure does not, we’ve usually included
the option axes=normal in plot3d statements somewhere after the specifica-
tions for the domain. Other choices for the axes are boxed, framed, or none.
The two-dimensional plot procedure has the same choices for the axes, but
it defaults to axes=normal.

Lines and curves appearing in the plot output can be made heavier using
the thickness option. This is useful if you are using a projection system in
a large room where some people may be sitting far away from the screen. For
example,

> f := x -> exp(x/2);
> plot({f(x), f(-x)}, x=-3..3, thickness=3);

f := x→ e(1/2x)

1

2

3

4

–3 –2 –1 0 1 2 3
x

© 2003 by Chapman & Hall/CRC

The Plot 23

(Recall that the exponential function is entered as exp(x) and not as e^x.)
From thinnest to thickest, the choices for thickness are 0,1,...,15. The
default is 0.

2.6 Smoothing plots

Sometimes a three-dimensional plot can look a little chunky or ragged,
particularly around discontinuities. Maple does its work by sampling points
from the domain, so you can improve the appearance by instructing Maple to
take a larger sample. The default number of points is 625, a 25-by-25 grid.
There are two ways: with numpoints and with grid. Notice the difference
between

> plot3d((x^2+y^2)/sin(x*y), x=-1..1, y=-1..1,
axes=normal);

–1e+16

–5e+15

1e+16

–1 –0.5 0.5 1y

–1

1

x

and

> plot3d((x^2+y^2)/sin(x*y), x=-1..1, y=-1..1, axes=normal,
numpoints=1000);

–15
–10
–5

5
10
15

–1 –0.5 0.5 1y1

x

When numpoints is set to n, Maple uses
√
n points in each of the two domain

intervals ([−1,1] for both x and y in the example above). For more control
over this, you can use grid. For example,

© 2003 by Chapman & Hall/CRC

24 Maple Animation

> plot3d(sin(x)/y^2, x=-Pi..Pi, y=-1..1, axes=boxed,
grid=[25,30]);

–3–2–10123 x

–1 –0.5 0 0.5 1
y

–800
–600
–400
–200

0
200
400
600
800

instructs Maple to use 25 points in the interval of x-values and 30 in the
interval of y-values.

Since animations can be very large, space (memory) limitations can become
a problem, in which case it is helpful to specify a number of points fewer than
the default. If possible, though, choose at least the default number. A smooth,
graceful surface is an appealing thing to behold.

The numpoints option is available for two-dimensional plots as well, and
defaults to 50. The plot procedure of two dimensions, however, is smart
enough to sample more points wherever a curve changes quickly. This is
called adaptive plotting. If, for some reason, you would like to turn it off,
specify adaptive=false in your plot statement.

2.7 Color

Another option is color. Predefined colors are: aquamarine, black, blue,
navy, coral, cyan, brown, gold, green, gray (or grey), khaki, magenta,
maroon, orange, pink, plum, red, sienna, tan, turquoise, violet, wheat,
white, or yellow. For example,

> with(plots):
> f := x -> x^4 - 4*x^3 + 10;
> Curve := plot(f(x), x=-1..4, color=red):
> HorizontalTan1 := plot(f(0), x=-1..1, color=blue):
> HorizontalTan2 := plot(f(3), x=2..4, color=blue):
> display(Curve);
> display(Curve, HorizontalTan1, HorizontalTan2);

f := x→ x4 − 4x3 + 10

© 2003 by Chapman & Hall/CRC

The Plot 25

–15

–10

–5

5

10

15

–1 1 2 3 4x

–15

–10

–5

0

5

10

15

–1 1 2 3 4x

It is helpful to use the semicolon at the end of function definitions, even though
you don’t really need to see the output. It allows Maple to echo the function
in mathematical notation (pretty printing) so that you can check that you
have entered it correctly. An example of using color in a three-dimensional
plot is

> with(plots):
> Surface := plot3d(4-x^2-2*y^2, x=-4..4, y=-3..3):
> TangentPlane := plot3d(6-4*y, x=-4..4, y=-3..3,
color=wheat):

> display(Surface, TangentPlane);

© 2003 by Chapman & Hall/CRC

26 Maple Animation

Three-dimensional plots allow the use of variable colors. You might, for
example, want to vary the color of a surface according to its z-value. (This can
also be done using the shading option, shading=z, which we discuss next.) A
more sophisticated use of this capability is to demonstrate, perhaps to linear
algebra students, that two planes really can intersect in a single point in four
dimensions. Let the first three coordinates x, y, and z of the point (x,y,z,w)
be the usual three-dimensional coordinates, and let the fourth coordinate w
be represented by color. Then the output of

> with(plots):
> Plane1 := plot3d([x,0,z], x=-2..2, z=-2..2, color=x):
> Plane2 := plot3d([0,y,z], y=-2..2, z=-2..2, color=z):
> display(Plane1, Plane2);

shows the two planes sharing just one point in four dimensions, because only
one point on each plane has the same color (w -coordinate) as well as the
same x-, y-, and z-coordinates. For more information on the color op-
tion, particularly on how to define your own colors, enter ?plot,color or
?plot3d,colorfunc at the Maple prompt.

Three-dimensional plots allow a shading option. Although this is largely a
matter a personal preference, it can be used to make three-dimensional plots
a little easier to interpret. For example, in

> plot3d(x*y, x=-2..2, y=-2..2, axes=normal, shading=z);

–4

–2

2

4

–2

2

y
–2–112 x

© 2003 by Chapman & Hall/CRC

The Plot 27

the shading=z option renders the surface so that the higher you are, the
redder you are, and, as in life, the lower you are, the bluer you are. Other
options for shading are xyz, xy, zgrayscale, zhue, or none. Experiment a
little.

2.8 Scaling

Maple will scale a plot to fit the plot window, adjusting the horizontal
dimension independently of the vertical dimension. This is sometimes unde-
sirable, but, if so, it is easily prevented by using scaling=constrained. For
example,

> plot([cos(theta), sin(theta), theta=0..2*Pi]);

–1

–0.5

0.5

1

–1 –0.5 0.5 1

produces an ellipse in a non-square window, but

> plot([cos(theta), sin(theta), theta=0..2*Pi],
scaling=constrained);

–1

–0.5

0.5

1

–1 –0.5 0.5 1

© 2003 by Chapman & Hall/CRC

28 Maple Animation

accurately produces a circle. The default plot window is square in Maple 8,
so this particular plot should look fine, with or without constrained scaling.
In Maple 7, though, the default plot window is not a square, so you may want
to use constrained scaling or just reshape the window. To change the shape,
or size, of the plot window, click on the plot to select it, then click and drag
one of the small, black squares at the corners and edges of the window.

The other choice for the scaling option is unconstrained, which is default.
Both two- and three-dimensional plots offer the scaling option.

2.9 Plotting with style

We have already encountered the style option; we used it when we wanted
to plot individual points (style=point). The choices for the two-dimensional
plot procedure are: point, line, patch, or patchnogrid. Default is line.
The patch and patchnogrid options are used for plotting polygons, which we
will do in Sections 8.5 and 10.1. With the linestyle option (also available
for three-dimensional plots), you can specify SOLID, DOT, DASH, or DASHDOT
(upper-case required) or 1, 2, 3, or 4, respectively. For example,

> plot(arcsin(x), x=-1..1, linestyle=DOT);

–1.5

–1

–0.5

0.5

1

1.5

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1
x

For the three-dimensional plot3d procedure, the choices for style are:
point, hidden, patch, wireframe, contour, patchnogrid, patchcontour,
or line. Default is patch. The choices patchcontour and contour provide
a handy way to show level curves of a surface:

> plot3d(x*y*exp(-x^2-y^2), x=-2..2, y=-2..2, axes=normal,
shading=z, style=patchcontour);

> plot3d(x*y*exp(-x^2-y^2), x=-2..2, y=-2..2, axes=normal,
shading=z, style=contour);

© 2003 by Chapman & Hall/CRC

The Plot 29

–0.15
–0.1

0.05
0.1
0.15

–2

y
–2–1

12 x

–0.15
–0.1

0.05
0.1
0.15

–2

y
–2–1

12 x

You can produce an instant contour plot of the surface by rotating either
plot (by clicking and dragging with the mouse) so that the viewer is looking
straight down the z-axis, seeing the projections of the level curves onto the
xy-plane.

2.10 Adjusting your point of view

Although a three-dimensional plot can be rotated so that it can be seen
from any viewpoint, the viewpoint can also be prescribed. The option that
accomplishes this is orientation=[,], where and are the angles, in
degrees, of spherical coordinates. That is, is the angle in the xy-plane
measured counterclockwise from the positive end of the x-axis, and is the
angle measured from the positive end of the z-axis downward (toward the
negative end of the z-axis). Default is orientation=[45,45]. For example,
compare

> plot3d(-1/exp(x^2+y^2), x=-3..3, y=-3..3, axes=normal,
orientation=[20,65]);

© 2003 by Chapman & Hall/CRC

30 Maple Animation

–1

–0.8

–0.6

–0.4

–0.2

–3 –2 –1 1 2 3
y

2

x

with the default

> plot3d(-1/exp(x^2+y^2), x=-3..3, y=-3..3, axes=normal);

–1
–0.8
–0.6
–0.4

0

–3
–2

–1
1

2
3

y
–3

–1
1

2
3

x

2.11 A limited view

The magnitude of a function’s value at sampled points can be so large as
to obscure the salient features of its graph. For example,

> plot(tan(x), x=-Pi..Pi);

–1500

–1000

–500

–3 –2 –1 1 2 3x

© 2003 by Chapman & Hall/CRC

The Plot 31

This plot can be improved by specifying a range

> plot(tan(x), x=-Pi..Pi, y=-4..4);

–4

–3

–2

–1
0

1

2

3

4

y

–3 –2 –1 1 2 3
x

and further improved by warning Maple about the discontinuities

> plot(tan(x), x=-Pi..Pi, y=-4..4, discont=true);

–4

–3

–2

–1
0

1

2

3

4

y

–3 –2 –1 1 2 3
x

For three-dimensional plots, the plot can be limited via the view option,
which takes either the form view=zmin..zmax or view=[xmin..xmax,
ymin..ymax,zmin..zmax]. For example, a plot of an elliptic paraboloid

> plot3d(2*x^2+y^2, x=-2..2, y=-3..3, axes=normal);

2
4
6
8
10
12
14
16

–3 –2
1 2 3y

–2

12 x

© 2003 by Chapman & Hall/CRC

32 Maple Animation

can be “improved” with

> plot3d(2*x^2+y^2, x=-2..2, y=-3..3, axes=normal,
view=0..8);

1
2
3
4
5
6
7
8

–3 –2
1 2 3y

–2

12 x

Whether this is an improvement is a matter of opinion. The second plot
does convey that the horizontal cross-sections are ellipses without losing the
parabolic vertical cross-sections. If our goal is to emphasize only the horizontal
cross-sections, we can use the style option:

> plot3d(2*x^2+y^2, x=-2..2, y=-3..3, axes=normal,
style=patchcontour, view=0..8);

1
2
3
4
5
6
7
8

–3 –2
1 2 3y

–2

12 x

For two-dimensional plots, Maple will accept the similar view=ymin..ymax
or view=[xmin..xmax,ymin..ymax] options.

2.12 Tailoring the axes

As mentioned in Section 2.5, the choices for the axes option are normal,
boxed, framed, or none, with two-dimensional plots defaulting to axes=
normal and three-dimensional ones defaulting to axes=none. For example,

© 2003 by Chapman & Hall/CRC

The Plot 33

> plot([3*cos(1/t), 2*sin(1/t), t=-0.1..0.1], axes=framed,
scaling=constrained);

–2

–1

0

1

2

–3 –2 –1 0 1 2 3

Maple accepts box and frame, instead of boxed and framed.
The tickmarks=[xticks,yticks] option will cause Maple to use at least

xticks marks along the horizontal axis and at least yticks along the verti-
cal axis. In three dimensions, the option tickmarks=[xticks,yticks,zticks]
behaves similarly. For example,

> plot(x^3-x^2-3*x+4, x=-3..3, tickmarks=[10,4]);

–20

–10

0

10

–3 –2.5 –2 –1.5 –1–0.5 0.5 1 1.5 2 2.5 3
x

For two-dimensional plots, if you want to specify a minimum number of marks
along only one axis, you can use the xtickmarks=xticks or the ytickmarks=
yticks option. These options also accept a specific list of values. For example,

> plot(x^3-x^2-3*x+4, x=-3..3, xtickmarks=[-2,-1,0,1,2]);

–20

–15

–10

–5
0

5

10

–2 –1 1 2x

© 2003 by Chapman & Hall/CRC

34 Maple Animation

By default, Maple will label the axes using the same names as the vari-
ables in the function being plotted. You can override this using the op-
tions labels=[string1,string2] and labels=[string1,string2,string3] for
two- and three-dimensional plots, respectively. As implied, each entry in the
list should be a string, which consists of any characters enclosed in double
quotes. (There is a limit to the length of a string, but it’s huge.) By default,
the labels print horizontally. You can change that with the labeldirections=
[d1,d2] option, where d1 and d2 are either vertical or horizontal. For ex-
ample,

> plot(-4.9*t^2+44.1, t=0..3,
labels=["time","displacement"],
labeldirections=[horizontal,vertical]);

0

10

20

30

40

di
sp
la
ce
m
en
t

0.5 1 1.5 2 2.5 3
time

The font used for the axis labels can be controlled using labelfont, and
the font for the values at the tick marks can be specified using axesfont or,
more generally, using font, which controls all text in the plot. All three of
these specifications are in the form of a list, [family,style,size], where family
is either TIMES, COURIER, HELVETICA, or SYMBOL (upper-case required). For
the family TIMES, style can be ROMAN, BOLD, ITALIC, or BOLDITALIC. For the
COURIER and HELVETICA families, style may be BOLD, OBLIQUE, BOLDOBLIQUE,
or omitted altogether. The SYMBOL family does not allow a choice of style.
The size units are points. An example is

> plot(-4.9*t^2 + 44.1, t=0..3,
labels=["time","displacement"],
labeldirections=[horizontal,vertical],
labelfont=[TIMES,ITALIC,18], axesfont=[HELVETICA,14]);

0

10

20

30

40

di
sp
la
ce
m
en
t

0.5 1 1.5 2 2.5 3
time

© 2003 by Chapman & Hall/CRC

The Plot 35

I gave a talk once in Baltimore, and someone in the audience asked me
whether I knew how to get the scale along the x-axis to be measured in units
of π so that, for example, a sine function would have a maximum at a point
labeled π/2. I didn’t. But I do now:

> plot(sin(x), x=0..2*Pi, xtickmarks=evalf([Pi/2="p/2",
Pi="p", 3*Pi/2="3p/2", 2*Pi="2p"]), ytickmarks=[-1,1],
axesfont=[SYMBOL,16], labels=["",""]);

−1

1

/2 3 /2 2

The evalf function causes values in its argument to be evaluated as floating-
point numbers, thus permitting Maple to find them on the axis. The letter p
in SYMBOL font is the Greek letter π.

2.13 Toward leaner code

The display procedure has the same options as plot and plot3d. If you
are storing plots using the same option, and then displaying them together
later, you can move that option into the display statement. Having specified
the option in one place instead of several, you will have streamlined your code.
For example, instead of

> with(plots):
> Plane1 := plot3d(2*x-3*y, x=-1..1, y=-1..1, color=red,
style=patchnogrid, axes=normal):

> Plane2 := plot3d(5*x+2*y, x=-1..1, y=-1..1, color=blue,
style=patchnogrid, axes=normal):

> Plane3 := plot3d(-1, x=-1..1, y=-1..1, color=green,
style=patchnogrid, axes=normal):

> display(Plane1, Plane2, Plane3);

you could use

© 2003 by Chapman & Hall/CRC

36 Maple Animation

> with(plots):
> Plane1 := plot3d(2*x-3*y, x=-1..1, y=-1..1, color=red):
> Plane2 := plot3d(5*x+2*y, x=-1..1, y=-1..1, color=blue):
> Plane3 := plot3d(-1, x=-1..1, y=-1..1, color=green):
> display(Plane1, Plane2, Plane3, style=patchnogrid,

axes=normal);

If you have certain options that you know you would like to use for all the
plots in display statements in a worksheet, you can state them up front,
at the beginning of the worksheet, using setoptions for two-dimensional
plots and setoptions3d for three-dimensional ones.1 These procedures are
included in the plots package. Returning to the previous example,

> with(plots):
> setoptions3d(style=patchnogrid, axes=normal):
> Plane1 := plot3d(2*x-3*y, x=-1..1, y=-1..1, color=red):
> Plane2 := plot3d(5*x+2*y, x=-1..1, y=-1..1, color=blue):
> Plane3 := plot3d(-1, x=-1..1, y=-1..1, color=green):
> display(Plane1, Plane2, Plane3);

Better, yes?

2.14 Context-sensitive menus and context bars

Several of the options such as shading, style, and axes can be changed
after the plot is rendered. Just click on the plot output and use the menus at
the top of the worksheet. These are called context-sensitive menus because
they depend on the type of output. Clicking on a two-dimensional plot and
clicking on a three-dimensional plot, for example, will bring forth two different
sets of menus. These menus are also available by clicking the right mouse
button or, if you have only one button, by option-clicking (holding down the
option key while clicking). Try clicking in the plot,

> plot(sin(x) + cos(x), x=-2*Pi..2*Pi, linestyle=DASH);

1The intention was to have setoptions and setoptions3d control the options for plots
directly output by plot and plot3d statements, respectively, as well as for plots output by
display statements. This works for most options, but, due to a bug present in both Maple
7 and 8, not for all. To ensure that all the options specified in setoptions or setoptions3d
are the options actually used in the plot output, just display the plot.

© 2003 by Chapman & Hall/CRC

The Plot 37

–1

–0.5

0

0.5

1

–6 –4 –2 2 4 6
x

and changing line style to SOLID. This option is under Line Style in the
Style menu.

In Maple 8, when a plot is shown using display, the options that are
written directly into the plotting statement (such as plot or plot3d) are
protected from change. The context-sensitive menus, then, cannot alter such
“hard-coded” options. For example, in the plot of

> with(plots):
> Curve1 := plot(arctan(x), x=-5..5):
> Curve2 := plot(1/(1+x^2), x=-5..5, linestyle=DOT):
> display(Curve1, Curve2);

–1

–0.5

0

0.5

1

–4 –2 2 4
x

the line style of Curve1 can be changed, while that of Curve2 cannot. Options
that are written into the display statement, instead of the plotting statement,
may be changed with the context-sensitive menus.

In the View menu, select Context Bar if it isn’t already checked. This
makes various buttons appear at the top of the window whenever you click
on a plot. They offer another way to makes changes to the options after the
plot is rendered.

© 2003 by Chapman & Hall/CRC

38 Maple Animation

2.15 Further details

In this chapter, we have seen most of the options for plotting. The de-
tails of these and others are available from Maple’s help facility. Just type
?plot,options at the Maple prompt to learn more about the options for
two-dimensional plotting, and type ?plot3d,options for details about three-
dimensional plot options. For full details on the procedures plot and plot3d
themselves, enter ?plot or ?plot3d at the Maple prompt. For help on
display, enter ?plots,display.

If Maple is new to you, your time would be well spent experimenting some
now. Try graphing a few functions from a calculus book. Plot some functions
of a single variable and some of two variables. Try graphing a surface and a
plane tangent to it at some point. Bounce around Maple’s help facility for a
while.

© 2003 by Chapman & Hall/CRC

Chapter 3

Non-Cartesian Coordinates and
Quadric Surfaces

The choice of coordinate system can be the difference between mathemat-
ics awkwardly or elegantly expressed. It can also be the difference between
surfaces crudely or finely rendered. In this chapter, we will discuss polar,
cylindrical, and spherical coordinates, and techniques for making high-quality
plots of quadric surfaces. We will also discuss a way to get a quick, although
usually lower-quality, plot of a surface.

3.1 Polar coordinates

Among the options for plot statements is the coords option, which provides
a way to plot in coordinate systems other than the default Cartesian (or
rectangular) system. When the option coords=polar is chosen, Maple will
plot points of the form (r, θ), where |r| is the distance from the origin and θ
is the angle measured counterclockwise from the positive end of the x-axis.
Maple expects to see a function r in terms of θ and a domain for θ. The
syntax is

plot(r(θ), θ=α..β, coords=polar, other options)

For example,

> plot(sin(4*theta), theta=0..2*Pi, coords=polar,
scaling=constrained);

–0.8
–0.6
–0.4
–0.2

0

0.2
0.4
0.6
0.8

–0.8 –0.4 0.2 0.4 0.6 0.8

39© 2003 by Chapman & Hall/CRC

40 Maple Animation

Recall from Section 2.8 that the option scaling=constrained prevents Maple
from scaling the vertical and horizontal dimensions independently.

For parametric forms, the syntax is a list

plot([r(t), θ(t), t=a..b], coords=polar, other options)

as in

> plot([cos(t), 3*t, t=0..Pi], coords=polar,
scaling=constrained);

–0.8
–0.6
–0.4
–0.2

0.2
0.4
0.6
0.8

–0.4 0.2 0.4 0.6 0.8 1

Another way to plot in polar coordinates is with the procedure polarplot,
which is available in the plots package. It eliminates the need for the
coords=polar option. The syntax is

polarplot(r(θ), θ=α..β, options)

or, for parametric forms,

polarplot([r(t), θ(t), t=a..b], options)

For example,

> with(plots):
> polarplot(cos(2*theta)*sec(theta), theta=-3*Pi/8..3*Pi/8,

scaling=constrained);
> polarplot([cot(theta), 3*sin(2*theta),

theta=Pi/8..7*Pi/8], scaling=constrained);

–1.5

–1

–0.5

0

0.5

1

1.5

0.4 0.8

© 2003 by Chapman & Hall/CRC

Non-Cartesian Coordinates and Quadric Surfaces 41

0.5

1

1.5

2

–1.5 –1 –0.5 0.5 1 1.5

3.2 Cylindrical coordinates

With the option coords=cylindrical, Maple plots points in cylindrical
coordinates (r, θ, z). These coordinates are particularly useful for generating
smooth plots of quadric surfaces. Maple wants r as a function of θ and z, so
the syntax is

plot3d(r(θ, z), θ=α..β, z=a..b, coords=cylindrical, other options)

For example,

> plot3d(theta*sqrt(1-z), theta=0..2*Pi, z=0..1,
coords=cylindrical, axes=normal);

0.2
0.4
0.6
0.8
1

–4 –3 –2 –1
1
–2

2
4

6

A cylinder with axis the z-axis is, of course, easily plotted:

> plot3d(2, theta=0..2*Pi, z=-1..1, coords=cylindrical,
axes=normal);

© 2003 by Chapman & Hall/CRC

42 Maple Animation

–1

–0.5

0.5

1

–2 –1 1 2

–2

2

The parametric form is a list

plot3d([r(s, t), θ(s, t), z(s, t)], s=a..b, t=c..d, coords=cylindrical,
other options)

For example,

> plot3d([s, t, s^2+t^2], s=-1..1, t=0..2*Pi,
coords=cylindrical, axes=normal);

20

30

40

–1 –0.5 0.5 1

–1
–0.5

0.5
1

If you prefer to think of z as a function of r and θ (instead of r as a function
of θ and z), parametric form provides a handy way to do that. Just use the
form

plot3d([r, θ, z(r, θ)], r=a..b, θ=α..β, coords=cylindrical,
other options)

For example,

> plot3d([r, theta, 12-r^2*(cos(theta)^2+sin(theta)^2)],
r=1..3, theta=0..2*Pi, coords=cylindrical, view=0..12,
axes=normal);

2
4
6
8
10
12

–3 –2
1 2 3

–3–2
123

© 2003 by Chapman & Hall/CRC

Non-Cartesian Coordinates and Quadric Surfaces 43

An alternative method of plotting in cylindrical coordinates is to use the
cylinderplot procedure from the plots package. It makes the coords=
cylindrical option unnecessary. The syntax is

cylinderplot(r(θ, z), θ=α..β, z=a..b, options)

or, for parametric forms,

cylinderplot([r(s, t), θ(s, t), z(s, t)], s=a..b, t=c..d, options)

For example,

> with(plots):
> cylinderplot(z^2*theta, theta=0..5*Pi, z=-1..1,
grid=[80,40]);

> cylinderplot([sin(s-t), s*t, s+t], s=0..Pi, t=0..Pi,
numpoints=1200);

where we have used the grid and numpoints options (Section 2.6) to cre-
ate smoother surfaces. In the first cylinderplot statement, grid=[80,40]
causes Maple to use 80 values for θ and 40 for z.

3.3 Spherical coordinates and others

The option coords=spherical invokes spherical coordinates (ρ, θ, φ) where
|ρ| is the distance of the point from the origin (ρ can be negative), θ is the

© 2003 by Chapman & Hall/CRC

44 Maple Animation

same angle as in polar coordinates, and φ is the angle that a segment from the
origin to the point makes with the positive end of the z-axis. Maple expects
ρ to be expressed as a function of θ and φ, so the syntax is

plot3d(ρ(θ, φ), θ=α..β, φ=γ..δ, coords=spherical, other options)

as in

> plot3d(1+sin(phi)-cos(theta), theta=0..2*Pi, phi=0..Pi,
coords=spherical, grid=[50,40], axes=normal);

–2

–1

1

2

–2 –1
1 2

–3
–2

–1
1

A sphere centered at the origin can, of course, be plotted very simply in
spherical coordinates:

> plot3d(3, theta=0..2*Pi, phi=0..Pi, coords=spherical,
scaling=constrained, axes=normal);

–3
–2

0
1
2
3

–3
–2
–1

3

–3
–2

–1
1

2
3

The parametric form is a list

plot3d([ρ(s, t), θ(s, t), φ(s, t)], s=a..b, t=c..d, coords=spherical,
other options)

such as

© 2003 by Chapman & Hall/CRC

Non-Cartesian Coordinates and Quadric Surfaces 45

> plot3d([s^3+t^3, s+t, t], s=0..2*Pi, t=0..Pi,
coords=spherical, axes=normal);

–200
–100

100
200

100
150200250

–100–50
50100

The alternative method of plotting in spherical coordinates is sphereplot
within the plots package:

sphereplot(ρ(θ, φ), θ=α..β, φ=γ..δ, options)

or

sphereplot([ρ(s, t), θ(s, t), φ(s, t)], s=a..b, t=c..d, options)

For example,

> with(plots):
> sphereplot(sin(theta)+sec(phi), theta=0..2*Pi,

phi=0..Pi/3, axes=normal);
> sphereplot([s, Pi+s+t, Pi/6], s=0..7*Pi/4, t=0..7*Pi/4,

shading=xy, axes=normal);

0.5
1

1.5
2

z

–0.5 0.5 1 1.5 2 2.5y1

x

1

2

3

4

z

–2
1 2y

–2
12 x

© 2003 by Chapman & Hall/CRC

46 Maple Animation

Maple supports an impressive variety of coordinate systems. To see the list,
enter ?coords at the Maple prompt. It is likely that you will find what you
are looking for there. If not, you can create your own coordinate system. For
information on how to do that, enter ?addcoords at the prompt.

3.4 Quadrics quickly

We will consider six types of quadric surfaces: elliptic and hyperbolic
paraboloids, elliptic cones, ellipsoids (including spheres), and hyperboloids
of one and of two sheets. Maple’s ability to plot a surface in three dimensions
is a significant advantage in helping students to understand these analogues
of conic sections, and the capability to rotate the plot in real time is especially
helpful.

We can use Maple’s implicitplot3d procedure, which is in the plots
package, to get graphs of quadric surfaces without much investment of time
or thought. This procedure accepts an equation (or an expression), samples
a default 10 ×10 ×10 grid of points, then uses a numerical algorithm based
upon triangulation into tetrahedra to interpolate a surface. The options for
implicitplot3d are the same as those for plot3d, except that gridstyle,
which can be either rectangular or triangular in a plot3d plot, is fixed as
triangular by implicitplot3d.

Let’s plot the following quadric surfaces:

z =
x2

4
+

y2

9
an elliptic paraboloid

z =
x2

4
− y2

9
a hyperbolic paraboloid

x2

4
+

y2

9
− z2 = 0 an elliptic cone

x2

4
+

y2

9
+ z2 = 1 an ellipsoid

x2

4
+

y2

9
− z2 = 1 a hyperboloid of one sheet

−x2

4
− y2

9
+ z2 = 1 a hyperboloid of two sheets

Although it is not necessary to name and store each surface’s defining equation
before plotting, it is useful to do that and let Maple echo the input so that
we can check that we have entered it correctly:

> Elliptic_paraboloid := z = (x^2)/4 + (y^2)/9;
> Hyperbolic_paraboloid := z = (x^2)/4 - (y^2)/9;

© 2003 by Chapman & Hall/CRC

Non-Cartesian Coordinates and Quadric Surfaces 47

> Elliptic_cone := (x^2)/4 + (y^2)/9 - z^2 = 0;
> Ellipsoid := (x^2)/4 + (y^2)/9 + z^2 = 1;
> Hyperboloid_of_1_sheet := (x^2)/4 + (y^2)/9 - z^2 = 1;
> Hyperboloid_of_2_sheets := -(x^2)/4 - (y^2)/9 + z^2 = 1;

Elliptic paraboloid := z =
x2

4
+

y2

9

Hyperbolic paraboloid := z =
x2

4
− y2

9

Elliptic cone :=
x2

4
+

y2

9
− z2 = 0

Ellipsoid :=
x2

4
+

y2

9
+ z2 = 1

Hyperboloid of 1 sheet :=
x2

4
+

y2

9
− z2 = 1

Hyperboloid of 2 sheets := −x2

4
− y2

9
+ z2 = 1

We can then plot these using implicitplot3d:

> with(plots):
> implicitplot3d(Elliptic_paraboloid, x=-5..5, y=-7..7,

z=-1..5, axes=boxed);
> implicitplot3d(Hyperbolic_paraboloid, x=-2..2, y=-4..4,

z=-1/2..1/2, axes=boxed);
> implicitplot3d(Elliptic_cone, x=-5..5, y=-7..7, z=-2..2,

axes=boxed);
> implicitplot3d(Ellipsoid, x=-2..2, y=-3..3, z=-1..1,

axes=boxed);
> implicitplot3d(Hyperboloid_of_1_sheet, x=-5..5, y=-7..7,

z=-2..2, axes=boxed);
> implicitplot3d(Hyperboloid_of_2_sheets, x=-4..4, y=-6..6,

z=-2..2, axes=boxed);

–4–2024 x
–6 –4 –2 0 2 4 6y

–1

0

1

2

3

4

5

© 2003 by Chapman & Hall/CRC

48 Maple Animation

–2–1012 x
–4 –2 0 2y

–0.4

–0.2

0

0.2

0.4

–4–2024 x
–6 –4 –2 0 2 4 6y

–2

–1

0

1

2

–2–1012 x
–3 –2 –1 0 1 2y

–1

–0.5

0

0.5

1

–4–2024 x
–6 –4 –2 0 2 4 6y

–2

–1

0

1

2

© 2003 by Chapman & Hall/CRC

Non-Cartesian Coordinates and Quadric Surfaces 49

–4–2024 x
–6 –4 –2 0 2 4y

–2

–1

0

1

2

These aren’t bad, except for the elliptic cone, which we can improve by using
the grid option:

> with(plots):
> implicitplot3d(Elliptic_cone, x=-5..5, y=-7..7, z=-2..2,

grid=[15,15,15], axes=boxed);

–4–2024 x
–6 –4 –2 0 2 4 6y

–2

–1

0

1

2

Here, Maple uses 15 equally-spaced points from each of the intervals that we
specified: [−5, 5], [−7, 7], and [−2, 2]. The choice of an odd number of points,
together with the symmetry of these intervals about the origin, means that
Maple will sample the point (0, 0, 0), which is the vertex of the cone. Since
the vertex was not one of the points sampled when we used the default grid
[10, 10, 10], our first plot didn’t include it.

The smoothness of any of these plots can be improved by ordering Maple
to use a finer mesh than default. This can be done either by using the grid
option as above or by setting the numpoints option to a number greater than
1000. For example,

> with(plots):
> implicitplot3d(Hyperboloid_of_1_sheet, x=-5..5, y=-7..7,

z=-2..2, numpoints=1500, axes=boxed);

© 2003 by Chapman & Hall/CRC

50 Maple Animation

–4–2024 x
–6 –4 –2 0 2 4 6y

–2

–1

0

1

2

Incidentally, there is also an implicitplot procedure for plotting curves
represented by equations in two variables. For example, the hyperbola x2/4−
y2/9 = 1 can be plotted with

> with(plots):
> implicitplot(x^2/4 - y^2/9 = 1, x=-5..5, y=-7..7);

–6

–4

–2

0

2

4

6

y

–4 –2 2 4
x

The plots generated by implicitplot3d provide at least a rough represen-
tation of surfaces. Students can use this method to plot these surfaces without
investing a great deal of time in learning the intricacies of Maple. We will
want higher-quality plots, however, when we begin writing animations that
depend on them. Let’s investigate how we might do that.

3.5 Paraboloids

Since elliptic and hyperbolic paraboloids (that have the form of the above
examples) are functions of x and y, we can use the plot3d procedure to plot
them. Redoing our examples of the elliptic paraboloid z = x2/4 + y2/9 and
the hyperbolic paraboloid z = x2/4 − y2/9 in this way, we have

© 2003 by Chapman & Hall/CRC

Non-Cartesian Coordinates and Quadric Surfaces 51

> plot3d(x^2/4 + y^2/9, x=-5..5, y=-7..7, axes=boxed);
> plot3d(x^2/4 - y^2/9, x=-3..3, y=-6..6, axes=boxed);

–4–2024 x
–6 –4 –2 0 2 4 6y

0

2

4

6

8

10

–3–2–10123 x
–6 –4 –2 0 2 4y

–4

–3

–2

–1

0

1

2

Although accurate, these plots don’t have the appearance of the plots usually
presented in textbooks. The reason is that we are seeing too much z. We can
remedy that by using the view option:

> plot3d(x^2/4 + y^2/9, x=-5..5, y=-7..7, view=-1..5,
axes=boxed);

> plot3d(x^2/4 - y^2/9, x=-3..3, y=-6..6, view=-1..1,
axes=boxed);

–4–2024 x
–6 –4 –2 0 2 4 6y

–1

0

1

2

3

4

5

© 2003 by Chapman & Hall/CRC

52 Maple Animation

–3–2–10123 x
–6 –4 –2 0 2 4y

–1
–0.8
–0.6
–0.4
–0.2

0
0.2
0.4
0.6
0.8
1

3.6 Elliptic cones

To get a high-quality plot of an elliptic cone, we will use cylindrical coor-
dinates. To plot the elliptic cone

x2

4
+

y2

9
− z2 = 0

we convert from Cartesian to cylindrical coordinates

r2 cos2 θ

4
+

r2 sin2 θ

9
− z2 = 0

Then, since Maple requires r as a function of θ and z, we solve for r

r =
6z√

9 cos2 θ + 4 sin2 θ

and plot using cylinderplot from the plots package:

> with(plots):
> r := (theta,z) -> 6*z/sqrt(9*cos(theta)^2+4*sin(theta)^2);
> cylinderplot(r(theta,z), theta=0..2*Pi, z=-2..2,

scaling=constrained, axes=boxed);

r := (θ, z) → 6 z√
9 cos(θ)2 + 4 sin(θ)2

© 2003 by Chapman & Hall/CRC

Non-Cartesian Coordinates and Quadric Surfaces 53

–4–2024 x

–6 –4 –2 0 2 4y

–2
–1
0
1
2

z

A circular cone with axis the z-axis has a simple form in spherical coordi-
nates: φ = c, where c is a constant in (0, π). As ρ is not a function of θ and
φ in this case, we use parametric form. For example,

> with(plots):
> sphereplot([rho, theta, Pi/3], rho=-4..4, theta=0..2*Pi,

scaling=constrained, axes=boxed);

–3–2–10123 x
–3 –2 –1 0 1 2 3y

–2

–1

0

1

2

z

3.7 Ellipsoids

We will use cylindrical coordinates for ellipsoids, too. Converting the ellip-
soid

x2

4
+

y2

9
+ z2 = 1

to cylindrical coordinates,

r2 cos2 θ

4
+

r2 sin2 θ

9
+ z2 = 1

© 2003 by Chapman & Hall/CRC

54 Maple Animation

then solving for r, we have

r = 6

√
1 − z2

9 cos2 θ + 4 sin2 θ

We plot this using cylinderplot:

> with(plots):
> r := (theta,z) ->

6*sqrt((1-z^2)/(9*cos(theta)^2+4*sin(theta)^2));
> cylinderplot(r(theta,z), theta=0..2*Pi, z=-1..1,

scaling=constrained, axes=boxed);

r := (θ, z) → 6

√
1 − z2

9 cos(θ)2 + 4 sin(θ)2

–2–1012 x

–3 –2 –1 0 1 2y

–1
–0.5

0
0.5
1

z

The spherical coordinate system would seem a natural choice for an ellip-
soid; let’s try it. Converting

x2

4
+

y2

9
+ z2 = 1

to spherical coordinates

ρ2 sin2 φ cos2 θ

4
+

ρ2 sin2 φ sin2 θ

9
+ ρ2 cos2 φ = 1

and solving for ρ, we have

ρ =
6√

sin2 φ(9 cos2 θ + 4 sin2 θ) + 36 cos2 φ

We then plot this using sphereplot:

> with(plots):
> rho := (theta,phi) -> 6/sqrt(sin(phi)^2*(9*cos(theta)^2+

4*sin(theta)^2)+36*cos(phi)^2);
> sphereplot(rho(theta,phi), theta=0..2*Pi, phi=0..Pi,

scaling=constrained, axes=boxed);

© 2003 by Chapman & Hall/CRC

Non-Cartesian Coordinates and Quadric Surfaces 55

ρ := (θ, φ) → 6√
sin(φ)2 (9 cos(θ)2 + 4 sin(θ)2) + 36 cos(φ)2

–2–1012 x

–3 –2 –1 0 1 2y

–1
–0.5

0
0.5
1

z

There is no improvement over the already good plot from cylinderplot.
Since the function ρ is marginally more complex than r, we will opt for cylin-
drical coordinates.

3.8 Hyperboloids

Converting the hyperboloid of one sheet

x2

4
+

y2

9
− z2 = 1

to cylindrical coordinates

r2 cos2 θ

4
+

r2 sin2 θ

9
− z2 = 1

and solving for r, we have

r = 6

√
z2 + 1

9 cos2 θ + 4 sin2 θ

We then plot using cylinderplot:

> with(plots):
> r := (theta,z) ->

6*sqrt((z^2+1)/(9*(cos(theta))^2+4*(sin(theta))^2));
> cylinderplot(r(theta,z), theta=0..2*Pi, z=-2..2,

axes=boxed);

r := (θ, z) → 6

√
z2 + 1

9 cos(θ)2 + 4 sin(θ)2

© 2003 by Chapman & Hall/CRC

56 Maple Animation

–4–2024 x
–6 –4 –2 0 2 4 6y

–2

–1

0

1

2

z

Doing the same for the hyperboloid of two sheets

−x2

4
− y2

9
+ z2 = 1

yields

r = 6

√
z2 − 1

9 cos2 θ + 4 sin2 θ

and

> with(plots):
> r := (theta,z) ->

6*sqrt((z^2-1)/(9*cos(theta)^2+4*sin(theta)^2));
> cylinderplot(r(theta,z), theta=0..2*Pi, z=-3..3,

axes=boxed);

r := (θ, z) → 6

√
z2 − 1

9 cos(θ)2 + 4 sin(θ)2

–4–2024 x
–8–6–4–2 0 2 4 6 8y

–3

–2

–1

0

1

2

3

z

© 2003 by Chapman & Hall/CRC

Non-Cartesian Coordinates and Quadric Surfaces 57

3.9 Quadric surfaces with axes other than the z -axis

For simplicity, our examples have had as their axes the z-axis. For demon-
strating the salient features of quadric surfaces, these are fine. You may,
however, want to plot quadric surfaces with axis the x-axis or the y-axis. A
simple way to do that is to use implicitplot3d as above. For example,

> with(plots):
> implicitplot3d((x^2)/4-(y^2)/9+z^2=1, x=-5..5, y=-7..7,

z=-3..3, axes=boxed);
> implicitplot3d(-(x^2)/4+(y^2)/9+z^2=1, x=-5..5, y=-8..8,

z=-3..3, axes=boxed);

–4–2024 x
–6 –4 –2 0 2 4 6y

–3

–2

–1

0

1

2

3

–4–2024 x
–8 –6 –4 –2 0 2 4 6 8y

–3

–2

–1

0

1

2

3

A second way—and one that produces higher-quality results—is to create
a general function r in terms of θ and t, where t will be replaced by x, y, or
z, then use Cartesian coordinates in parametric form. For example,

> with(plots):
> r := (theta,t) ->

6*sqrt((t^2+1)/(4*(cos(theta))^2+9*(sin(theta))^2));
> plot3d([r(theta,z)*cos(theta), r(theta,z)*sin(theta), z],

theta=0..2*Pi, z=-2..2, axes=boxed);

© 2003 by Chapman & Hall/CRC

58 Maple Animation

> plot3d([r(theta,y)*cos(theta), y, r(theta,y)*sin(theta)],
theta=0..2*Pi, y=-2..2, axes=boxed);

> plot3d([x, r(theta,x)*cos(theta), r(theta,x)*sin(theta)],
theta=0..2*Pi, x=-2..2, axes=boxed);

r := (θ, t) → 6

√
t2 + 1

4 cos(θ)2 + 9 sin(θ)2

–6–4–20246
–4 –2 0 2 4

–2

–1

0

1

2

–6–4–20246
–2 –1 0 1 2

–4

–2

0

2

4

–2–1012
–6 –4 –2 0 2 4 6

–4

–2

0

2

4

For a quadric surface whose axis is oblique, the easiest way is just to use
implicitplot3d

> with(plots):
> implicitplot3d((x^2)/4-(y^2)/9+x*y-y*z+z^2=1, x=-5..5,

y=-7..7, z=-3..3, axes=boxed);

© 2003 by Chapman & Hall/CRC

Non-Cartesian Coordinates and Quadric Surfaces 59

–4–2024 x
–6 –4 –2 0 2 4 6y

–3

–2

–1

0

1

2

3

but the plot does not hold much appeal. Another way is to rotate one of the
superior plots that we produced using cylinderplot above. Still another is to
use a linear transformation. In Chapter 10, we will consider two procedures,
rotate and transform, that do that, as well as some other procedures in the
plottools package.

© 2003 by Chapman & Hall/CRC

Chapter 4

Simple Animations

We will make our first animations in this chapter, using three built-in proce-
dures. These convenient procedures are useful when the object you want to
animate is a function of one or two variables. We will adopt a general out-
line for animation worksheets and use it to create many animated classroom
demonstrations. One animation illustrates the idea of a tangent line to a curve
at a point by showing various secant lines passing through a common point
and approaching, or not approaching, a limiting line. Another one demon-
strates the squeeze theorem. It draws a curve as it is being forced toward
a limit by two bounding functions. Four more are useful for investigating
the shapes of hyperboloids and paraboloids by passing a plane through them
and studying the cross-sections. Another demonstrates the concepts of level
curves and contour plots.

4.1 Animating a function of a single variable

The procedure animate, within the plots package, provides a quick way to
produce an animation of a function of a single variable. This procedure creates
frames, 16 by default, and displays them in sequence. The first argument of
animate is a function, possibly in parametric form, of two variables. One of
these, say x, is the independent variable of the function you are animating;
the other, say t, is the fram e variable. It is the varying values of the frame
variable that make the individual frames of the animation differ from each
other. The syntax is

animate(F (x, t), x=a..b, t=p..q, options)

For example, we can plot a sine function on the interval [0, 4π] with amplitude
increasing from 1 to 4 with the command

> with(plots):
> animate(t*sin(x), x=0..4*Pi, t=1..4);

61© 2003 by Chapman & Hall/CRC

62 M aple Anim ation

–4

–2

0

2

4

2 4 6 8 10 12
x

–4

–2

0

2

4

2 4 6 8 10 12
x

–4

–2

0

2

4

2 4 6 8 10 12
x

In the View menu, select Context Bar if it isn’t already checked. If you
click on the plot, various buttons will appear in the context bar (Section 2.14)
that allow you to: stop or play the animation, step through one frame at a
time, play backward or forward, play back slower or faster, and run for just
one cycle or loop continuously. Try it. These options are also available under
the Animation menu and by clicking the right mouse button (or option-
clicking if you have only one button) on the plot. If your computer is a quick
one, you may find that the animations play so rapidly that you’ll want to slow
them down a little.

All the options for the plot procedure are available in animate. For exam-
ple,

> with(plots):
> animate(sin(t*x), x=0..4*Pi, t=1..2, numpoints=200,

color=blue);

–1

–0.5

0

0.5

1

2 4 6 8 10 12
x

–1

–0.5

0

0.5

1

2 4 6 8 10 12
x

–1

–0.5

0

0.5

1

2 4 6 8 10 12
x

produces smoother plots by way of the numpoints option. An additional
option, frames, allows you to smooth out the animation itself by ordering
more than the default 16 frames. For example,

> with(plots):
> animate(sin(x-t), x=0..4*Pi, t=0..2*Pi, frames=40,

numpoints=100);

–1

–0.5

0

0.5

1

2 4 6 8 10 12
x

–1

–0.5

0

0.5

1

2 4 6 8 10 12
x

–1

–0.5

0

0.5

1

2 4 6 8 10 12
x

© 2003 by Chapman & Hall/CRC

Sim ple Anim ations 63

The function to be animated may be in parametric form. For example,

> with(plots):
> animate([r*cos(theta), r*sin(theta), theta=0..2*Pi],
r=1..4, scaling=constrained);

–4

–2

2

4

–4 –2 2 4

–4

–2

2

4

–4 –2 2 4

–4

–2

2

4

–4 –2 2 4

Recall that the domain for the parameter in two-dimensional parametric plots
is given within the list, so theta is the parameter in this plot, and r is the
frame variable.

Here are some animations that might be used in a pre-calculus class to
investigate the behavior of the graph of f(x) = ax2 + bx + c as a, b, or c
varies.

> with(plots):
> animate(a*x^2, x=-2..2, a=-2..2);
> animate(x^2+b*x+1, x=-2..2, b=-2..2);
> animate(x^2+x+c, x=-2..2, c=-2..2);

–8

–6

–4

–2
0

2

4

6

8

–2 –1 1 2
x

–8

–6

–4

–2
0

2

4

6

8

–2 –1 1 2
x

–8

–6

–4

–2
0

2

4

6

8

–2 –1 1 2
x

0

2

4

6

8

–2 –1 1 2
x

0

2

4

6

8

–2 –1 1 2
x

0

2

4

6

8

–2 –1 1 2
x

–2

2

4

6

8

–2 –1 1 2
x

–2

2

4

6

8

–2 –1 1 2
x

–2

2

4

6

8

–2 –1 1 2
x

© 2003 by Chapman & Hall/CRC

64 M aple Anim ation

The behavior as b varies will probably not be obvious to the students. It
would make a good exercise for them to try this and explain why it happens.

Here are animations useful for studying exponential functions,

> with(plots):
> animate(A*exp(x), x=-2..2, A=-2..2);
> animate(exp(B*x), x=-2..2, B=-2..2);

–15

–10

–5

0

5

10

15

–2 –1 1 2
x

–15

–10

–5

0

5

10

15

–2 –1 1 2
x

–15

–10

–5

0

5

10

15

–2 –1 1 2
x

0

10

20

30

40

50

–2 –1 1 2
x

0

10

20

30

40

50

–2 –1 1 2
x

0

10

20

30

40

50

–2 –1 1 2
x

and a few for studying polar functions.

> with(plots):
> animate(1+a*cos(theta), theta=0..2*Pi, a=-2..2,

coords=polar);
> animate(2+a*cos(theta), theta=0..2*Pi, a=-2..2,

coords=polar);
> animate(3+a*cos(theta), theta=0..2*Pi, a=-2..2,

coords=polar);
> animate(a+cos(theta), theta=0..2*Pi, a=-2..2,

coords=polar);

–1.5

–1

–0.5
0

0.5

1

1.5

–3 –2 –1 1 2 3
theta

–1.5

–1

–0.5
0

0.5

1

1.5

–3 –2 –1 1 2 3
theta

–1.5

–1

–0.5
0

0.5

1

1.5

–3 –2 –1 1 2 3
theta

–2

–1

0

1

2

–4 –2 2 4
theta

–2

–1

0

1

2

–4 –2 2 4
theta

–2

–1

0

1

2

–4 –2 2 4
theta

© 2003 by Chapman & Hall/CRC

Sim ple Anim ations 65

–3

–2

–1

0

1

2

3

–4 –2 2 4
theta

–3

–2

–1

0

1

2

3

–4 –2 2 4
theta

–3

–2

–1

0

1

2

3

–4 –2 2 4
theta

–2

–1

0

1

2

–1 1 2 3
theta

–2

–1

0

1

2

–1 1 2 3
theta

–2

–1

0

1

2

–1 1 2 3
theta

The following animation would be useful in a statistics course for demon-
strating what happens to a distribution as the standard deviation increases.

> with(plots):
> G := (x,sigma) ->

1/(sigma*sqrt(2*Pi))*exp(-x^2/(2*sigma^2));
> animate(G(x,sigma), x=-5..5, sigma=1..2);

G := (x, σ) → e(−1/2 x2

σ2)

σ
√

2 π

0

0.1

0.2

0.3

0.4

–4 –2 2 4
x

0

0.1

0.2

0.3

0.4

–4 –2 2 4
x

0

0.1

0.2

0.3

0.4

–4 –2 2 4
x

4.2 Outline of an animation worksheet

The demonstration worksheets in this book have the following general form.
It is one way to organize things.

> restart:
> with(packagessuch as plots):
> setoptions(options) or setoptions3d(options):
> BackgroundPlot:= optionalplotstructure thatisnotanim ated:

© 2003 by Chapman & Hall/CRC

66 M aple Anim ation

> Elem ent1 := · · · :
> Elem ent2 := · · · :

...
> Elem entk := · · · :





Animated elements created using built-in
procedures, such as animate, or loop struc-
tures, which are discussed in later chapters.

> display(BackgroundPlot, Elem ent1, Elem ent2,. . . , Elem entk,
options);

The restart command clears variable names and Maple’s own internal
memory. Whenever Maple begins doing something untoward, it often helps to
issue a restart command and then re-execute the statements in the worksheet
that you need. It could be that you have previously assigned a constant value
to a name that you are now trying to use as a variable. Maple won’t like
that. A restart will clear all the names. To restore variable status to just
one name, say x, type x := ’x’; at the Maple prompt. It is good general
practice to begin a worksheet with a restart. Hereafter, we will begin each
section of code on the CD with one.

What restart won’t do is return memory to the operating system. If mem-
ory limits are the problem, you’ll need to quit Maple altogether, then restart.
Whenever Maple is doing something that you can’t account for, first remove
the output from the worksheet (under the Edit menu), save the worksheet,
exit, and then restart Maple. (There’s nothing like a new beginning.) If you
find yourself having to do this often, it will probably help to increase the
memory allocated to Maple.

Generally, worksheets will have a with statement near the beginning to
summon packages such as plots, which contains animate and display among
other things. Recall (Section 2.13) that setoptions and setoptions3d pro-
vide a way to state, up front, any plotting options that you would like to be in
effect for all the displays of plots in the worksheet. This saves entering them in
every display statement. A background plot is a structure—perhaps a curve
or a surface—that doesn’t move in the animation. The animated elements,
possibly many, are created and named, then everything is displayed in one or
more display statements that can contain options local to them. Next is an
example.

4.3 Demonstrations: Secant lines and tangent lines

Let’s create animations to demonstrate the idea that a tangent line to a
curve at a point is the limiting line of secant lines through the point. To do a
thorough job, we will want to show what happens when a curve does have a
tangent line at a point and also when it doesn’t. We will make one animation
that shows the secants from both sides nearing the same line, the tangent line,

© 2003 by Chapman & Hall/CRC

Sim ple Anim ations 67

and another that shows a case in which the limiting lines from the left and
right are different.

4.3.1 Secant lines at a point approaching a tangent line

We begin with

> restart:
> with(plots):
> setoptions(thickness=2, axes=boxed, labels=["",""]):

Choosing a thickness greater than the default 0 improves readability of the
plots when they are projected onto a screen.

Next, we define a function to use as an example and choose a point a at
which to construct the secant lines. We also store plots of the function and
point.

> f := x -> x^3 + 8;
> a := 2:
> Curve := plot(f(x), x=a-2..a+2, color=black):
> FixedPt := pointplot([a,f(a)], symbol=circle,

symbolsize=14, color=red):

f := x → x3 + 8

These plots constitute the background plot. The symbol=circle option might
not be necessary; recall from Section 2.3 that the default plotting symbol for
points is device-specific. The choice of a symbol size greater than the default
10 makes the point show up better on a projected image.

We now set up a little function to use as h, the value we would like to ap-
proach zero. This is necessary because Maple wants the domain of animate’s
frame variable to be of the form a..b, where a < b. It wouldn’t do, then,
to give the frame variable’s domain as, say, t=1..0.01. We also create the
animated elements: a set of secant lines on the right and another set on the
left.

> h := t -> 1 - t:
> RightSecants := animate((f(a+h(t))-f(a))/h(t)*(x-a) +
f(a), x=a-2..a+2, t=0..0.99, color=blue):

> LeftSecants := animate((f(a-h(t))-f(a))/(-h(t))*(x-a) +
f(a), x=a-2..a+2, t=0..0.99, color=blue):

Finally, we display the results so that we can compare them and decide
whether the limiting line is the same from both sides.

> display(Curve, FixedPt, RightSecants, LeftSecants);

© 2003 by Chapman & Hall/CRC

68 M aple Anim ation

–20

0

20

40

60

0 1 2 3 4

0

20

40

60

1 2 3 4

0

20

40

60

1 2 3 4

4.3.2 Secant lines at a corner point

We can also use this animation to demonstrate to students that there are
continuous functions with points at which no tangent line is defined at all,
because the secant lines on the left and right do not approach the same limiting
line. One such example is f(x) = |x3 + 2x| at 0. To demonstrate this, we
would need to change only the function f , but we will make another small
change. Because the domain a-2..a+2 appears several times in the code, it
would be convenient to give it a name. This would make it easy to change
the domain without having to find every place in the code that the domain
appears.

> restart:
> with(plots):
> setoptions(thickness=2, axes=boxed, labels=["",""]):
> f := x -> abs(x^3 + 2*x);
> a := 0:
> Domain := a-2..a+2:
> Curve := plot(f(x), x=Domain, color=black):
> FixedPt := pointplot([a,f(a)], symbol=circle,

symbolsize=14, color=red):
> h := t -> 1 - t:
> RightSecants := animate((f(a+h(t))-f(a))/h(t)*(x-a) +

f(a), x=Domain, t=0..0.99, color=blue):
> LeftSecants := animate((f(a-h(t))-f(a))/(-h(t))*(x-a) +

f(a), x=Domain, t=0..0.99, color=blue):
> display(Curve, FixedPt, RightSecants, LeftSecants);

f := x →
∣∣x3 + 2 x

∣∣

–6
–4
–2
0
2
4
6
8
10
12

–1 0 1 2

–4

–2

0

2

4

6

8

10

12

–1 0 1 2
–4

–2

0

2

4

6

8

10

12

–1 0 1 2

© 2003 by Chapman & Hall/CRC

Sim ple Anim ations 69

4.4 Using animated demonstrations in the classroom

When you use an animation for classroom demonstration, you will probably
want to begin with the animation paused so that you can talk some about
the first frame and tell the students what to watch for. Then step through
a few frames, one at a time, discussing individual ones with the class so the
students will understand what is happening when the animation runs.

If the plot is three-dimensional, it helps to rotate it so the students can see
it from several points of view. This helps them to get oriented and simply to
understand better what they are seeing. Some gradual rotation also seems to
enhance the illusion of three-dimensionality. Also, some of the plot’s features
may at first be hidden. My experience is that two things will cause some
students to lose the orientation of a three-dimensional plot: one is rotating it
too quickly; the other is rotating it all the way around. Generally, then, I will
rotate it slowly from side to side, 30 or 40 degrees each way.

To ensure that everyone can see the plot clearly, set the Zoom Factor
under the View menu to be at least 150%. The buttons with the magnifying
glass on them adjust the zoom factor, too. You can also enlarge the plot
window (by clicking on the plot, then clicking and dragging one of the black
squares at the corners and edges) to fill the screen. If you are in a very large
room, you might want to enlarge the plot window beyond the size of the
screen. This has the effect of cropping out the white space and maximizing
the size of the plot itself.

4.5 Watching a curve being drawn

Maple has a special-purpose procedure that animates the production of a
curve, as if it were being drawn on a chalkboard. We might attempt to create
this ourselves using animate with something such as

> with(plots):
> animate(sin(x), x=0..t, t=0.1..2*Pi);

but Maple won’t accept the variable endpoint of the domain. The procedure
that is designed to do this is animatecurve in the plots package. It will
animate the drawing of a curve in two dimensions. The syntax is

animatecurve(f(x), x=a..b, options)

and the options are the same as those of animate, including the frames option,
which defaults to 16. For example,

© 2003 by Chapman & Hall/CRC

70 M aple Anim ation

> with(plots):
> animatecurve(sin(x), x=0..2*Pi, color=green);

–1

–0.5

0

0.5

1

1 2 3 4 5 6
x

–1

–0.5

0

0.5

1

1 2 3 4 5 6
x

–1

–0.5

0

0.5

1

1 2 3 4 5 6
x

The animatecurve procedure will also accept functions in parametric form,
such as

> with(plots):
> animatecurve([cos(theta), sin(theta), theta=0..2*Pi],

scaling=constrained);

–1

–0.5

0.5

1

–1 –0.5 0.5 1

–1

–0.5

0.5

1

–1 –0.5 0.5 1

–1

–0.5

0.5

1

–1 –0.5 0.5 1

4.6 Demonstration: The squeeze theorem

Let’s create an animated demonstration of the squeeze theorem: if f(x) ≤
g(x) ≤ h(x) for all x in some open interval containing a (except, possibly, a
itself) and if limx→a f(x) = L = limx→a h(x), then limx→a g(x) = L as well.
We will take as our example, limx→0 x2 sin(1/x). Since −1 ≤ sin(1/x) ≤ 1, we
have −x2 ≤ x2 sin(1/x) ≤ x2, and we want to see x2 sin(1/x) being squeezed
to 0 by −x2 and x2 as x → 0. First we define the function g and plot its
bounds, the background plot.

> restart:
> with(plots):
> setoptions(thickness = 2):
> g := x -> x^2*sin(1/x):
> Bounds := plot({-x^2, x^2}, x=-0.1..0.1, color=red):

© 2003 by Chapman & Hall/CRC

Sim ple Anim ations 71

Next, we create the animated elements. Since we are demonstrating a two-
sided limit, it would be ideal if the curve could be produced as approaching 0
both from the left and from the right, as we might draw it on a chalkboard.
To accomplish this, we choose parametric form and plot [x, g(x)] for the
approach from the left, and [−x, g(−x)] for the approach from the right.
Although parametric form is not necessary for the left-side approach, it is
for the right-side approach. This is because we would like to draw the curve
backwards—that is, from right to left—and Maple will not accept a domain
such as x=0.1..0. We use the domain x=-0.1..0 for both, and Maple is
happy since −0.1 < 0.

> LeftSide := animatecurve([x, g(x), x=-0.1..0],
numpoints=200, color=blue):

> RightSide := animatecurve([-x, g(-x), x=-0.1..0],
numpoints=200, color=blue):

Finally, we display the background plot and the animated elements.

> display(Bounds, LeftSide, RightSide);

–0.01

–0.005

0

0.005

0.01

–0.1 –0.06 0.02 0.04 0.06 0.08 0.1
x

–0.01

–0.005

0

0.005

0.01

–0.1 –0.06 0.02 0.04 0.06 0.08 0.1
x

–0.01

–0.005

0

0.005

0.01

–0.1 –0.06 0.02 0.04 0.06 0.08 0.1
x

The example we have used is a typical one, but it is easy to change to your
favorite. One way to use the animation is to show it immediately after stating
the theorem, so that the students are clear about what the squeeze theorem
says, before working through any examples. Another good way is to show
it after doing the analysis of this particular limit (or your favorite) on the
blackboard so that the demonstration verifies the analysis. Either way, the
animation gives the students a lasting mental image of the squeeze theorem.

4.7 Animating a function of two variables

The animate3d procedure, within the plots package and similar to the
animate procedure, is useful for producing an animation of a function of two
variables. This procedure creates 8 frames, by default, and displays them in
sequence. The first argument of animate3d is a function, possibly in para-
metric form, of three variables. Two of the variables, say x and y, are the

© 2003 by Chapman & Hall/CRC

72 M aple Anim ation

independent variables of the function to be animated. The other, say t, is the
frame variable, its varying values causing the frames to differ from each other.
The syntax is

animate3d(F (x, y, t), x=a..b, y=c..d, t=p..q, options)

For example,

> with(plots):
> animate3d(sin(x-t)*cos(y-t), x=0..2*Pi, y=0..2*Pi,

t=0..Pi);

which plots f(x, y) = sin x cos y on the square region [0, 2π] × [0, 2π] with a
phase shift increasing from 0 to π.

The options are the same as those for plot3d, with the addition of the
frames option, by which you can specify a number of frames other than the
default 8 for the animation. For example,

> with(plots):
> animate3d(x^2 + t*x*y + y^2, x=-4..4, y=-4..4, t=-4..4,

frames=20, numpoints=900, shading=zhue, view=-4..4,
axes=normal, orientation=[10,70]);

–4
–3
–2
–1

2
3
4

–4 –2 2 4y

–2

2
4

x

–4
–3
–2
–1

2
3
4

–4 –2 2 4y

–2

2
4

x

–4
–3
–2
–1

2
3
4

–4 –2 2 4y

–2

2
4

x

which shows what happens to a paraboloid as the coefficient of the cross-
product term xy is varied.

The function that you are animating can be in parametric form. For ex-
ample, the following is an animation of a vertical plane moving along the
x-axis.

> with(plots):
> animate3d([t, y, z], y=-4..4, z=-4..4, t=-3..3,

axes=normal);

© 2003 by Chapman & Hall/CRC

Sim ple Anim ations 73

–4
–2
0
2
4

–4
–2

2
4

–4
–2

2
4 –4

–2
0
2
4

–4
–2

2
4

–4
–2

2
4 –4

–2
0
2
4

–4
–2

2
4

–4
–2

2
4

Recall that the domains for the parameters, in this case y and z, are given
outside the brackets for three-dimensional parametric forms. Here, t is again
the frame variable.

4.8 Demonstrations: Hyperboloids

The key to understanding why quadric surfaces have the shapes they do
is an analysis of their traces (cross-sections) in various planes parallel or or-
thogonal to the axis of the surface. To keep things simple, we will restrict
ourselves to surfaces with axis the z-axis, so the planes we will be interested
in will be parallel to the coordinate planes. We will carry out the analysis,
then create animations that illustrate the geometry and confirm our analysis.

4.8.1 Hyperboloid of one sheet

We begin with x2/4 + y2/9− z2 = 1, a hyperboloid of one sheet. To find its
traces in vertical planes parallel to the yz-plane, we set x = k, where k is a
constant. Rearranging, we have

4y2

9(4 − k2)
− 4z2

4 − k2
= 1 if k �= ±2

z = ±1
3
y if k = ±2

a family of hyperbolas together with their asymptotes. The branches are
oriented to the left and right of the z-axis when |k| < 2 and oriented above
and below the y-axis when |k| > 2. Similarly, the traces in planes parallel to
the xz-plane form a family of hyperbolas. For the traces in horizontal planes,
we set z = k and rearrange

x2

4(1 + k2)
+

y2

9(1 + k2)
= 1

producing ellipses for all values of k.
Let’s create an animation to demonstrate this geometry. We would like to

see a plane moving through the surface and slicing it in the various traces.

© 2003 by Chapman & Hall/CRC

74 M aple Anim ation

First, we need to create the background plot, the hyperboloid. To produce
a high-quality plot, we will change to cylindrical coordinates, express r as a
function of θ and z, and use cylinderplot as we did in Section 3.8.

> restart:
> with(plots):
> setoptions3d(axes=boxed, orientation=[30,75],

labels=["x","y",""], labelfont=[TIMES,BOLDITALIC,24],
axesfont=[HELVETICA,18]):

> r := (theta,z) ->
6*sqrt((z^2+1)/(9*(cos(theta))^2+4*(sin(theta))^2));

> Hyperboloid1 := cylinderplot(r(theta,z), theta=0..2*Pi,
z=-4..4):

r := (θ, z) → 6

√
z2 + 1

9 cos(θ)2 + 4 sin(θ)2

Here, we have also specified the options we prefer for this demonstration. In
particular, the font is large enough to be read at a distance from a projection
screen.

Next, we create the animated elements, the vertical and horizontal planes,
using parametric form for the vertical planes because they are not functions
of x and y.

> VerticalPlanes := animate3d([k,y,z], y=-14..14, z=-4..4,
k=0..7, color=blue):

> HorizontalPlanes := animate3d(k, x=-8..8, y=-14..14,
k=-3..3, color=blue):

Finally, we display the results.

> display(Hyperboloid1, VerticalPlanes);
> display(Hyperboloid1, HorizontalPlanes);

0x–10 0 5 10y
–4
–2
0
2
4

0x–10 0 5 10y
–4
–2
0
2
4

0x–10 0 5 10y
–4
–2
0
2
4

0x–10 0 5 10y
–4
–2
0
2
4

0x–10 0 5 10y
–4
–2
0
2
4

0x–10 0 5 10y
–4
–2
0
2
4

© 2003 by Chapman & Hall/CRC

Sim ple Anim ations 75

As predicted, the vertical planes intersect the hyperboloid in a family of hy-
perbolas with the branches switching orientation, and the horizontal planes
intersect in ellipses. The choice to use the default number of frames, 8, was
a judicious one. With 8 frames and k=0..7, the k-values will be 0, 1, 2, . . . , 7.
The frames will, therefore, include k = 2, and the asymptotes of the family of
hyperbolas will be among the traces.

4.8.2 Hyperboloid of two sheets

We turn now to the hyperboloid of two sheets −x2/4 − y2/9 + z2 = 1. To
find its traces in planes parallel to the yz-plane, we set x = k and rearrange

− 4y2

9(4 + k2)
+

4z2

4 + k2
= 1

These are hyperbolas whose branches are oriented above and below the y-axis
for all k. The traces in planes parallel to the xz-plane are hyperbolas with
branches similarly oriented. Setting z = k to find the traces in horizontal
planes, we have

x2

4(k2 − 1)
+

y2

9(k2 − 1)
= 1 if k �= ±1

the point (0, 0) if k = ±1

Therefore, the trace is an ellipse when |k| > 1, a point when |k| = 1, and
there is no trace at all when |k| < 1.

We proceed in a similar way to that above, using the plot of the hyperboloid
of two sheets that we developed in Section 3.8.

> restart:
> with(plots):
> setoptions3d(axes=boxed, orientation=[30,75],

labels=["x","y",""], labelfont=[TIMES,BOLDITALIC,24],
axesfont=[HELVETICA,18]):

> r := (theta,z) ->
6*sqrt((z^2-1)/(9*cos(theta)^2+4*sin(theta)^2));

> Hyperboloid2 := cylinderplot(r(theta,z), theta=0..2*Pi,
z=-3..3):

> VerticalPlanes := animate3d([k,y,z], y=-10..10, z=-3..3,
k=0..5, color=blue):

> HorizontalPlanes := animate3d(k, x=-6..6, y=-10..10,
k=-5/2..5/2, frames=11, color=blue):

> display(Hyperboloid2, VerticalPlanes);
> display(Hyperboloid2, HorizontalPlanes);

r := (θ, z) → 6

√
z2 − 1

9 cos(θ)2 + 4 sin(θ)2

© 2003 by Chapman & Hall/CRC

76 M aple Anim ation

–404 x–10 –5 0 5 10y
–3
–2
–1
0
1
2
3

–404 x–10 –5 0 5 10y
–3
–2
–1
0
1
2
3

–404 x–10 –5 0 5 10y
–3
–2
–1
0
1
2
3

–404 x–10 –5 0 5 10y
–3
–2
–1
0
1
2
3

–404 x–10 –5 0 5 10y
–3
–2
–1
0
1
2
3

–404 x–10 –5 0 5 10y
–3
–2
–1
0
1
2
3

Again, the number of frames for the horizontal planes was chosen with the
special cases in mind. With 11 frames and k=-5/2..5/2, the k-values will be
−5/2,−2,−3/2, . . . , 5/2, which will include k = ±1.

My own preference is to use these demonstrations just as presented here,
first going through the analysis presented above with the students. Together,
we predict what the traces in various planes are going to be; then we watch the
demonstrations to verify that. So that the students can see how the surface
and plane are oriented, begin with the animation paused and rotate the plot
from side to side. Then step through the animation one frame at a time and
point out the varying traces where the planes meet the surface. Then run the
animation once or twice.

4.9 Demonstrations: Paraboloids

We now create animations that illustrate the geometry of two other quadric
surfaces: elliptic and hyperbolic paraboloids. As with hyperboloids, we will
restrict ourselves to surfaces with axis the z-axis, and we will consider planes
that are parallel to the coordinate planes.

4.9.1 Elliptic paraboloid

First, we consider the elliptic paraboloid z = x2/4 + y2/9. Its traces in
vertical planes x = k are

z =
y2

9
+

k2

4
which are parabolas, all concave upward. Similarly, the traces in vertical
planes y = k are concave-upward parabolas. The surface’s traces in horizontal

© 2003 by Chapman & Hall/CRC

Sim ple Anim ations 77

planes z = k are

x2

4k
+

y2

9k
= 1 if k �= 0

the point (0, 0) if k = 0

ellipses or a point when k ≥ 0, and no trace when k < 0.
To demonstrate this geometry, again we seek an animation that shows a

plane moving through the surface, cutting it in varying traces as it moves.
First, we create the background plot, the elliptic paraboloid. In Section 3.5,
we found that we could get a good plot of a paraboloid by using plot3d. We
will improve the plot’s smoothness a little by increasing the number of points
sampled beyond the default number of 625.

> restart:
> with(plots):
> setoptions3d(axes=boxed, view=-1..5, orientation=[60,60],

labels=["x","y",""], labelfont=[TIMES,BOLDITALIC,24],
axesfont=[HELVETICA,18]):

> EllipticParaboloid := plot3d(x^2/4 + y^2/9, x=-5..5,
y=-7..7, numpoints=900, shading=zhue):

Next, we will create vertical and horizontal planes

> VerticalPlanes := animate3d([k,y,z], y=-7..7, z=-1..5,
k=-4..4, color=red):

> HorizontalPlanes := animate3d(k, x=-5..5, y=-7..7,
k=-1..4, frames=11, color=red):

where, again, the number of frames for the horizontal planes was chosen so
that the plane z = 0, which intersects the surface in a single point, would be
among those shown.

Last, we display the results.

> display(EllipticParaboloid, VerticalPlanes);
> display(EllipticParaboloid, HorizontalPlanes);

–404 x
–4 0 4y

0
2
4

–404 x
–4 0 4y

0
2
4

–404 x
–4 0 4y

0
2
4

© 2003 by Chapman & Hall/CRC

78 M aple Anim ation

–404 x
–4 0 4y

0
2
4

–404 x
–4 0 4y

0
2
4

–404 x
–4 0 4y

0
2
4

4.9.2 Hyperbolic paraboloid

Consider now the hyperbolic paraboloid z = x2/4 − y2/9. Its traces in
vertical planes x = k are

z = −y2

9
+

k2

4

parabolas that are concave downward. The traces in vertical planes y = k are
also parabolas, but concave upward. The surface’s traces in horizontal planes
z = k are

x2

4k
− y2

9k
= 1 if k �= 0

y = ±3
2
x if k = 0

a family of hyperbolas together with their asymptotes. The branches are
oriented to the left and right of the y-axis when k > 0, and above and below
the x-axis when k < 0.

We can make an animation of vertical and horizontal planes moving through
this surface with a few changes to the animation we made for the elliptic
paraboloid. Again, we will arrange the number of frames and the domain
for k so that one of the horizontal planes shown will cut the surface in the
asymptotes of the family of hyperbolas.

> restart:
> with(plots):
> setoptions3d(axes=boxed, view=-1..1, orientation=[60,60],
labels=["x","y",""], labelfont=[TIMES,BOLDITALIC,24],
axesfont=[HELVETICA,18]):

> HyperbolicParaboloid := plot3d(x^2/4-y^2/9, x=-3..3,
y=-6..6, numpoints=900, shading=zhue):

> VerticalPlanes := animate3d([k,y,z], y=-6..6, z=-1..1,
k=-2..2, color=red):

> HorizontalPlanes := animate3d(k, x=-3..3, y=-6..6,
k=-3/4..3/4, frames=9, color=red):

> display(HyperbolicParaboloid, VerticalPlanes);
> display(HyperbolicParaboloid, HorizontalPlanes);

© 2003 by Chapman & Hall/CRC

Simple Animations 79

–202 x
–4

0
4y

–1

0

1

–202 x
–4

0
4y

–1

0

1

–202 x
–4

0
4y

–1

0

1

The capability of Maple to produce such a good plot, and one that can be
rotated so that it can be viewed from any angle, is especially helpful for this
surface. It is, I think, the most difficult to draw of all the quadric surfaces.

My own general method, on any given day, is to prove the theorem or
do the analysis, and then show the examples. I have a colleague who does
things the other way around, and very effectively. He shows a few examples to
motivate the theorem, then proves the general result. Although I haven’t used
these demonstrations this way myself, I think it would work well to show the
animations first, pausing them several times and asking students to identify
the traces in vertical and horizontal planes, and then prove that the traces
are what they appear to be.

4.10 Demonstration: Level curves and contour plots

The early stages of a study of functions of two real variables typically involve
analyzing the level curves f(x, y) = k for various constants k. This amounts
to slicing the surface with horizontal planes z = k. We seek a demonstration,
similar to those we have made for quadric surfaces, that shows a horizontal
plane moving along the z-axis and intersecting the surface in varying level
curves. We will also plot the surface with the level curves shown in position.

As our example, we will use the function f(x, y) = −xye−x2−y2
. First, we

store and display the surface.

> restart:
> with(plots):
> setoptions3d(labels=["x","y",""],

labelfont=[TIMES,BOLDITALIC,24], axesfont=[HELVETICA,18]):
> f := (x,y) -> -x*y*exp(-x^2-y^2);
> Surface := plot3d(f(x,y), x=-2..2, y=-2..2, style=patch,

shading=zhue, axes=boxed, orientation=[25,75]):
> display(Surface);

f := (x, y) → −x y e(−x2−y2)

© 2003 by Chapman & Hall/CRC

80 Maple Animation

–2
0

2 x–2 –1 0 1y

–0.1
0

0.1

We generate the horizontal planes, just as we have in the quadric surface
demonstrations, and display the background plot and the animated element.

> HorizontalPlanes := animate3d(k, x=-2..2, y=-2..2,
k=-0.15..0.15, frames=9, style=patchnogrid, color=gray):

> display(Surface, HorizontalPlanes);

–2
0

2 x–2 –1 0 1y

–0.1
0

0.1

–2
0

2 x–2 –1 0 1y

–0.1
0

0.1

–2
0

2 x–2 –1 0 1y

–0.1
0

0.1

To show the surface with its level curves in place, we can use the style
option.

> display(plot3d(f(x,y), x=-2..2, y=-2..2,
style=patchcontour, shading=zhue, axes=boxed,
orientation=[25,75]));

–2
0

2 x–2 –1 0 1y

–0.1
0

0.1

Here, we have used display so that the options we chose with setoptions3d
will be in effect. (See the footnote in Section 2.13.)

© 2003 by Chapman & Hall/CRC

Simple Animations 81

Here are some suggestions for using this demonstration. Shortly after defin-
ing functions of two variables and their surfaces, explain to the students that
one way to understand the shape of a surface is to slice it with horizontal
planes, yielding the level curves. We can then sketch the curves in the plane,
but we need to imagine them stacked in space to visualize the surface. First,
show the plot of the example surface and rotate it a little. Then show the
animation a few times so the students have the image in mind of the plane
moving up the z-axis. It helps to rotate the plot forward a little more so that
the positive end of the z-axis comes toward you, before you run the animation
each time. This way, the point of view becomes more from above the xy-plane
than from the side of it, and the intersections of the planes with the surface
come more directly into view. Then show the third plot with the level curves
in place. Rotate this plot until the point of view is on the positive end of the
z-axis, and you are looking straight down onto the xy-plane. At this point,
we see the projections of the level curves onto the xy-plane. Tell the students
that this is the kind of diagram they’ll be drawing when you ask them to
sketch a contour plot.

Finally, let’s plot a different surface oriented so that its level curves are
projected onto the xy-plane, showing the contour plot.

> plot3d(sqrt(4-z^2), theta=0..2*Pi, z=0..2,
coords=cylindrical, scaling=constrained,
style=patchcontour, axes=normal, shading=zhue,
orientation=[0,0]);

–2 –1 1 2y

–2

–1

1

2

x

When you show this plot of concentric circles in the plane, tell the students
that these are level curves projected onto the xy-plane—a contour plot—and
you want them to guess the shape of the surface when the contours are stacked
in space. When the students make contour plots, they label the level curves
with the corresponding values of k. In this plot, instead of the labels, we have
color. The blue end of the spectrum represents the lower values of k; the red
end, the higher values of k. Most of the students, although not all, can guess
that the surface is either a hemisphere or something resembling one. To verify

© 2003 by Chapman & Hall/CRC

82 Maple Animation

that, rotate the plot so that the point of view is the usual one, somewhere in
the first octant.

Now is a good time for you to begin writing some animations of your own.
Think of some topic that you are teaching that might be enhanced by ani-
mation or some point that you could demonstrate using animation. Even if
it is just playful experimentation with an idea related to a course, it would
probably be beneficial to share that with students. Since such experimenta-
tion reflects the kind of activity that sometimes leads mathematicians to new
results, it is a fine behavior to model. And it can be contagious.

© 2003 by Chapman & Hall/CRC

Chapter 5

Building and Displaying a Frame
Sequence

The convenient animate, animatecurve, and animate3d procedures of
Chapter 4 are designed for animating a function of one or two variables. Not
all animations fall into that category. In this chapter, we will meet the built-in
procedure seq, which generates sequences, and use it in conjunction with the
display procedure to create animations. The method we will develop is more
generally applicable. It can be used when the object we want to animate is
generated by another Maple procedure. We will also encounter the student
and Student[Calculus1] packages, and create some more demonstrations for
classroom use. One shows rectangles that approximate an area under a curve
becoming more region-filling as their number increases. Another demonstrates
the concept of level surfaces, extending to four dimensions the demonstration
of level curves in Section 4.10. Two more show the paths of projectiles, and
another shows a cycloid being generated by a chosen point on a rolling circle.

5.1 Sequences

There are three related structures in Maple: a sequence, a list, and a set.
We have already encountered lists and sets in Section 2.1, but we will redefine
them here for comparison. A sequence is an ordered n-tuple. A list is an
ordered n-tuple enclosed in square brackets. A set is an unordered n-tuple
enclosed in curly brackets. Basically, a sequence is a list without the square
brackets. For example,

3,7,Pi,4,x,19 is a sequence
[3,7,Pi,4,x,19] is a list
{3,7,Pi,4,x,19} is a set

The sets {12,5,8,5}, {12,5,8}, and {5,8,12} are the same, but [12,5,8,5],
[12,5,8], and [5,8,12] are three different lists, and 12,5,8,5 and 12,5,8
and 5,8,12 are three different sequences. The sequence without any elements
is denoted NULL. The empty list is []; the empty set is { }.

83© 2003 by Chapman & Hall/CRC

84 Maple Animation

Elements may be appended to sequences using the comma (an operator).
For example, we can create a sequence S using

> S := 4, 9, 7;

S := 4, 9, 7

then append elements 13 and 40 to S using

> S := S, 13, 40;

S := 4, 9, 7, 13, 40

The ith element of the sequence S can be accessed with the selection operation,
S[i] . For example,

> S[1];
> S[3];
> S[5];

4
7
40

5.2 The student and Student[Calculus1] packages

Maple has some useful routines, particularly for calculus, in the student
package. For example, the showtangent procedure, as it sounds as though it
might, plots a function and its tangent line at a point. The simpson procedure
approximates a definite integral using Simpson’s one-third rule. Maple 8 also
includes the upgraded Student[Calculus1] package offering similar proce-
dures such as Tangent and ApproximateInt, but with much more functional-
ity. Several of the procedures in the Student[Calculus1] package will even
output an animation. For those readers who are using Maple 8, we will include
examples where appropriate in this and subsequent chapters. For more infor-
mation now, type ?student or ?Student[Calculus1] at the Maple prompt.
Like the plots package, the student and Student[Calculus1] packages are
not automatically loaded when you start Maple. To use them, you’ll need to
include a with statement.

The rightbox procedure in the student package illustrates one type of
rectangular approximation of a definite integral. The rightbox procedure
plots a function f on an interval [a, b] and a specified number n of rectangles
(default is 4) built upon a regular partition of [a, b] into n subintervals. It

© 2003 by Chapman & Hall/CRC

Building and Displaying a Frame Sequence 85

uses, as the height of each rectangle, the value of f at the right-hand endpoint
of each subinterval. The plot is exactly the kind of diagram you draw when
you introduce the idea of areas under curves and Riemann sums. The syntax
is

rightbox(f(x), x=a..b, n, options)

where the options are the same as for plot and also include a shading=color
option for the fill color of the rectangles. For example,

> with(student):
> rightbox(x^2+x+1, x=0..3, 6);

0

2

4

6

8

10

12

0.5 1 1.5 2 2.5 3
x

For evaluation of the function at left-hand endpoints or midpoints of the
subintervals, there are leftbox and middlebox procedures. The student
package also contains associated rightsum, leftsum, and middlesum func-
tions that give the sum, in sigma notation, of the areas of the rectangles in
each case. For example,

> with(student):
> S := rightsum(x^2+x+1, x=0..3, 6);
> value(S);

S :=
1
2

(
6∑

i= 1

(
1
4

i2 +
1
2

i + 1)

)

157
8

where the value function forces evaluation of the “inert” expression S.

5.3 Displaying a sequence of frames

Animation is fundamentally a process of creating a series of individual im-
ages, consecutive images differing only slightly from each other, and showing

© 2003 by Chapman & Hall/CRC

86 Maple Animation

them one after another fairly quickly so as to foster the illusion of motion.
In Maple terms, the series of images is a sequence of plots. To show them,
we will use the display procedure, and to cause them to be shown one after
another, we will use the option insequence=true.

For example, we might initialize a short sequence of rightbox plots with

> with(student):
> Rectangles := rightbox(x^2+x+1, x=0..3, 6):

then append a rightbox plot that uses 9 rectangles instead of 6,

> Rectangles := Rectangles, rightbox(x^2+x+1, x=0..3, 9):

then append to the existing sequence a rightbox plot that uses 12 rectangles,

> Rectangles := Rectangles, rightbox(x^2+x+1, x=0..3, 12):

and then append yet another with 15 rectangles,

> Rectangles := Rectangles, rightbox(x^2+x+1, x=0..3, 15):

So we now have a sequence of four rightbox plots. We can make a very
short animation from this sequence with each rightbox plot as a frame. We
just need to display the plots using the display procedure with the option
insequence=true

> with(plots):
> display(Rectangles, insequence=true);

0

2

4

6

8

10

12

0.5 1 1.5 2 2.5 3
x

0

2

4

6

8

10

12

0.5 1 1.5 2 2.5 3
x

0

2

4

6

8

10

12

0.5 1 1.5 2 2.5 3
x

which displays the frames, one after the other.
We could, of course, have created this short sequence with one single state-

ment

> Rectangles := rightbox(x^2+x+1, x=0..3, 6),
rightbox(x^2+x+1, x=0..3, 9),
rightbox(x^2+x+1, x=0..3, 12),
rightbox(x^2+x+1, x=0..3, 15):

but the method of building a sequence by appending new frames to an existing
sequence as we have, then displaying them in order, is a general one that we
will use in more elaborate animations in later chapters. This is, in fact, what
the animate, animatecurve, and animate3d procedures of Chapter 4 did for
us automatically. They created a sequence of frames, then displayed them in
order.

© 2003 by Chapman & Hall/CRC

Building and Displaying a Frame Sequence 87

5.4 Building sequences with seq

The seq procedure is an automatic sequence builder. We just specify the
elements in terms of an index and provide a domain for the index. One syntax
is

seq(f(i), i=p..q)

which, loosely speaking, creates a sequence f(p), f(p + 1), f(p + 2), . . . , f(q).
But that description isn’t quite accurate. What actually happens is that
Maple initializes a sequence to NULL, sets i = p and, if i ≤ q, appends f(i),
then increments i by 1 and repeats, continuing to append f(i) until the test
i ≤ q fails, at which point f(i) is not appended. For example,

> seq(2*i+1, i=0..6);

1, 3, 5, 7, 9, 11, 13

and

> seq(j, j=3.4..8.3);

3.4, 4.4, 5.4, 6.4, 7.4

It isn’t necessary that the domain for the index be an arithmetic sequence.
For example,

> Fibonacci := 1, 1, 2, 3, 5, 8, 13, 21:
> seq(i^3-i^2, i=Fibonacci);

0, 0, 4, 18, 100, 448, 2028, 8820

The domain can even be a string. For example,

> seq(i, i="Any string");

“A”, “n”, “y”, “ ”, “s”, “t”, “r”, “i”, “n”, “g”

For more information, type ?seq at the Maple prompt.
Although sometimes we will want to build such alphanumeric sequences

with seq, for the purposes of creating animations, ours will usually be se-
quences of plots. We can, for example, use seq to create a sequence of
rightbox plots. Returning to our example above, we could have created
our short sequence of rightbox plots with

> with(student):
> Rectangles := seq(rightbox(x^2+x+1, x=0..3, 3*i),

i=2..5):

© 2003 by Chapman & Hall/CRC

88 Maple Animation

and then displayed them with

> with(plots):
> display(Rectangles, insequence=true);

0

2

4

6

8

10

12

0.5 1 1.5 2 2.5 3
x

0

2

4

6

8

10

12

0.5 1 1.5 2 2.5 3
x

0

2

4

6

8

10

12

0.5 1 1.5 2 2.5 3
x

This is a technique worth remembering: Create a sequence of frames using
seq, then display them using display with the option insequence=true.

5.5 Demonstrations: Rectangular approximation of the
definite integral

We now apply our technique to demonstrate the method of approximation
by rectangles of the area under a curve. We wish to show that, as their number
increases, the rectangles become more region-filling. In the first demonstra-
tion, we will use seq to build a sequence of rightbox plots, and we’ll use
enough rectangles to make it convincing. The second demonstration is for
Maple 8 users; it relies on a procedure from the Student[Calculus1] pack-
age.

5.5.1 Using seq and rightbox

We start by calling the necessary packages and selecting a font large enough
to be seen from a distance. We also choose to suppress axis labels.

> restart:
> with(student):
> with(plots):
> setoptions(labels=["",""], axesfont=[HELVETICA,18]):

We choose an example function and domain.

> f := x -> x^2 + x + 1;
> a := 0;
> b := 3;

© 2003 by Chapman & Hall/CRC

Building and Displaying a Frame Sequence 89

f := x → x2 + x + 1
a := 0
b := 3

Instead of writing two separate statements as we did above—one to create
and store the sequence of frames, and another to display it—we can fold them
together into a single command.

> display(seq(rightbox(f(x), x=a..b, NumRects),
NumRects=6..80), insequence=true);

0
2
4
6
8

10
12

0.5 1 1.5 2 2.5 3 0
2
4
6
8

10
12

0.5 1 1.5 2 2.5 3 0
2
4
6
8

10
12

0.5 1 1.5 2 2.5 3

Its form reflects its function: It displays a sequence of rightboxes.
This demonstration is fairly effective. It looks convincing that the sum of

the areas of the rectangles converges to the area under the curve. It makes it
seem reasonable, then, to define the area under the curve as the limit of this
sum, or one like it. I do an example on the blackboard, finding the limit of
the sum, then show the demonstration, changing the function and domain to
match the example that I’ve worked. Then I repeat the process with a different
example. Using the computer provides a welcome break from the lengthy
algebraic manipulations, and the demonstration helps students visualize what
the mathematics is actually accomplishing. Later, in Section 7.6, we will
improve this demonstration by including in the plot the running sum of the
areas of the rectangles.

5.5.2 The RiemannSum procedure of Maple 8

In Maple 8, the procedure RiemannSum in the Student[Calculus1] package
can produce an animation much like this one. The syntax is

RiemannSum(f(x), x=a..b, options)

Among the options, of which there are many, is output=animation. To match
our previous animation, we will set two of the other options to method=right
(default is method=midpoint) and partition=6 (default is 10). Although the
partition need not be regular, by default RiemannSum doubles the number of
subintervals in a regular partition for each of five frames after the first one.

© 2003 by Chapman & Hall/CRC

90 Maple Animation

> restart:
> with(Student[Calculus1]):
> f := x -> x^2 + x + 1;
> a := 0;
> b := 3;
> RiemannSum(f(x), x=a..b, method=right, partition=6,

output=animation);

f := x → x2 + x + 1
a := 0
b := 3

An Approximation of the Integral off(x) = x^2+x+1on the Interval [0, 3]Using a Right-endpoint Riemann SumApproximate Value: 16.50000000

 Area: 19.62500000–4
0

4
8

12

0.5 1 1.5 2 2.5 3x

An Approximation of the Integral off(x) = x^2+x+1on the Interval [0, 3]Using a Right-endpoint Riemann SumApproximate Value: 16.50000000

 Area: 18.03125000–4
0

4
8

12

0.5 1 1.5 2 2.5 3x

An Approximation of the Integral off(x) = x^2+x+1on the Interval [0, 3]Using a Right-endpoint Riemann SumApproximate Value: 16.50000000

 Area: 17.25781250–4
0

4
8

12

0.5 1 1.5 2 2.5 3x

By using some of the other options, you can make the plot more suitable
for projecting onto a screen in the classroom. Using functionoptions, for
example, you can adjust such things as the thickness of the curve and the font
used for the values at the tick marks.

> restart:
> with(Student[Calculus1]):
> f := x -> x^2 + x + 1;
> a := 0;
> b := 3;
> RiemannSum(f(x), x=a..b, method=right, partition=6,

output=animation, functionoptions=[thickness=2,
labels=["",""], axesfont=[HELVETICA,18]],
font=[HELVETICA,18], titlefont=[HELVETICA,18]);

f := x → x2 + x + 1
a := 0
b := 3

An Approximation of the Integral off(x) = x^2+x+1on the Interval [0, 3]Using a Right-endpoint Riemann SumApproximate Value: 16.50000000

 Area: 19.62500000–40
4
8

12

1 2 3

An Approximation of the Integral off(x) = x^2+x+1on the Interval [0, 3]Using a Right-endpoint Riemann SumApproximate Value: 16.50000000

 Area: 18.03125000–40
4
8

12

1 2 3

An Approximation of the Integral off(x) = x^2+x+1on the Interval [0, 3]Using a Right-endpoint Riemann SumApproximate Value: 16.50000000

 Area: 17.25781250–40
4
8

12

1 2 3

The separate titlefont and font specifications are apparently necessary to
enlarge both the title and the value for the area of the rectangles printed
below the plot.

© 2003 by Chapman & Hall/CRC

Building and Displaying a Frame Sequence 91

Another option is iterations, by which you can set the number of frames
in the animation to something other than the default 6. With boxoptions,
you can adjust the appearance of the boxes using plot options, such as
color and linestyle. The subpartition option allows you to subdivide
just one subinterval. The choice subpartition=width subdivides only the
widest subinterval; subpartition=area subdivides only the subinterval of
greatest area. The default is subpartition=all. The manner in which the
subintervals are divided can be controlled by the refinement option. The de-
fault is refinement=halve, which divides each subinterval in half. The other
choices for refinement are random or a value c, with 0 < c < 1, which divides
each subinterval [xi, xi+ 1] at the point xi + c (xi+ 1 − xi). For the complete
details, type ?RiemannSum at the Maple prompt.

5.6 Demonstration: Level surfaces

Alicia Boole Stott (1860–1940), George Boole’s daughter, who was without
formal education in mathematics, could visualize objects in four-dimensional
space, correctly identifying three-dimensional sections of the six regular poly-
topes that are the analogs of the five Platonic solids. [3] For the rest of us,
there is computer graphics. In Section 4.10, we used graphic output effectively
to analyze three-dimensional surfaces by slicing them with planes and stack-
ing the resulting level curves in three-dimensional space. We should be able
to study four-dimensional surfaces, then, by slicing them with hyperplanes.
What we cannot do is stack the resulting level surfaces in four-space.

On the eve of a new millennium, but otherwise an ordinary night in the two-
dimensional world of Edwin Abbott’s Flatland [1], an extraordinary visitor
startles the protagonist, A Square. The visitor, a sphere, passes through
A Square’s planar world, Flatland. As the sphere enters and then leaves
Flatland, A Square sees a point appear out of nowhere, then a growing circle,
then a shrinking circle, then a point, then nothing. A Square sees the sphere
as a circle changing over time, but it isn’t. It is all of those circles at once,
assembled in a three-dimensional world that he cannot perceive. Analogously,
if a hypersphere were to enter our three-dimensional space, we would see a
point, then a growing sphere, then a shrinking sphere, then a point, and then
nothing. We would see the hypersphere as a sphere changing over time, but
it would not be that. It would be all of those spheres at once, put together in
a four-dimensional world that we cannot perceive.

For four-dimensional surfaces, then, our own limitations are analogous to
A Square’s. We can perceive the level surfaces as A Square could perceive
the level curves. We now make an animated demonstration for level surfaces,
similar to the one we constructed in Section 4.10 for level curves. This time,

© 2003 by Chapman & Hall/CRC

92 Maple Animation

however, we won’t be plotting the analog of the moving horizontal plane. That
analog is a hyperplane, and we will not be able to see it, because we will be in
it. We will try to think of our own three-dimensional space as a hyperplane
moving along the w-axis through four-space. What we will see will look like a
surface changing over time. But it is, instead, all of those surfaces assembled
in four-space.

As our example, we will use the function f(x, y, z) = x2/4 + y2/6 − z2/8
and consider its level surfaces f(x, y, z) = k for various constants k. The
implicitplot3d procedure works well enough in this case. We will create a
sequence of level surfaces for values of k from −1/2 to 1/2. We’ll do that by
using seq with index i = −5,−4, . . . , 5 and setting f(x, y, z) = i/10.

> restart:
> with(plots):
> f := (x^2)/4 + (y^2)/6 - (z^2)/8;
> LevelSurfs := seq(implicitplot3d(f=i/10, x=-3..3,

y=-4..4, z=-3..3, grid=[21,21,15]), i=-5..5):
> display(LevelSurfs, insequence=true, style=patchnogrid,

orientation=[35,75], lightmodel=light2);

f :=
x2

4
+

y2

6
− z2

8

Setting the grid option to [21, 21, 15] yields fairly smooth surfaces, and the
odd number of divisions in each direction, together with the fact that the
sampling region is symmetric about the origin, causes the origin to be one
of the points sampled. Since one of the level surfaces is a cone with vertex
at the origin, this improves the appearance of that plot. The lightmodel
option introduces some shadows as from a light source. We will pursue this
technique somewhat further in Section 8.2.

A good time to use this demonstration is directly after the one in Sec-
tion 4.10 on level curves. It needs to be motivated, though. When I use it, I
explain that we will be reasoning by analogy, and I set things up by talking
about spheres passing through planes and hyperspheres passing through hy-
perplanes as above in this section. I play the animation a few times and ask
the students to try to imagine that they are in a hyperplane moving through
a four-dimensional object. Generally, they are quite intrigued by this idea.
You might point out that the slice sequence is analogous to the one we saw in

© 2003 by Chapman & Hall/CRC

Building and Displaying a Frame Sequence 93

Section 4.9.2 where we sliced a hyperbolic paraboloid with horizontal planes.
In that case, we saw a family of hyperbolas together with their asymptotes,
the two asymptotes being a degenerate hyperbola. In the present case, we
are seeing a family of hyperboloids together with a cone, a degenerate hyper-
boloid.

5.7 Moving points

We can also use seq and display to create a moving point. One way to do
this is to create the frames using pointplot or pointplot3d. Another way
is to use plot or plot3d together with style=point. Recall from Section 2.3
that the point (a, b) is denoted as the list [a,b]. Recall, too, that if you
choose to use the plot statement, set brackets are necessary even if you are
only plotting a single point. So you plot a set of lists. (Alternatively, in two
dimensions, you can plot a list of lists.) For example,

> with(plots):
> MovingPoint := seq(pointplot([cos(2*Pi/50*t),
sin(2*Pi/50*t)], symbol=circle), t=0..50):

> display(MovingPoint, insequence=true);

–1.5

–1

–0.5

0

0.5

1

1.5

–2 –1 1 2

–1.5

–1

–0.5

0

0.5

1

1.5

–2 –1 1 2

–1.5

–1

–0.5

0

0.5

1

1.5

–2 –1 1 2

or

> with(plots):
> MovingPoint := seq(plot({[cos(2*Pi/50*t),
sin(2*Pi/50*t)]}, style=point, symbol=circle), t=0..50):

> display(MovingPoint, insequence=true);

–1.5

–1

–0.5

0

0.5

1

1.5

–2 –1 1 2

–1.5

–1

–0.5

0

0.5

1

1.5

–2 –1 1 2

–1.5

–1

–0.5

0

0.5

1

1.5

–2 –1 1 2

© 2003 by Chapman & Hall/CRC

94 Maple Animation

5.8 Demonstrations: Projectiles

We create animations now that show the behavior of objects moving under
the influence of gravity. We assume the typical ideal conditions, which ignore
such things as air resistance and the curvature of the earth.

5.8.1 Path of a single projectile

Suppose that a projectile is fired from ground level with a force whose
horizontal component is 8 m/s and whose vertical component is 98 m/s. We
will create an animation that shows the path and the object moving along it.

First, we choose some options, then create two component functions, x(t)
and y(t), and plot the path on the time interval [0, 20] for which the projectile
remains in the air.

> restart:
> with(plots):
> setoptions(labels=["x","y"],

labelfont=[TIMES,BOLDITALIC,20], axesfont=[HELVETICA,14],
scaling=constrained, symbol=circle, symbolsize=18):

> x := t -> 8*t;
> y := t -> -4.9*t^2+98*t;
> a := 0;
> b := 20;
> Curve := plot([x(t), y(t), t=a..b], color=blue):

x := t → 8 t
y := t → −4.9 t2 + 98 t

a := 0
b := 20

We create a moving point to traverse this path, then display the point and
path.

> Projectile := display(seq(pointplot([x(t),y(t)],
color=red), t=a..b), insequence=true):

> display(Curve, Projectile);

0

100

200

300

400

y

100x
0

100

200

300

400

y

100x
0

100

200

300

400

y

100x

© 2003 by Chapman & Hall/CRC

Building and Displaying a Frame Sequence 95

Notice that two display statements are used here. The first one establishes
that the points are to be displayed in sequence. The second one displays Curve
and Projectile together. This way, only the moving points are displayed in
sequence, and the curve serves as the background plot. If we had left out the
first display statement, defining Projectile as

> Projectile := seq(pointplot([x(t),y(t)], color=red),
t=a..b):

then the first frame would have been the curve, the second frame would have
been the first point, and the next 20 frames would have been the rest of the
points. The curve would have disappeared after the first frame; it would not
have been a background plot.

On some computer screens, the symbol for the point sometimes disappears
when the plot is selected by clicking on it. You can probably make it reappear
by resizing the plot window slightly. If not, try stepping through the animation
one frame at a time. Failing that, try this: save the worksheet in its current
state, quit Maple, and then reopen the saved worksheet.

5.8.2 Comparison of a dropped object and a propelled object

Now we create an animation to demonstrate the behavior of two objects,
one that is propelled horizontally and another that is simply dropped from
the same height. Because the vertical components of their initial velocities are
the same (zero), gravity alone will determine their positions above the ground,
and they will land simultaneously. In our example, both objects start from
a height of 490 m. One object is propelled horizontally with initial velocity
32 m/s.

> restart:
> with(plots):
> setoptions(labels=["x","y"],
labelfont=[TIMES,BOLDITALIC,20], axesfont=[HELVETICA,14],
scaling=constrained, symbol=circle, symbolsize=18):

> x := t -> 32*t;
> y := t -> -4.9*t^2 + 490;
> a := 0;
> b := 10;
> Curve := plot([x(t), y(t), t=a..b], color=blue):
> PropelledObject := display(seq(pointplot([x(t),y(t)],
color=red), t=a..b), insequence=true):

> DroppedObject := display(seq(pointplot([0,y(t)],
color=red), t=a..b), insequence=true):

> display(Curve, PropelledObject, DroppedObject);

© 2003 by Chapman & Hall/CRC

96 Maple Animation

x := t → 32 t
y := t → −4.9 t2 + 490

a := 0
b := 10

0

100

200

300

400

y

50 150 250x
0

100

200

300

400

y

50 150 250x
0

100

200

300

400

y

50 150 250x

These examples of parametric equations are simple. They make good first
examples. I develop the equations on the chalkboard with help from students,
show the animations, then move on to the following example.

5.9 Demonstration: Cycloid

A more interesting example of a curve defined parametrically is a cycloid,
the path that a point on the rim of a rolling wheel follows. In a demonstration,
we’d like to see a circle rolling down the x-axis with a chosen point on the
circle tracing out the curve as this happens.

For the circle, although we could create our own, the plottools package
contains a special-purpose procedure, circle. Its syntax is

circle([c1,c2], radius, options)

where (c1, c2) is the center, radius defaults to 1, and the available options are
the same as those for the plot statement. We use display to plot the circle.
Like the plots and student packages, the plottools package needs to be
called using a with statement. For example,

> with(plottools):
> with(plots):
> display(circle([1,2], 3, color=green),

scaling=constrained);

–1

0

1

2

3

4

5

–2 –1 1 2 3 4

© 2003 by Chapman & Hall/CRC

Building and Displaying a Frame Sequence 97

We begin the demonstration by calling the packages we need and arranging
some details such as labels, fonts, and sizes. We also specify the plot symbol,
and its size, for the points.

> restart:
> with(plots):
> with(plottools):
> setoptions(labels=["x","y"],
labelfont=[TIMES,BOLDITALIC,20], axesfont=[HELVETICA,14],
scaling=constrained, thickness=2, symbol=circle,
symbolsize=18):

Next, we set up parametric equations for the cycloid, choose a radius for the
generating circle, and choose a domain [0, b] for θ, the angle of revolution.
Two complete revolutions of the circle should be enough to demonstrate the
behavior.

> x := theta -> r*(theta-sin(theta));
> y := theta -> r*(1 - cos(theta));
> r := 3:
> b := 4*Pi:

x := θ → r (θ − sin(θ))
y := θ → r (1 − cos(θ))

We choose a number of frames N beyond the first frame, then compute an
angle increment DeltaTheta. Each frame will differ from the last by this
increment.

> N := 30:
> DeltaTheta := b/N:

We now store the plots of N + 1 points from (x(0), y(0)) to (x(b), y(b)) in
increments of DeltaTheta.

> Point := display(seq(pointplot([x(DeltaTheta*i),
y(DeltaTheta*i)], color=red), i=0..N), insequence=true):

For the cycloid, the animatecurve procedure (Section 4.5) will be just the
thing. It will trace out the curve, showing the trail of the moving point. We
use animatecurve with N + 1 frames.

> Cycloid := animatecurve([x(theta), y(theta), theta=0..b],
frames=N+1, color=blue):

We need to determine the coordinates of the center of the generating cir-
cle. Its y-coordinate is always the radius r. As the circle lays the points
of its circumference onto the x-axis, the center moves horizontally exactly

© 2003 by Chapman & Hall/CRC

98 Maple Animation

the length of the corresponding arc of the circle. So the x-coordinate of the
center is just the length rθ of this arc. In any given frame i, the arc so far
subtended is r·DeltaTheta · i. Therefore, the center of the generating circle is
(r ·DeltaTheta · i, r).

> RollingCircle := display(seq(circle([r*DeltaTheta*i,r],
r), i=0..N), insequence=true):

Finally, we display the elements of the animation.

> display(Point, Cycloid, RollingCircle);

0

5y
5 10 15 20 25 30 35x

0

5y
5 10 15 20 25 30 35x

0

5y
5 10 15 20 25 30 35x

© 2003 by Chapman & Hall/CRC

Chapter 6

Loops and Derivatives

The animate, animatecurve, animate3d, and seq commands are convenient,
but as the animations we write become more elaborate, we will sometimes
want more control over how the frames are produced. A loop allows that.
Also, when the structure of each frame is an intricate one, although we may
be able to use seq cleverly to create the frames, a loop can clarify the code.
We will use loops to create a sequence of frames, then use display to display
them in order. In this chapter, we will also see how to use Maple to find
derivatives for functions of one and of several variables. We will encounter
a convenient line-drawing procedure from the plottools package, and we’ll
create animations for generating solids and surfaces of revolution and for
demonstrating Newton’s method.

6.1 The for loop

The for loop provides a structure for repeatedly executing a group of state-
ments. In one of its forms, control of the repetition is implemented by a vari-
able that acts as a counter. The general syntax of this form of the for loop
is

for i from m by j to n do
statement 1;
statement 2;

...
statement k
end do

Assuming that j is positive, the loop counter i is initialized to m and, if i ≤ n,
then the statements, 1 through k, in the body of the loop are executed. Then
i is incremented by j and, if i ≤ n, the statements in the body of the loop
are executed again. This continues until the test i ≤ n fails, at which point
the body of the loop is not entered, and repetition stops. Any evaluation that
may be required to determine n is done only once at the beginning of the loop,
and not after each iteration of the loop. The default increment is 1, so the

99© 2003 by Chapman & Hall/CRC

100 Maple Animation

by j specification can be omitted when j = 1, as is often the case. Actually,
m defaults to 1 as well, so the from m specification could also be omitted in
this case. If j is negative, then i counts down from m to n, and the test for
entry into the loop each time is i ≥ n. Here are some examples.

> for i from 5 to 10 do
> i
> end do;

5
6
7
8
9
10

> for i from 5 by 2 to 10 do
> i
> end do;

5
7
9

> for i from 10 by -2 to 5 do
> i
> end do;

10
8
6

Frequently, the repetitive nature of a loop is used to accumulate things—
values or objects. For example,

> SumSquares := 0:
> SumCubes := 0:
> for i from 1 to 5 do
> SumSquares := SumSquares + i^2;
> SumCubes := SumCubes + i^3
> end do;

SumSquares := 1
SumCubes := 1

SumSquares := 5
SumCubes := 9

SumSquares := 14

© 2003 by Chapman & Hall/CRC

Loops and Derivatives 101

SumCubes := 36
SumSquares := 30
SumCubes := 100
SumSquares := 55
SumCubes := 225

which sums the squares and sums the cubes of the integers from 1 to 5. Before
loops such as this, initialize the accumulators. In this case, SumSquares and
SumCubes are both initialized to 0. On the first pass through the loop, Maple
sets i = 1, adds 12 to the current value of SumSquares (0), then stores the
result in SumSquares, replacing the old value of SumSquares. Similarly, Maple
adds 13 to the current value of SumCubes (0) and replaces SumCubes with
this value. The second time through the loop, Maple sets i = 2, adds 22

to the current value of SumSquares (which is 1) and 23 to the current value
of SumCubes (which is also 1), then replaces SumSquares and SumCubes,
respectively, with the results.

If you would like to suppress the output of the iterations of the loop, this
can be done, as usual, by ending the for statement with a colon. We will
redo the last example that way, adding two statements after the loop so that
we can verify the results.

> SumSquares := 0:
> SumCubes := 0:
> for i from 1 to 5 do
> SumSquares := SumSquares + i^2;
> SumCubes := SumCubes + i^3
> end do:
> SumSquares;
> SumCubes;

55
225

In like manner, we can use loops to generate sequences. For example,

> S := NULL:
> for i from 1 to 5 do
> S := S, i^2
> end do;

S := 1
S := 1, 4

S := 1, 4, 9
S := 1, 4, 9, 16

S := 1, 4, 9, 16, 25

© 2003 by Chapman & Hall/CRC

102 Maple Animation

Here, S is initialized to the empty sequence NULL, and terms are appended
using the comma operator, as in Section 5.1.

Actually, the seq procedure of Section 5.4 is a convenient, single-purpose
form of the for loop. The seq statement

> S := seq(i^2, i=1..5);

S := 1, 4, 9, 16, 25

generates the same sequence as the previous for loop. In addition to conve-
nience, however, seq is the more efficient structure. The cost of seq is linear
in the sequence length; the for loop’s cost is quadratic. So, when efficiency
is paramount, seq is a friend.

Another form of the for loop implements control over the repetition by
executing the body of the loop for each value of the control variable i in T ,
where T is a sequence, list, or set. Any evaluation that may be required to
determine T is done only once at the beginning of the loop, and not after each
iteration of the loop. In general, the syntax is

for i in T do
statement 1;
statement 2;

...
statement k
end do

Some examples are

> T := 1,1,2,3:
> for i in T do
> i^2
> end do;

1
1
4
9

> T := [1,1,2,3]:
> for i in T do
> i^2
> end do;

1
1
4
9

© 2003 by Chapman & Hall/CRC

Loops and Derivatives 103

> T := {1,1,2,3}:
> for i in T do
> i^2
> end do;

1
4
9

Notice that the first and second examples generate the same output of four
values, but the third example produces only three values. This is because the
set {1, 1, 2, 3} is the same as the set {1, 2, 3}.

6.2 The while loop

The while loop offers a means to execute repeatedly a group of statements
as long as some condition continues to hold. The syntax is

while condition do
statement 1;
statement 2;

...
statement k
end do

If condition is true, the statements in the body of the loop are executed. Then
condition is tested again and, if it is true, the body of the loop is executed
again. This continues until condition is false, in which case the loop is not
entered, and repetition stops. For example,

> F1 := 1:
> F2 := 1:
> Fibonacci := F1, F2:
> while F2 < 50 do
> Fnext := F1 + F2;
> Fibonacci := Fibonacci, Fnext;
> F1 := F2;
> F2 := Fnext
> end do:
> Fibonacci;

1, 1, 2, 3, 5, 8, 13, 21, 34, 55

© 2003 by Chapman & Hall/CRC

104 Maple Animation

which generates a Fibonacci sequence until its last term is greater than or
equal to 50.

Maple allows the group of statements in the body of the loop to be empty.
It also permits a kind of hybrid for. . . while loop. Examples are

> for i from 1 while i^3<=10! do
> end do;
> i;

154

which finds the first integer whose cube exceeds 10 factorial, and

> SumOddSquares := 0:
> for i from 1 by 2 while SumOddSquares <= 100 do
> SumOddSquares := SumOddSquares + i^2
> end do;

SumOddSquares := 1
SumOddSquares := 10
SumOddSquares := 35
SumOddSquares := 84
SumOddSquares := 165

which sums the squares of odd positive integers until the sum exceeds 100.
For more details on loops, type ?do at the Maple prompt.

Loops are broadly applicable structures. In this book, our interest in them
is their use in creating sequences of plot structures to be displayed as frames
in an animation. Loops are useful when the structure of the sequence is
complex enough that the convenient seq procedure is not a clear favorite.
The demonstrations in this chapter are examples of that. First, though, we
need a few more tools.

6.3 Derivatives

There is a distinction between functions and expressions, and they are
differentiated differently. In

> f := x -> x^5 + x^2 + 4;
> g := x^4 + 3*x^3;

f := x → x5 + x2 + 4
g := x4 + 3 x3

© 2003 by Chapman & Hall/CRC

Loops and Derivatives 105

f is a function—notice the mapping arrow—and g is an expression. Functions
are differentiated using the D operator, which yields another function. Both
functions and expressions can be differentiated using the diff procedure, but
the result is an expression. Note the differences in the results of

> D(f);
> diff(f(x),x);
> diff(g,x);

x → 5 x4 + 2 x
5 x4 + 2 x
4 x3 + 9 x2

the last two statements meaning, “Differentiate f(x) with respect to x” and
“Differentiate g with respect to x.”

Because the D operator yields a function, we will generally find it more
useful than diff because the derivative may then be evaluated at a point
using notation similar to standard mathematical notation. For example, the
statements

> f(1);
> D(f)(1);

6
7

evaluate f and its derivative at 1. The counterpart for expressions uses the
eval procedure:

> eval(g,x=1);
> eval(diff(g,x),x=1);

4
13

Higher derivatives are denoted D@@k. The effect is to apply the D operator
k times. For example,

> f := x-> a*x^4 + b*x^3 + c*x^2 + d*x + e;
> D(f);
> (D@@2)(f);
> (D@@3)(f);
> (D@@4)(f);

f := x → a x4 + b x3 + c x2 + d x + e
x → 4 a x3 + 3 b x2 + 2 c x + d

x → 12 a x2 + 6 b x + 2 c
x → 24 a x + 6 b

x → 24 a

© 2003 by Chapman & Hall/CRC

106 Maple Animation

Notice the parentheses, which are necessary, around D@@k.
For partial derivatives of functions of several variables, the notation is

D[k](f), similar to the mathematical notation Dkf for the partial derivative
of f with respect to the kth variable. For example,

> f := (x,y,z) -> x^3*y^2 + y^3*z^2 + x*y*z;
> D[1](f);
> D[2](f);
> D[3](f);

f := (x, y, z) → x3 y2 + y3 z2 + x y z
(x, y, z) → 3 x2 y2 + y z

(x, y, z) → 2 x3 y + 3 y2 z2 + x z
(x, y, z) → 2 y3 z + x y

computes the partial derivatives ∂f/∂x, ∂f/∂y, and ∂f/∂z, respectively, of
the function f(x, y, z) = x3y2 + y3z2 + xyz. Higher partial derivatives are
specified by multiple selectors (subscripts). For example,

> D[1,1](f);
> D[2,2](f);
> D[2,1](f);
> D[3,2,1](f);

(x, y, z) → 6 x y2

(x, y, z) → 2 x3 + 6 y z2

(x, y, z) → 6 x2 y + z
1

are ∂2f/∂x2, ∂2f/∂y2, ∂2f/∂y ∂x, and ∂3f/∂z ∂y ∂x, respectively.

6.4 The line procedure

The plottools package contains a convenient line-drawing procedure that
will be useful in the next demonstration. The line procedure creates a line
segment between two points in either two or three dimensions. It has the form

line([x1,y1], [x2,y2], options)

or

line([x1,y1,z1], [x2,y2,z2], options)

The structure can then be plotted using display. All the plot or plot3d
options, such as color and thickness, are available. For example,

© 2003 by Chapman & Hall/CRC

Loops and Derivatives 107

> with(plottools):
> L1 := line([-1,-2], [2,3], color=magenta):
> L2 := line([1,-1,1], [2,3,4], color=blue, thickness=3):
> with(plots):
> display(L1);
> display(L2, axes=normal, orientation=[20,70]);

–2

–1

1

2

3

–1 –0.5 0.5 1 1.5 2

1.5
2

2.5
3

3.5
4

–1 0 1 2 3
1

1.5

2

6.5 Demonstrations: Newton’s method

We will now put together several of the procedures discussed above to create
an animated demonstration of Newton’s method (or the Newton-Raphson
method) for approximating zeros of functions. Then, for Maple 8 users, we
will construct a similar demonstration that uses the Student[Calculus1]
package, and, by modifying it, experiment some with Newton’s method.

6.5.1 Using a for loop

We seek an animation that shows a starting value as a point on the x-axis,
as shown in Figure 6.1, constructs a vertical line segment from that point to

© 2003 by Chapman & Hall/CRC

108 Maple Animation

0

0.5
1

1.5
2

–1 –0.5 0.5 1 1.5 2

FIGURE 6.1: Newton’s method, starting value

the graph of the function, as shown in Figure 6.2, then shows the tangent line

0

0.5
1

1.5
2

–1 –0.5 0.5 1 1.5 2

FIGURE 6.2: Newton’s method, vertical line
segment from starting value to graph

to the graph at the point on the curve and the tangent’s point of intersection
with the x-axis, as shown in Figure 6.3. Using this point of intersection in
place of the starting value, we want to repeat the process.

We begin by calling the plots package so that we can use display, and
the plottools package so that we can use line, and by establishing some
preferences.

> restart:
> with(plots):
> with(plottools):
> setoptions(thickness=2, symbol=circle, symbolsize=16,
axesfont=[HELVETICA,18], labels=["",""]):

Next, we choose a function to use as an example, some limits for its domain,

© 2003 by Chapman & Hall/CRC

Loops and Derivatives 109

0

0.5
1

1.5
2

–1 –0.5 0.5 1 1.5 2

FIGURE 6.3: Newton’s method, starting value,
vertical segment, and tangent line with its

x-intercept

a starting value, and a number of iterations.

> f := x -> 1/5*x^2 - x*cos(2*x);
> a := -1:
> b := 2:
> StartingValue := 1.5;
> NumIterations := 3:

f := x → 1
5

x2 − x cos(2 x)
StartingValue := 1.5

Now we plot the curve and create two functions. The first, TangentLine, is a
function of two variables that creates a plot structure of a line from the point
on the curve above the old estimate to the point where the tangent line to
the curve meets the x-axis. This intersection point is the new estimate of the
zero. The second function, VertLine, creates a vertical line from the current
estimate x on the x-axis to the curve.

> Curve := plot(f(x), x=a..b, color=green):
> TangentLine := (xOld,xNew) -> line([xOld,f(xOld)],
[xNew,0], color=blue):

> VertLine := x -> line([x,f(x)], [x,0], color=blue,
linestyle=DASH):

The heart of the code is a for loop. We initialize the frame sequence
with a plot of the starting value on the x-axis, and we initialize xOld to be
that starting value. In the body of the loop, we compute xNew by Newton’s
method, plot and name the point on the x-axis at the new estimate, and
append two structures to the frame sequence. The first displays the frame
sequence as it currently exists together with the vertical line to the curve.
The second also displays the entire (new) frame sequence together with the

© 2003 by Chapman & Hall/CRC

110 Maple Animation

tangent line and its intersection with the x-axis. This inclusion of the entire
frame sequence in each new frame means that, as each line or point is plotted,
it will remain in the plot—it will be sustained. This is a more effective way
to demonstrate the geometry of Newton’s method than allowing the elements
to disappear after they are plotted. At the end of the for loop, we set xOld
equal to the new estimate to prepare for the next iteration.

> FrameSequence := pointplot([StartingValue,0],
color=red):

> xOld := StartingValue:
> for i from 1 to NumIterations do
> xNew := xOld - f(xOld)/D(f)(xOld);
> Point := pointplot([xNew,0], color=red);
> FrameSequence := FrameSequence,

display(FrameSequence, VertLine(xOld));
> FrameSequence := FrameSequence,

display(FrameSequence, TangentLine(xOld,xNew), Point);
> xOld := xNew
> end do:

Finally, we specify that the frames are to be displayed in sequence, then
display them together with the background plot, Curve.

> Frames := display(FrameSequence, insequence=true):
> display(Curve, Frames);

0

0.5
1

1.5
2

–1 –0.5 0.5 1 1.5 2 0

0.5
1

1.5
2

–1 –0.5 0.5 1 1.5 2 0

0.5
1

1.5
2

–1 –0.5 0.5 1 1.5 2

0

0.5
1

1.5
2

–1 –0.5 0.5 1 1.5 2 0

0.5
1

1.5
2

–1 –0.5 0.5 1 1.5 2 0

0.5
1

1.5
2

–1 –0.5 0.5 1 1.5 2

One good way to use this demonstration is to develop the mathematics
as you step through the first few frames. I start by explaining that we seek
a method to arrive at approximate solutions to equations that we have no
means to solve exactly. This amounts to finding a zero of a function, and our
approach will be to improve on an initial estimate. I tell the students that, in
our examples, the first estimate will be a poor one because Newton’s method

© 2003 by Chapman & Hall/CRC

Loops and Derivatives 111

works so well that they wouldn’t be able to see what was happening very well
if it were a good one. I show the first frame of the animation, which includes
only the curve and the initial estimate, and I point out the zeros whose values
we are trying to find. Then I show the second frame, which sends a line from
the estimate to the curve, and I explain that we’ll use the tangent line at
that point as a rough approximation of the function, hoping that the point
where the tangent line crosses the x-axis won’t be far from the point where the
curve itself crosses. Then I show the third frame, which includes the tangent
line and the new estimate. At this point, I develop the formula for Newton’s
method on the blackboard. After this, I step through the next two frames,
which show, first the line constructed from the current estimate to the curve,
and then the tangent line to the new estimate. Then I step through the last
two frames, which show the final estimate. After this, I run the animation
straight through once or twice so the students can see the method at work.

Newton’s method is amazing, really. It converges incredibly quickly. Of
course, you can foil it if you try, but Newton’s method is fairly robust. I find
it quite rewarding to share this beautiful, three-and-half-century-old method
with my students, who are only a little younger than Newton was when he
invented it. I know of no better way to demonstrate Newton’s method than
this.

6.5.2 The NewtonsMethod procedure of Maple 8

The Student[Calculus1] package of Maple 8 contains NewtonsMethod, a
procedure that applies Newton’s method a specified number of times (5 by
default), given a function and starting value. The syntax is

NewtonsMethod(f(x), x=StartingValue, options)

The option output=sequence produces a sequence that includes the starting
value and the successive approximations. The default output=value returns
just the final approximation. The option output=plot returns a plot that
shows the same kinds of things as in the previous demonstration. For example,

> with(Student[Calculus1]):
> NewtonsMethod(x^5 - 2*x^3 + x - 1, x=2, iterations=3,

output=plot);

f(x)
Tangent lines

3 Iterations of Newton’s Method Applied tof(x) = x^5–2*x^3+x–1with Initial Point x = 2

0

5

10

15

1.4 1.5 1.6 1.7 1.8 1.9 2x

© 2003 by Chapman & Hall/CRC

112 Maple Animation

where we have used the iterations option to specify that Newton’s method
be applied 3 times.

Since this plot contains most of the same objects as our previous demonstra-
tion, we can make a similar animation letting the NewtonsMethod procedure
generate the objects for us. The principal difference is that NewtonsMethod
combines into one frame the lines that we have called VertLine and Tangent-
Line and plotted separately. We begin by loading the packages we need and
choosing some options.

> restart:
> with(Student[Calculus1]):
> with(plots):
> setoptions(thickness=2, labels=["",""],
axesfont=[HELVETICA,16]):

For comparison, we will use the same example as in the previous demon-
stration.

> f := x -> 1/5*x^2 - x*cos(2*x);
> a := -1:
> b := 2:
> StartingValue := 1.5;

f := x → 1
5

x2 − x cos(2 x)
StartingValue := 1.5

Next, we create a function N which will accept an argument i and generate
a plot that shows the geometry when Newton’s method is applied i times.

> N := i -> NewtonsMethod(f(x), x=StartingValue,
iterations=i, output=plot, pointoptions=[symbolsize=16],
view=[a..b,-.5..2.5], titlefont=[HELVETICA,14]):

Here, we have used the pointoptions, view, and titlefont options to render
the plot suitable for screen projection.

Finally, we display a sequence of these plots.

> display(seq(N(i), i=1..3), insequence=true);

1 Iteration of Newton’s Method Applied tof(x) = 1/5*x^2-x*cos(2*x)with Initial Point x = 1.5

0

1
2

–1 1 2

2 Iterations of Newton’s Method Applied tof(x) = 1/5*x^2-x*cos(2*x)with Initial Point x = 1.5

0

1
2

–1 1 2

3 Iterations of Newton’s Method Applied tof(x) = 1/5*x^2-x*cos(2*x)with Initial Point x = 1.5

0

1
2

–1 1 2

© 2003 by Chapman & Hall/CRC

Loops and Derivatives 113

6.5.3 Maple 8 demonstrations: Experimenting with New-
ton’s method

The ability of the NewtonsMethod procedure to generate efficiently a plot
that illustrates the geometry of Newton’s method offers some interesting pos-
sibilities. For example, how does the geometry change as the starting value
varies? We create an animation now that demonstrates this behavior. We
will use as an example the function f(x) = x3 + 3x2 + x − 1, and we’ll apply
Newton’s method 5 times for 25 different starting values (after the first one)
from −3 to 1.

> restart:
> with(Student[Calculus1]):
> with(plots):
> setoptions(thickness=2, labels=["",""],

axesfont=[HELVETICA,16]):
> f := x -> x^3 + 3*x^2 + x - 1;
> a := -4:
> b := 2:
> NumIterations := 5:
> NumStartValues := 25:
> LowStartValue := -3:
> HighStartValue := 1:

f := x → x3 + 3 x2 + x − 1

We define two functions: StartingValue will be used to create the various
starting values from LowStartValue to HighStartValue. N will generate a
plot showing Newton’s method applied NumIterations times using starting
value StartingValue(i).

> StartingValue := i -> LowStartValue +
(HighStartValue-LowStartValue)/NumStartValues*i:

> N := i -> NewtonsMethod(f(x), x=StartingValue(i),
iterations=NumIterations, output=plot,
pointoptions=[symbolsize=16], view=[a..b,-8..8],
titlefont=[HELVETICA,14]):

To make the starting point distinctive in the plot, we will plot it as a red box
on the x-axis. We create a sequence of such plots and another sequence of the
NewtonsMethod plots generated by N , then display them both.

> StartingPoint := display(seq(pointplot(
[StartingValue(i),0], color=red, symbol=box,
symbolsize=20), i=0..NumStartValues), insequence=true):

> NewtMeth := display(seq(N(i), i=0..NumStartValues),
insequence=true):

> display(StartingPoint, NewtMeth);

© 2003 by Chapman & Hall/CRC

114 Maple Animation

5 Iterations of Newton’s Method Applied tof(x) = x^3+3*x^2+x–1with Initial Point x = –51/25

–8
–4
0
4
8

–4 –2 2

5 Iterations of Newton’s Method Applied tof(x) = x^3+3*x^2+x–1with Initial Point x = –47/25

–8
–4
0
4
8

–4 –2 2

5 Iterations of Newton’s Method Applied tof(x) = x^3+3*x^2+x–1with Initial Point x = –43/25

–8
–4
0
4
8

–4 –2 2

It would also be interesting to watch the behavior of Newton’s method as
it is applied to the function f(x) = x2 + c, when c takes on various values,
particularly positive ones.1 We begin by choosing some options and creating
a function f that permits us to vary c conveniently.

> restart:
> with(Student[Calculus1]):
> with(plots):
> setoptions(thickness=2, labels=["",""],
axesfont=[HELVETICA,16]):

> f := c -> x^2 + c;

f := c → x2 + c

We adapt the function N to apply Newton’s method 10 times to x2 + c for
varying values of c, using −2 as a starting value. Then we display a sequence
of plots of Newton’s method, generated by the function N .

> N := i -> NewtonsMethod(f(i/10), x=-2, iterations=10,
output=plot, pointoptions=[symbolsize=16],
view=[-5..5,-2..10], titlefont=[HELVETICA,14]):

> display(seq(N(i), i=-10..20), insequence=true);

6 Iterations of Newton’s Method Applied tof(x) = x^2–1/5with Initial Point x = –2

0

4
8

–4 4

10 Iterations of Newton’s Method Applied tof(x) = x^2+1/5with Initial Point x = –2

0

4
8

–4 4

10 Iterations of Newton’s Method Applied tof(x) = x^2+3/5with Initial Point x = –2

0

4
8

–4 4

Letting i vary from −10 to 20 in N(i) creates plots of Newton’s method
applied to x2 + c for values of c from −1 to 2. When c takes on positive
values, Newton’s method exhibits chaotic behavior.

1Thanks to Robert Devaney of Boston University for showing this example to me.

© 2003 by Chapman & Hall/CRC

Loops and Derivatives 115

6.6 Demonstrations: Solids of revolution

Another topic from calculus, longing to be animated, is that of solids of
revolution. We will create animations that show vividly what we can only
describe in class: a solid being generated as a planar region revolves about an
axis.

6.6.1 Revolving a region about the vertical axis

We begin with solids formed by revolution about the vertical axis. The
first frame should show the region in the plane so that we can study its shape
before it begins to move, then we will show it sweeping out the solid as it
revolves. We will use as our example the region bounded by y = −(x−1)2+x,
y = 3

√
x− 3, x = 1/2, and x = 3. We begin by defining the two functions and

the constants a and b.

> restart:
> with(plots):
> setoptions3d(axes=normal, tickmarks=[0,5,5],

axesfont=[HELVETICA,18], shading=zhue):
> f := x -> -(x-1)^2 + x; # f is the upper bounding function
> g := x -> x^(1/3) - 3; # g is the lower bounding function
> a := 1/2:
> b := 3:

f := x → −(x − 1)2 + x

g := x → x(1/3)− 3

Recall (Section 1.3) that the # character allows a comment; Maple ignores
everything after it on the same command line.

Next, we initialize the frame sequence with a frame that contains a plot
of the region to be revolved. Since we will be revolving about the vertical
axis and plotting in three dimensions, we will let the z-axis play the role of
the axis of revolution. This arrangement seems perfect for cylindrical coordi-
nates (r, θ, z), so we’ll use cylinderplot (in parametric form) from the plots
package.

> FrameSeq := cylinderplot([r, Pi/2, z], r=a..b,
z=g(r)..f(r), style=patchnogrid, labels=["","",""],
color=blue, numpoints=100):

> NumFrames := 12:

In setting θ = π/2, we have chosen the y-axis of R3 to play the role of the
horizontal axis of R2. It is because the y- and z-axes will be representing in
R3 the horizontal and vertical axes, respectively, of R2 that we used no tick

© 2003 by Chapman & Hall/CRC

116 Maple Animation

marks on the x-axis in the setoptions3d statement. This helps to make the
other two axes more prominent in the plot. We have also chosen to use no
axis labels; they sometimes don’t appear where we would like them to be.
Using 12 frames seems to make the animation smooth enough in this case.

We use a for loop to create the other frames. First, we need to compute an
angle T , which will be the cylindrical coordinate θ of the region as it revolves
about the z-axis. We will have a frame every ∆θ = 2π/NumFrames radians,
so the angle T will be π/2 (the region’s initial position) decremented by a
multiple of ∆θ. The choice of subtracting, rather than adding, multiples of
∆θ means that the region will appear to revolve toward, instead of away from,
the viewer. We then plot and store the parts that will constitute a frame, each
depending on T . We will need the region in its new position. As shown in

r=a r=b
z=g(r)

=T

z=f(r)

FIGURE 6.4: Region revolved through θ = T
radians about the z-axis of R3

Figure 6.4, the region spans r from a to b and z from g(r) to f(r), but θ
is constant at T . We will also need the top, bottom, inside, and outside of
the partially formed solid. As shown in Figure 6.5, the top and bottom also
span r from a to b with z determined by f(r) and g(r), respectively, and they
span θ from π/2 to T . For the inside, r is constant at a, z runs from g(a)
to f(a), and θ runs from π/2 to T . The outside is similar. Having generated
the parts of a frame, we display them together and append the frame to the
frame sequence.

> for i from 1 to NumFrames do
> T := Pi/2 - 2*Pi*i/NumFrames;
> Region := cylinderplot([r, T, z], r=a..b, z=g(r)..f(r),

style=patchnogrid, color=blue, numpoints=100);
> Top := cylinderplot([r, theta, f(r)], r=a..b,

theta=Pi/2..T, numpoints=50*i);
> Bottom := cylinderplot([r, theta, g(r)], r=a..b,

theta=Pi/2..T, numpoints=50*i);

© 2003 by Chapman & Hall/CRC

Loops and Derivatives 117

r=a r=b
 =Tz=g(r)

= /2

z=f(r)

FIGURE 6.5: Partially formed solid of
revolution about the z-axis of R3

> Inside := cylinderplot([a, theta, z], z=g(a)..f(a),
theta=Pi/2..T, numpoints=50*i);

> Outside := cylinderplot([b, theta, z], z=g(b)..f(b),
theta=Pi/2..T, numpoints=50*i);

> FrameSeq := FrameSeq, display(Region, Top, Bottom,
Inside, Outside)

> end do:

The numpoints=50*i option was chosen in the interest of economy. The
default value of 625 is larger than necessary when the partially formed solid
is in its early stages. Letting numpoints vary directly as i allows the number
of points used in the plot to grow as the solid forms.

Finally, we display the frames in sequence, with an orientation that seems
to work well.

> display(FrameSeq, insequence=true, orientation=[10,70]);

–2

–1

1
–3 –2 –1 1 2 3

–2

–1

1
–3 –2 –1 1 2 3

–2

–1

1
–3 –2 –1 1 2 3

–2

–1

1
–3 –2 –1 1 2 3

–2

–1

1
–3 –2 –1 1 2 3

–2

–1

1
–3 –2 –1 1 2 3

© 2003 by Chapman & Hall/CRC

118 Maple Animation

6.6.2 Revolving a region about the horizontal axis

We turn now to solids generated by revolving a region about the horizontal
axis. As an example, we will use the region bounded by y = −(x − 2)2 + 3,
y = x/3, x = 1, and x = 3. We begin in the usual way.

> restart:
> with(plots):
> setoptions3d(axes=normal, tickmarks=[0,5,5],

axesfont=[HELVETICA,18], shading=zhue):
> f := x -> -(x-2)^2 + 3; # f is the upper bounding function
> g := x -> x/3; # g is the lower bounding function
> a := 1:
> b := 3:

f := x → −(x − 2)2 + 3

g := x → 1
3

x

This time, we will use the y-axis of R3 as the axis of revolution. The usual
cylindrical coordinates, then, are not so well-suited as they were when the
axis of revolution was z. We do have an analogous situation, however, so our
method should work, with some adaptations. One way to do this is to create
our own cylindrical coordinate system with the roles of the z-axis and y-axis
interchanged. That is,

x = r cos θ

y = y

z = r sin θ

so that r and θ are just polar coordinates for the xz-plane.
Again, we need to initialize the frame sequence and choose a number of

frames.

> FrameSeq := plot3d([0, y, r], y=a..b, r=g(y)..f(y),
style=patchnogrid, labels=["","",""], color=blue,
numpoints=100):

> NumFrames := 12:

And again, we need to plot and store the components of a frame, this time the
left and right sides, and the inside and outside. The components are created
in an analogous way to those of the solid of revolution about the vertical axis.
For example, the region (see Figure 6.6) spans y from a to b and r from g(y)
to f(y), but θ is constant at T .

© 2003 by Chapman & Hall/CRC

Loops and Derivatives 119

r=g(y)

 =T

r=f(y)

y=by=a

FIGURE 6.6: Region revolved through θ = T
radians about the y-axis of R3

> for i from 1 to NumFrames do
> T := Pi/2 - 2*Pi*i/NumFrames;
> Region := plot3d([r*cos(T), y, r*sin(T)], y=a..b,

r=g(y)..f(y), style=patchnogrid, color=blue,
numpoints=100);

> LeftSide := plot3d([r*cos(theta), a, r*sin(theta)],
r=g(a)..f(a), theta=Pi/2..T, numpoints=50*i);

> RightSide := plot3d([r*cos(theta), b, r*sin(theta)],
r=g(b)..f(b), theta=Pi/2..T, numpoints=50*i);

> Inside := plot3d([g(y)*cos(theta), y, g(y)*sin(theta)],
y=a..b, theta=Pi/2..T, numpoints=50*i);

> Outside := plot3d([f(y)*cos(theta), y,
f(y)*sin(theta)], y=a..b, theta=Pi/2..T,
numpoints=50*i);

> FrameSeq := FrameSeq, display(Region, LeftSide,
RightSide, Inside, Outside)

> end do:

Finally, we display the results.

> Max := maximize(f(x), x=a..b):
> display(FrameSeq, insequence=true, orientation=[10,70],

view=[-Max..Max,(a-1)..(b+1),-Max..Max]);

–3
–2

0
1
2
3

1 2 3 4

–3
–2

0
1
2
3

1 2 3 4

–3
–2

0
1
2
3

1 2 3 4

© 2003 by Chapman & Hall/CRC

120 Maple Animation

–3
–2

0
1
2
3

1 2 3 4

–3
–2

0
1
2
3

1 2 3 4

–3
–2

0
1
2
3

1 2 3 4

The maximize procedure computes the maximum value of f on [a, b]. The
specification of the view option, using this value, improves the appearance of
the plot some. It’s useful to know that maximize is available. There is also a
minimize.

I use these demonstrations when I first introduce the idea of solids of revo-
lution to ensure that everyone has a clear mental picture of the type of object
we are going to be studying. I also use them to illustrate examples that I work
in class, changing f , g, a, and b in the worksheet to conform to the given in-
formation in the example. When students ask about assigned problems, it is
useful to have these demonstrations on hand. Again changing the particulars,
f , g, a, and b, in the worksheet to match the details of the problem, I use the
first frame to check that we have the region sketched correctly. Then I run
the animation to confirm, or not, that the solid has the shape the students
thought it would.

6.7 Demonstrations: Surfaces of revolution

By modifying the demonstrations of Section 6.6 that show a revolving pla-
nar region generating a solid, we can create demonstrations that illustrate a
revolving planar curve generating a surface. The ideas are the same, but the
frames are less elaborate because their components are fewer. To keep things
simple, we will restrict ourselves to curves where y is a function of x, as these
will be sufficient to illustrate the geometry of surfaces of revolution.

6.7.1 Revolving a curve about the vertical axis

First, we adapt the demonstration of a solid of revolution about the vertical
axis (Section 6.6.1) to illustrate instead a surface of revolution. We begin the
same way. As an example, we will use the curve defined by f(x) = (1/2) lnx
on [1, e].

> restart:
> with(plots):
> setoptions3d(axes=normal, tickmarks=[0,5,5],

axesfont=[HELVETICA,18], shading=zhue):

© 2003 by Chapman & Hall/CRC

Loops and Derivatives 121

> f := x -> ln(x)/2;
> a := 1:
> b := exp(1):

f := x → 1
2

ln(x)

Recall (Section 1.5) that e is represented in Maple as exp(1).
We initialize the frame sequence with a plot of the curve in the yz-plane.

Although there are other ways to represent it, we can make a minor change to
the code in the original demonstration and think of it as the trace in the plane
θ = π/2 of the surface z = f(r, θ) for r ∈ [a, b] in cylindrical coordinates.

> FrameSeq := cylinderplot([r, Pi/2, z], r=a..b,
z=f(r)..f(r), thickness=2, labels=["","",""],
numpoints=200):

> NumFrames := 12:

In place of the style=patchnogrid option, we have used thickness=2 to
make the curve show up well, and we’ve increased numpoints to 200 to make
it smooth.

We won’t need many of the elements of the loop body from the solid of
revolution demonstration. We still need to compute the angle T of revolution,
but this time we only need the plot that we called Top. We append it to the
frame sequence.

> for i from 1 to NumFrames do
> T := Pi/2 - 2*Pi*i/NumFrames;
> FrameSeq := FrameSeq, cylinderplot([r, theta, f(r)],

r=a..b, theta=Pi/2..T, numpoints=70*i)
> end do:

Here, we have increased numpoints to 70i for a smoother surface.
Finally, we display the frames in order.

> display(FrameSeq, insequence=true, orientation=[10,70]);

0.2
0.3
0.4
0.5

–2 –1 1 2

0.2
0.3
0.4
0.5

–2 –1 1 2

0.2
0.3
0.4
0.5

–2 –1 1 2

© 2003 by Chapman & Hall/CRC

122 Maple Animation

6.7.2 Revolving a curve about the horizontal axis

We readily adapt the demonstration of a solid of revolution about the hor-
izontal axis (Section 6.6.2) for a surface of revolution. For our example func-
tion, we use f(x) = x3 on [0, 2].

> restart:
> with(plots):
> setoptions3d(axes=normal, tickmarks=[0,5,5],
axesfont=[HELVETICA,18], shading=zhue):

> f := x -> x^3;
> a := 0:
> b := 2:

f := x → x3

Again, we initialize the frame sequence with a plot of the curve in the yz-
plane. Using the same coordinate system as in Section 6.6.2, we regard the
curve as the trace of the surface in the plane x = 0.

> FrameSeq := plot3d([0, y, r], y=a..b, r=f(y)..f(y),
thickness=2, labels=["","",""], numpoints=200):

> NumFrames := 12:

Of the statements in the loop body, we need the one that computes the
angle T of revolution, and we need one to append the plot that we called
Outside to the frame sequence.

> for i from 1 to NumFrames do
> T := Pi/2 - 2*Pi*i/NumFrames;
> FrameSeq := FrameSeq,

plot3d([f(y)*cos(theta), y, f(y)*sin(theta)], y=a..b,
theta=Pi/2..T, numpoints=70*i)

> end do:

Last, we display the results, again using maximize.

> Max := maximize(f(x), x=a..b):
> display(FrameSeq, insequence=true, orientation=[10,70],
view=[-Max..Max,(a-1)..(b+1),-Max..Max]);

–8
–4

4
8

–1 1 2 3

–8
–4

4
8

–1 1 2 3

–8
–4

4
8

–1 1 2 3

© 2003 by Chapman & Hall/CRC

Chapter 7

Adding Text to Animations

Some of our demonstrations may have seemed somewhat incomplete for their
lack of labeling. It is often important to include notation in plots. In fact,
sometimes it is the connection between the notation and the geometry that
really constitutes the essence of the idea you are demonstrating. For example,
think of the concept of choosing two values, a and a+h, evaluating a function
at both a and a + h, then letting h → 0. You want to demonstrate that what
this accomplishes geometrically is the movement of one point along the x-axis
toward another and, at the same time, the movement of an associated point
along a curve toward another. You are really explaining the notation; you
need to have it in the plot.

In this chapter, you will learn how to include text in plots, how to make it
move, and how to include the results of computations. We will create an ani-
mation to show how Taylor polynomials of increasing degree can approximate
a function increasingly well, then experiment by moving the center. We will
also improve the demonstrations we made in Section 4.3 of secant and tangent
lines and in Section 5.5.1 of rectangles approximating a definite integral.

7.1 Titles

Both two-dimensional and three-dimensional plots may be given titles using
the title="text" option, where "text" is a string. Recall from Section 2.12
that a string consists of any characters within double quotes. For example,

> plot(x^2 - cos(5*x), x=-2..2, title="An even function");

An even function

–1

0

1

2

3

4

–2 –1 1 2x

123© 2003 by Chapman & Hall/CRC

124 Maple Animation

A title’s font may be specified by using the titlefont option. The specifi-
cation has the same syntax as that of the other font options, font, axesfont,
and labelfont (see Section 2.12). For example,

> plot3d(-(x^2)^(1/3) - (y^2)^(1/3), x=-2..2, y=-2..2,
axes=boxed, title="A corner point in three dimensions",
titlefont=[TIMES,ROMAN,24]);

 A corner point in three dimensions

–2
–1

0
1

2
x

–2 –1 0 1y

–3
–2.5

–2
–1.5

–1
–0.5

0

If you would like the title to appear on two or more lines, just include the
characters \n in the string for each line break. For example,

> with(plots):
> S1 := sphereplot(1, theta=0..2*Pi, phi=0..Pi):
> S2 := sphereplot(2, theta=Pi/6..2*Pi, phi=0..Pi):
> display(S1, S2, scaling=constrained, axes=normal,

title="Two concentric spheres:\none of radius 1, the other
of radius 2", titlefont=[HELVETICA,20]);

Two concentric spheres:one of radius 1, the other of radius 2

–2

0
1
2

z–2
–1

1
2

y

–2

1
2 x

Another way to force a line break is to include a shift-enter or shift-return in
the string.

© 2003 by Chapman & Hall/CRC

Adding Text to Animations 125

7.2 The textplot and textplot3d procedures

For two-dimensional plots, the procedure textplot within the plots pack-
age is designed to, well, plot text. The information about what text to plot
and where to put it is passed to the procedure as a list. The syntax is

textplot([x,y,"text"], options)

where the first two components are the coordinates of the position, and the
third is the string to be plotted. For example,

> with(plots):
> textplot([2,3,"Carpe diem"]);

Carpe diem

2

2.5

3

3.5

4

1 1.5 2 2.5 3

For three-dimensional plots, the procedure is textplot3d, and the syntax
is, predictably,

textplot3d([x,y,z,"text"], options)

For example,

> with(plots):
> textplot3d([1,2,3,"In vino veritas"], axes=normal);

In vino veritas
2

2.5
3

3.5
4

1
1.5

2
2.5

3

0.5
1

1.5
2

© 2003 by Chapman & Hall/CRC

126 Maple Animation

The plot structure resulting from a call to textplot or textplot3d can be
stored and displayed later. For example, [2]

> with(plots):
> T1 := textplot([3,2,

"’Twas brillig, and the slithy toves"]):
> T2 := textplot([3,1.8,

"Did gyre and gimble in the wabe:"]):
> display(T1, T2, view=[0..6,0..4]);

Did gyre and gimble in the wabe:
’Twas brillig, and the slithy toves

0

1

2

3

4

1 2 3 4 5 6

Both textplot and textplot3d accept the same options as plot and
plot3d, respectively. An additional option, align, allows positioning the
text relative to the point at which it is plotted. The choices are ABOVE,
BELOW, LEFT, and RIGHT, where upper-case is required. Default is centered at
the point. For example,

> with(plots):
> T1 := textplot([3,2,"All mimsy were the borogoves,"],

align=ABOVE, color=blue, font=[TIMES,ITALIC,16]):
> T2 := textplot([3,2,"And the mome raths outgrabe."],

align=BELOW, color=blue, font=[TIMES,ITALIC,16]):
> display(T1, T2, view=[0..6,0..4]);

And the mome raths outgrabe.
All mimsy were the borogoves,

0

1

2

3

4

1 2 3 4 5 6

© 2003 by Chapman & Hall/CRC

Adding Text to Animations 127

Incidentally, because strings are delimited with double quotes, some special
provision is necessary if you want a double quote to be part of the string itself.
One accommodation for this is a backslash (\) before the double quote. For
example,

> with(plots):
> T1 := textplot([3,2,"\"Beware the Jabberwock, my son!"],

align=ABOVE, color=blue, font=[TIMES,BOLD,14]):
> T2 := textplot([3,2,

"The jaws that bite, the claws that catch!"], align=BELOW,
color=blue, font=[TIMES,BOLD,14]):

> display(T1, T2, view=[0..6,0..4]);

The jaws that bite, the claws that catch!
"Beware the Jabberwock, my son!

0

1

2

3

4

1 2 3 4 5 6

It also works to double the double quote.
The align option can be a set, allowing you to position the text, say, both

above and to the right. For example,

> with(plots):
> T1 := textplot([1,2,"Beware the Jubjub bird, and shun"],

align={ABOVE,RIGHT}, color=red, font=[TIMES,BOLD,14]):
> T2 := textplot([1,2,"The frumious Bandersnatch!\""],

align={BELOW,RIGHT}, color=red, font=[TIMES,BOLD,14]):
> display(T1, T2, view=[0..6,0..4]);

The frumious Bandersnatch!"
Beware the Jubjub bird, and shun

0

1

2

3

4

1 2 3 4 5 6

© 2003 by Chapman & Hall/CRC

128 Maple Animation

Notice that RIGHT means that the text will be plotted to the right of the point,
not right-justified at the point.

7.3 Making text move

The text produced by textplot or textplot3d can be treated as any
other plot structure. We can, therefore, create a sequence of textplots or
textplot3ds, then display them in sequence. For example, we can move text
around a circle with

> with(plots):
> MovingText := seq(textplot([cos(2*Pi/50*i),
sin(2*Pi/50*i),"(cos t, sin t)"], font=[TIMES,ROMAN,14]),
i=0..50):

> display(MovingText, insequence=true,
view=[-3..3,-3..3]);

(cos t, sin t)

–3

–2

–1

0

1

2

3

–3 –2 –1 1 2 3

(cos t, sin t)

–3

–2

–1

0

1

2

3

–3 –2 –1 1 2 3

(cos t, sin t)

–3

–2

–1

0

1

2

3

–3 –2 –1 1 2 3

or along a helix with

> with(plots):
> MovingText := seq(textplot3d([cos(2*Pi/50*i),
sin(2*Pi/50*i),2*Pi/50*i,"(cos t, sin t, t)"],
font=[TIMES,ROMAN,14]), i=0..50):

> display(MovingText, insequence=true, axes=normal);

(cos t, sin t, t)
0

2
4
6

–1
–0.5

0.5
1

–2
–1

1
2

(cos t, sin t, t)0
2
4
6

–1
–0.5

0.5
1

–2
–1

1
2

(cos t, sin t, t)
0

2
4
6

–1
–0.5

0.5
1

–2
–1

1
2

(cos t, sin t, t)

0
2
4
6

–1
–0.5

0.5
1

–2
–1

1
2

(cos t, sin t, t)

0
2
4
6

–1
–0.5

0.5
1

–2
–1

1
2

(cos t, sin t, t)

0
2
4
6

–1
–0.5

0.5
1

–2
–1

1
2

© 2003 by Chapman & Hall/CRC

Adding Text to Animations 129

Often, we will want to attach text to a point as a label. We will need to
move the label out of the way of the point symbol, though, by using align.
If the point symbol and the label still collide, we can include in the label a
leading or trailing space or two. For example,

> with(plots):
> MovingPoint := display(seq(pointplot([cos(2*Pi/50*i),
sin(2*Pi/50*i)], symbol=circle, symbolsize=14),
i=0..50), insequence=true):

> MovingLabel := display(seq(textplot([cos(2*Pi/50*i),
sin(2*Pi/50*i)," (cos t, sin t)"], align={ABOVE,RIGHT},
font=[TIMES,ROMAN,14]), i=0..50), insequence=true):

> display(MovingPoint, MovingLabel, view=[-3..3,-3..3]);

 (cos t, sin t)

–3

–2

–1

0

1

2

3

–3 –2 –1 1 2 3

 (cos t, sin t)

–3

–2

–1

0

1

2

3

–3 –2 –1 1 2 3

 (cos t, sin t)

–3

–2

–1

0

1

2

3

–3 –2 –1 1 2 3

and

> with(plots):
> MovingPoint := display(seq(pointplot3d([cos(2*Pi/50*i),
sin(2*Pi/50*i),2*Pi/50*i], symbol=circle, symbolsize=14),
i=0..50), insequence=true):

> MovingLabel := display(seq(textplot3d([cos(2*Pi/50*i),
sin(2*Pi/50*i),2*Pi/50*i,"(cos t, sin t, t)"],
align={BELOW}, font=[TIMES,ROMAN,14]), i=0..50),
insequence=true):

> display(MovingPoint, MovingLabel, axes=normal);

(cos t, sin t, t)
0

2
4
6

–1
–0.5

0.5
1

–2
–1

1
2

(cos t, sin t, t)
0

2
4
6

–1
–0.5

0.5
1

–2
–1

1
2

(cos t, sin t, t)
0

2
4
6

–1
–0.5

0.5
1

–2
–1

1
2

(cos t, sin t, t)

0
2
4
6

–1
–0.5

0.5
1

–2
–1

1
2

(cos t, sin t, t)

0
2
4
6

–1
–0.5

0.5
1

–2
–1

1
2

(cos t, sin t, t)
0

2
4
6

–1
–0.5

0.5
1

–2
–1

1
2

© 2003 by Chapman & Hall/CRC

130 Maple Animation

7.4 Demonstrations: Secant lines and tangent lines with
labels

We return now to the demonstrations we made in Section 4.3 of secant lines
and tangent lines and improve them. We will include labels, this time: a point
labeled a+h moving along the x-axis toward a point labeled a; a point labeled
(a + h, f(a + h)) moving along the curve toward a point labeled (a, f(a)).

7.4.1 Secant lines at a point approaching a tangent line

We start in a similar way but expand the domain to accommodate the
labels. If the axes move a bit when this animation runs, widening the plot
window (by clicking and dragging one of the squares at the vertical sides of
the window) will probably prevent this distraction. If not, the domain in the
plot statement can be further expanded or the view can be expanded using
the view option (Section 2.11).

> restart:
> with(plots):
> setoptions(thickness=2, tickmarks=[0,0], labels=["",""],
font=[TIMES,ITALIC,18], symbol=circle, symbolsize=14):

> f := x -> x^3 + 8;
> a := 2:
> Curve := plot(f(x), x=a-3.5..a+3.5, y=-10..50,
color=black):

f := x → x3 + 8

We now plot and store the fixed points (a, 0) and (a, f(a)) together with
their labels. We make a set to use for the secants that approach from the right
and another for the secants that approach from the left. The differences being
in alignment and in the inclusion of either leading or trailing spaces, both of
which improve the appearance and prevent the labels of the fixed points from
colliding with those of the moving points.

> RightFixedPts :=
pointplot({[a,0],[a,f(a)]}, color=red),
textplot([a,0,"a "], align={BELOW,LEFT}),
textplot([a,f(a),"(a, f(a)) "], align={ABOVE,LEFT}):

> LeftFixedPts :=
pointplot({[a,0],[a,f(a)]}, color=red),
textplot([a,0," a"], align={BELOW,RIGHT}),
textplot([a,f(a)," (a, f(a))"], align={ABOVE,RIGHT}):

© 2003 by Chapman & Hall/CRC

Adding Text to Animations 131

Each of these is a sequence of three elements: the plot of the two points, the
label for the point (a, 0), and the label for the point (a, f(a)). We don’t want
these elements displayed in sequence, and they won’t be. When we display
them below, we will let the insequence option default to false so that the
three elements of the sequence will be displayed together.

Next, we choose a number of frames for the animation and create a decreas-
ing function h. We generate the two sets of secant lines in much the same
manner as before.

> NumFrames := 20:
> h := i -> 1 - 0.99*i/NumFrames:
> RightSecants := animate((f(a+h(i))-f(a))/h(i)*(x-a) +

f(a), x=a-2..a+2, i=1..NumFrames, frames=NumFrames,
color=blue):

> LeftSecants := animate((f(a-h(i))-f(a))/(-h(i))*(x-a) +
f(a), x=a-2..a+2, i=1..NumFrames, frames=NumFrames,
color=blue):

To create the two sets of moving points and their labels, we have several
elements to generate. We plot the points (a + h, 0) and (a + h, f(a + h))
with a single call to pointplot. We plot the labels for these points with two
separate calls to textplot. These elements need to be displayed together
(with insequence defaulting to false); they constitute one frame. A frame,
then, has the form

display(pointplot(point on the x-axis, point on the curve),
textplot(label for the x-axis point),
textplot(label for the curve point)) (∗)

We need to create a sequence of these frames and display them in order. So
the structure for the moving points has the form

display(seq(frame i, i=1..NumFrames), insequence=true)

where frame i has the form (∗).

> RightMovingPts := display(seq (display(
pointplot({[a+h(i),0],[a+h(i),f(a+h(i))]}, color=red),
textplot([a+h(i),0," a+h"], align={BELOW,RIGHT}),
textplot([a+h(i),f(a+h(i))," (a+h, f(a+h))"],
align={ABOVE,RIGHT})), i=1..NumFrames),
insequence=true):

> LeftMovingPts := display(seq (display(
pointplot({[a-h(i),0],[a-h(i),f(a-h(i))]}, color=red),
textplot([a-h(i),0,"a+h "], align={BELOW,LEFT}),
textplot([a-h(i),f(a-h(i)),"(a+h, f(a+h)) "],
align={ABOVE,LEFT})), i=1..NumFrames),
insequence=true):

© 2003 by Chapman & Hall/CRC

132 Maple Animation

Finally, we display the background plot (the curve and the fixed points)
and the animated elements (the moving points and the secants).

> display(Curve, RightFixedPts, RightMovingPts,
RightSecants);

> display(Curve, LeftFixedPts, LeftMovingPts,
LeftSecants);

 (a+h, f(a+h))

 a+h

(a, f(a))

a

 (a+h, f(a+h))

 a+h

(a, f(a))

a

 (a+h, f(a+h))

 a+h

(a, f(a))

a

(a+h, f(a+h))

a+h

 (a, f(a))

 a

(a+h, f(a+h))

a+h

 (a, f(a))

 a

(a+h, f(a+h))

a+h

 (a, f(a))

 a

7.4.2 Secant lines at a corner point

So that we will also have on hand a demonstration, with notation, that a
continuous function can fail to have a tangent line at a given point, we will
change our example to f(x) = |x3 + 2x| + 2 at a = 0.

> restart:
> with(plots):
> setoptions(thickness=2, tickmarks=[0,0], labels=["",""],
font=[TIMES,ITALIC,18], symbol=circle, symbolsize=14):

> f := x -> abs(x^3 + 2*x) + 2;
> a := 0:
> Curve := plot(f(x), x=a-3.5..a+3.5, y=-5..10,

color=black):
> RightFixedPts :=

pointplot({[a,0],[a,f(a)]}, color=red),
textplot([a,0,"a "], align={BELOW,LEFT}),
textplot([a,f(a),"(a, f(a)) "], align={ABOVE,LEFT}):

> LeftFixedPts :=
pointplot({[a,0],[a,f(a)]}, color=red),
textplot([a,0," a"], align={BELOW,RIGHT}),
textplot([a,f(a)," (a, f(a))"], align={ABOVE,RIGHT}):

© 2003 by Chapman & Hall/CRC

Adding Text to Animations 133

> NumFrames := 20:
> h := i -> 1 - 0.99*i/NumFrames:
> RightSecants := animate((f(a+h(i))-f(a))/h(i)*(x-a) +
f(a), x=a-2..a+2, i=1..NumFrames, frames=NumFrames,
color=blue):

> LeftSecants := animate((f(a-h(i))-f(a))/(-h(i))*(x-a) +
f(a), x=a-2..a+2, i=1..NumFrames, frames=NumFrames,
color=blue):

> RightMovingPts := display(seq (display(
pointplot({[a+h(i),0],[a+h(i),f(a+h(i))]}, color=red),
textplot([a+h(i),0," a+h"], align={BELOW,RIGHT}),
textplot([a+h(i),f(a+h(i))," (a+h,f(a+h))"],
align={ABOVE,RIGHT})), i=1..NumFrames),
insequence=true):

> LeftMovingPts := display(seq (display(
pointplot({[a-h(i),0],[a-h(i),f(a-h(i))]}, color=red),
textplot([a-h(i),0,"a+h "], align={BELOW,LEFT}),
textplot([a-h(i),f(a-h(i)),"(a+h, f(a+h)) "],
align={ABOVE,LEFT})), i=1..NumFrames),
insequence=true):

> display(Curve, RightFixedPts, RightMovingPts,
RightSecants);

> display(Curve, LeftFixedPts, LeftMovingPts,
LeftSecants);

f := x →
∣∣x3 + 2 x

∣∣ + 2

 (a+h, f(a+h))

 a+h

(a, f(a))

a

 (a+h, f(a+h))

 a+h

(a, f(a))

a

 (a+h, f(a+h))

 a+h

(a, f(a))

a

(a+h, f(a+h))

a+h

 (a, f(a))

 a

(a+h, f(a+h))

a+h

 (a, f(a))

 a

(a+h, f(a+h))

a+h

 (a, f(a))

 a

I use these demonstrations very early in first-term calculus when I discuss
the distinction between a tangent line and a line that intersects a curve in a
single point. I show both of these animations to illustrate the difference. Soon
after, when I define the derivative, I use them again to illustrate geometrically
what limh→0(f(x + h) − f(x))/h accomplishes analytically.

© 2003 by Chapman & Hall/CRC

134 Maple Animation

7.4.3 The NewtonQuotient procedure of Maple 8

In the Student[Calculus1] package of Maple 8 is NewtonQuotient, a pro-
cedure that can produce an animation of secant lines. The animation does not
include the notation, though, so, in this sense, it is more like the demonstra-
tions of Section 4.3 than of this section. The syntax that yields an animation
is

NewtonQuotient(f(x), x=a, output=animation, other options)

showing secant lines for the function f at the point a. For example,

> with(Student[Calculus1]):
> f := x -> x^3 + 8;
> a := 2:
> NewtonQuotient(f(x), x=a, output=animation);

f := x → x3 + 8

A Newton Quotient off(x) = x^3+8at the Point x = 2

14
15
16
17
18

1.8 1.9 2 2.1 2.2x

A Newton Quotient off(x) = x^3+8at the Point x = 2

14
15
16
17
18

1.8 1.9 2 2.1 2.2x

A Newton Quotient off(x) = x^3+8at the Point x = 2

14
15
16
17
18

1.8 1.9 2 2.1 2.2x

You will probably want to change the title to reflect the content more accu-
rately. For example,

> with(Student[Calculus1]):
> f := x -> x^3 + 8;
> a := 2:
> NewtonQuotient(f(x), x=a, output=animation,
title="Secant lines at x=2");

f := x → x3 + 8

Secant lines at x=2

14

15

16

17

18

1.8 1.9 2 2.1 2.2x

Secant lines at x=2

14

15

16

17

18

1.8 1.9 2 2.1 2.2x

Secant lines at x=2

14

15

16

17

18

1.8 1.9 2 2.1 2.2x

© 2003 by Chapman & Hall/CRC

Adding Text to Animations 135

You might have noticed that the moving point in this animation decelerates
toward the fixed point. This is because, by default, the distance h (which has
initial value 0.1) between these points is halved for each frame. A constant
rate of approach can be arranged, if you prefer, by specifying that h take on
the values in a list. For example,

> with(Student[Calculus1]):
> f := x -> x^3 + 8;
> a := 2:
> NumFrames := 20:
> hList := [seq(1-0.99*i/NumFrames, i=1..NumFrames)]:
> NewtonQuotient(f(x), x=a, output=animation, h=hList,

title="Secant lines at x=2");

f := x → x3 + 8

Secant lines at x=2

10
20
30
40
50
60

0.5 1 1.5 2 2.5 3 3.5x

Secant lines at x=2

10
20
30
40
50
60

0.5 1 1.5 2 2.5 3 3.5x

Secant lines at x=2

10
20
30
40
50
60

0.5 1 1.5 2 2.5 3 3.5x

So, we can use NewtonQuotient to make a demonstration similar to the
unlabeled ones that we made in Section 4.3. We will create a list of positive
h-values for the right-hand secant lines and a list of negative h-values for the
left-hand ones. We will also increase the sizes of the objects and the fonts to
improve the readability at a distance.

> restart:
> with(Student[Calculus1]):
> f := x -> x^3 + 8;
> a := 2:
> NumFrames := 20:
> hListRight := [seq(1-0.99*i/NumFrames,
i=1..NumFrames)]:

> NewtonQuotient(f(x), x=a, a-2..a+2, output=animation,
h=hListRight, thickness=2, pointoptions=[symbolsize=14],
axesfont=[HELVETICA,16], labelfont=[TIMES,ITALIC,18],
title="Secant lines at x=2", titlefont=[HELVETICA,18]);

> hListLeft := [seq(-1+0.99*i/NumFrames,
i=1..NumFrames)]:

> NewtonQuotient(f(x), x=a, a-2..a+2, output=animation,
h=hListLeft, thickness=2, pointoptions=[symbolsize=14],
axesfont=[HELVETICA,16], labelfont=[TIMES,ITALIC,18],
title="Secant lines at x=2", titlefont=[HELVETICA,18]);

© 2003 by Chapman & Hall/CRC

136 Maple Animation

f := x → x3 + 8

Secant lines at x=2

20
40
60

0 1 2 3 4x

Secant lines at x=2

20
40
60

0 1 2 3 4x

Secant lines at x=2

20
40
60

0 1 2 3 4x

Secant lines at x=2

20
40
60

0 1 2 3 4x

Secant lines at x=2

20
40
60

0 1 2 3 4x

Secant lines at x=2

20
40
60

0 1 2 3 4x

Here, we have used a-2..a+2 to specify the domain, and pointoptions, one
of the other options of the NewtonQuotient procedure, to increase the size of
the plot symbol for the points.

As usual, you can access a full description of this procedure by typing
?NewtonQuotient at the Maple prompt.

7.5 Including computed values in text

The procedure sprintf will convert a numerical value to a string. The
syntax, as we will use sprintf, is

sprintf("format", v1, v2,. . . , vk)

where "format" is itself a string that specifies the format of the output string,
and where v1, v2, . . . , vk are the values to be converted. The sprintf proce-
dure provides a great deal of control over format, and we will include some,
but not all, of the details here. If this isn’t enough for you, type ?sprintf at
the Maple prompt for the complete story. If, on the other hand, you just want
to convert a numerical value to a string and do not particularly care precisely
how it will be formatted, use the %g format described below.

The %d format is used for converting integer values to strings. For example,

> sprintf("%d", 65);

“65”

The format string can contain other characters. For example,

© 2003 by Chapman & Hall/CRC

Adding Text to Animations 137

> sprintf("the global maximum is %d", 10);
> sprintf("%d is the global maximum", 10);
> sprintf("(%d,%d) is a critical point", 3, 5);

“the global maximum is 10”
“10 is the global maximum”

“(3,5) is a critical point”

If you try to convert a non-integer value using %d, you will get an error mes-
sage, rather than a truncated or rounded value. There are, however, trunc
and round procedures for doing that. For example,

> sprintf("truncated = %d", trunc(25/7));
> sprintf("rounded = %d", round(25/7));

“truncated = 3”
“rounded = 4”

The %e format is scientific notation for floating-point values. For example,

> sprintf("e format is %e square meters", 69560345/7);

“e format is 9.937192e+06 square meters”

The %f format is for fixed-point values. The default number of decimal
places is 6. For example,

> sprintf("f format is %f cubic meters", 245/11);

“f format is 22.272727 cubic meters”

The %g format basically hands over control to Maple. Either %d, %e, or %f
format is used, whichever is appropriate. For example,

> sprintf("g format is %g", 12);
> sprintf("g format is %g", 8/3);
> sprintf("g format is %g", 34456*123.7);

“g format is 12 ”
“g format is 2.666667”

“g format is 4.262207e+06”

Any of these formats can be tailored further by including a specification of
the form w, .p, or w.p between the % sign and the code letter d, e, f, or g.
Here, w (width) specifies the minimum number of characters to appear in the
entire string, and p dictates the number of decimal places to the right of the
decimal point. For example,

© 2003 by Chapman & Hall/CRC

138 Maple Animation

> sprintf("%12d", 12345);
> sprintf("%12.3e", 12345);
> sprintf("%12.3f", 12345);
> sprintf("%12f", 12345);
> sprintf("%.3f", 12345);
> sprintf("%12.3g", 12345);

“ 12345”
“ 1.235e+04”
“ 12345.000”
“12345.000000”

“12345.000”
“ 1.235e+04”

To include computed numerical values in labels, we combine the capabil-
ity of sprintf to convert numerical values to strings with textplot’s or
textplot3d’s ability to plot strings. For example,

> with(plots):
> f := x -> sqrt(x/3):
> Points := seq(pointplot([i,f(i)], symbol=circle,

symbolsize=14, color=black), i=1..6):
> Labels := seq(textplot(

[i,f(i),sprintf(" (x%d,y%d)=(%d,%.2f)", i, i, i, f(i))],
align={ABOVE,RIGHT}, color=blue), i=1..6):

> display(Points, Labels, view=[0..10,0..1.5]);

 (x6,y6)=(6,1.41)
 (x5,y5)=(5,1.29)

 (x4,y4)=(4,1.15)
 (x3,y3)=(3,1.00)

 (x2,y2)=(2,.82)

 (x1,y1)=(1,.58)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 4 6 8 10

7.6 Demonstration: Rectangular approximation of the
definite integral with annotation

We return now to the demonstration in Section 5.5.1 of the approximation
of the definite integral and make some improvements. As a minor one, we

© 2003 by Chapman & Hall/CRC

Adding Text to Animations 139

will add a title. We will also use rightsum to compute the sum of the areas
of the rectangles in the approximation. We would like to display this area in
the center of the plot, and, so that the y-axis doesn’t interfere with it, we will
use boxed axes. For the sake of variety, we’ll also change the function and
domain to f(x) = 4 − x2 on [−2, 2].

> restart:
> with(student):
> with(plots):
> setoptions(labels=["",""], axesfont=[HELVETICA,18],
font=[TIMES,ROMAN,20], axes=boxed, title="An approximation
of the\ndefinite integral using rectangles",
titlefont=[TIMES,ROMAN,20]):

> f := x -> 4 - x^2:
> a := -2:
> b := 2:

Now we find the center of the plot so that we can place the text for the area
there. We first use minimize and maximize to find f min and f max. Then
we compute a short sequence, MidGraph, of the coordinates of the center of
the graph to use as the position in textplot.

> f_min := minimize(f(x), x=a..b):
> f_max := maximize(f(x), x=a..b):
> MidGraph := (a+b)/2, (f_min+f_max)/2:

Next, we generate and store the displays of two sequences. The first,
Rectangles, is the sequence of rightboxs as before. The second, Area, is
a sequence of textplots. In the call to textplot, we use MidGraph as the
position of the text, rightsum to compute the sum of the areas of the rectan-
gles, and sprintf to convert the sum to a string. Finally, we display the two
elements of the animation.

> Rectangles := display(seq(rightbox(f(x), x=a..b,
NumRects), NumRects=6..80), insequence=true):

> Area := display(seq(textplot([MidGraph,sprintf(
"area = %f", rightsum(f(x), x=a..b, NumRects))]),
NumRects=6..80), insequence=true):

> display(Rectangles, Area);

An approximation of the
definite integral using rectangles

area = 10.370370

0
1
2
3
4

–1 0 1 2

An approximation of the
definite integral using rectangles

area = 10.592593

0
1
2
3
4

–1 0 1 2

An approximation of the
definite integral using rectangles

area = 10.633745

0
1
2
3
4

–1 0 1 2

© 2003 by Chapman & Hall/CRC

140 Maple Animation

7.7 Constructing Taylor polynomials

We will discuss two methods for constructing Taylor polynomials. The first,
which is valid in either Maple 7 or Maple 8, involves converting a partial sum
of a Taylor series to a polynomial. The second is a convenient procedure built
into Maple 8.

7.7.1 Taylor series and the convert procedure

The taylor procedure produces a truncated Taylor series including a term
indicating the order of the remainder. The call

taylor(f(x), x=a, n + 1)

generates
∑n

i= 0(f
(i)(a)/ i!)(x − a)i plus a term of order n + 1. For example,

> taylor(1/x, x=1, 5);
> taylor(exp(x), x=0, 6);
> taylor(sin(x), x=0, 8);
> taylor(cos(x), x=0, 8);

1 − (x − 1) + (x − 1)2 − (x − 1)3 + (x − 1)4 + O((x − 1)5)

1 + x +
1
2

x2 +
1
6

x3 +
1
24

x4 +
1

120
x5 + O(x6)

x − 1
6

x3 +
1

120
x5 − 1

5040
x7 + O(x8)

1 − 1
2

x2 +
1
24

x4 − 1
720

x6 + O(x8)

To get a Taylor polynomial, we need to remove the last term, and, to do that,
we will use the convert procedure.

The convert procedure, which converts expressions from one form to an-
other, is worth a look. It will do simple conversions such as

> convert(7*Pi/6, degrees);
> convert(120*degrees, radians);

210 degrees
2 π

3

but also such things as conversion to continued fractions (confrac)

> convert(exp(x), confrac, x);

© 2003 by Chapman & Hall/CRC

Adding Text to Animations 141

1 +
x

1 +
x

−2 +
x

−3 +
x

2 +
x

5

and partial fraction decomposition (parfrac)

> R := (6*x^3 - 34*x^2 - 5*x - 29)/
(3*x^4 - 13*x^3 + 13*x^2 - 39*x + 12);

> convert(R, parfrac, x);

R :=
6 x3 − 34 x2 − 5 x − 29

3 x4 − 13 x3 + 13 x2 − 39 x + 12

− 1
x − 4

+
1 + 2 x

x2 + 3
+

3
3 x − 1

Type ?convert at the Maple prompt for more details.
To create a Taylor polynomial, we need to convert a truncated series to a

polynomial (polynom). Returning to the examples above, we have

> convert(taylor(1/x, x=1, 5), polynom);
> convert(taylor(exp(x), x=0, 6), polynom);
> convert(taylor(sin(x), x=0, 8), polynom);
> convert(taylor(cos(x), x=0, 8), polynom);

2 − x + (x − 1)2 − (x − 1)3 + (x − 1)4

1 + x +
1
2

x2 +
1
6

x3 +
1
24

x4 +
1

120
x5

x − 1
6

x3 +
1

120
x5 − 1

5040
x7

1 − 1
2

x2 +
1
24

x4 − 1
720

x6

7.7.2 The TaylorApproximation procedure of Maple 8

Maple 8’s TaylorApproximation procedure, in the Student[Calculus1]
package, can produce a Taylor polynomial directly. The syntax is

TaylorApproximation(f(x), x=a, order=n, other options)

which generates a Taylor polynomial of degree at most n about a for f(x).
Redoing the previous examples, we have

© 2003 by Chapman & Hall/CRC

142 Maple Animation

> with(Student[Calculus1]):
> TaylorApproximation(1/x, x=1, order=4);
> TaylorApproximation(exp(x), x=0, order=5);
> TaylorApproximation(sin(x), x=0, order=7);
> TaylorApproximation(cos(x), x=0, order=7);

5 − 10 x + 10 x2 − 5 x3 + x4

1 + x +
1
2

x2 +
1
6

x3 +
1
24

x4 +
1

120
x5

x − 1
6

x3 +
1

120
x5 − 1

5040
x7

1 − 1
2

x2 +
1
24

x4 − 1
720

x6

7.8 Demonstrations: Taylor polynomials

We now put together some of the above techniques to create a demonstra-
tion of the power of Taylor polynomials to approximate other functions near
a point. The animation we have in mind will show the function to be ap-
proximated and, successively, Taylor polynomials of increasing degree. It will
include annotation showing the degree of the approximating polynomial. We
implement this in two ways. The first uses the taylor and convert proce-
dures. The second, for Maple 8, uses the TaylorApproximation procedure.

7.8.1 Taylor polynomials of varying degree

First, we choose a function f to use as an example and a point a about
which to create approximating polynomials. We also select a domain and
range for the plot; a short sequence, TextPoint , to use for the point at which
to display the degree; and the maximum degree, MaxDegree, for the Taylor
polynomials.

> restart:
> with(plots):
> setoptions(labels=["",""], font=[TIMES,ROMAN,24],
thickness=2, axesfont=[HELVETICA,18]):

> f := x -> sin(x):
> a := 0:
> Domain := -8..8:
> Range := -2..2:
> TextPoint := 2,1.5:
> MaxDegree := 20:

© 2003 by Chapman & Hall/CRC

Adding Text to Animations 143

Next, we create the background plot of f . We also define a function Ti that
creates a Taylor polynomial of degree at most i, and we store a display of a
sequence of plots of Ti for values of i from 1 to MaxDegree.

> fPlot := plot(f(x), x=Domain):
> T := i -> convert(taylor(f(x), x=a, i+1), polynom):
> TaylorPoly := display(seq(plot(T(i), x=Domain,
numpoints=100, color=blue), i=1..MaxDegree),
insequence=true):

We now generate a sequence of textplots to display the degree of the
Taylor polynomial plotted in the frame. To do this, we use the procedure
degree, which simply evaluates the degree of its argument, the polynomial
Ti. So that this value is useable by textplot, we convert it to a string using
sprintf.

> PolyDegree := display(seq(textplot(
[TextPoint,sprintf("degree = %d", degree(T(i)))],
align=RIGHT), i=1..MaxDegree), insequence=true):

Finally, we display the background plot together with the animated ele-
ments, restricting the view using the selected range.

> display(fPlot, TaylorPoly, PolyDegree, view=Range);

degree = 1

–2

–1

0

1

2

–8 –6 –4 2 4 6 8

degree = 3

–2

–1

0

1

2

–8 –6 –4 2 4 6 8

degree = 5

–2

–1

0

1

2

–8 –6 –4 2 4 6 8

I use this demonstration after I have developed the formula for the coeffi-
cients in a Taylor polynomial. I find that it is best used by stepping through
the frames, one at a time. I explain that the first frame shows a simple ap-
proximating function, a linear one, that shares a point and first derivative
with the given function. (The students will probably have seen this before
in the context of linear approximations of functions.) Stepping to the next
frame, nothing changes; this is a good opportunity to explain why, for the
sine, pairs of successive Taylor polynomials are the same. Stepping to the
next frame, I explain that this cubic polynomial not only shares a point with
the given function, but also agrees at its first, second, and third derivatives. I
proceed in this way, stepping one frame at a time. It is entertaining, however,
to let the animation run.

After this, it is easy to change the function, the value a, and possibly
the domain and range to try some other examples. This is a good time to

© 2003 by Chapman & Hall/CRC

144 Maple Animation

encourage student participation by asking for suggestions, entering them into
the worksheet, and then watching Taylor polynomials at work. I make sure
that one of the examples we try is lnx at a = 1 (with a range of about [−7, 7]),
and I ask the students to explain why the Taylor polynomials do such a poor
job of approximating lnx beyond 2.

7.8.2 Maple 8 alternative using TaylorApproximation

Among the options for the TaylorApproximation procedure is output.
The choices are animation, plot, and the default polynomial. The output=
animation option can produce an animation very much like the one that we
created above; we just specify a range for the order option. The difference is
that the animation does not display the degree of the Taylor polynomial. For
example,

> with(Student[Calculus1]):
> TaylorApproximation(sin(x), x=0, order=1..20,
output=animation, thickness=2, view=[-8..8,-2..2],
labels=["",""], axesfont=[HELVETICA,18],
titlefont=[TIMES,ROMAN,24]);

Taylor Approximations of
f(x) = sin(x)

at the Point (0, f(0))

–2
0

2

Taylor Approximations of
f(x) = sin(x)

at the Point (0, f(0))

–2
0

2

Taylor Approximations of
f(x) = sin(x)

at the Point (0, f(0))

–2
0

2

Here, we have also used the other options to adjust font size and curve thick-
ness for a readable projected image.

This is certainly a quick and easy way to create an animation to demon-
strate the concept. With a little more effort, we can include a display of the
order of the truncated Taylor series (as opposed to the degree of the Taylor
polynomial) used in the approximation. We begin in much the same way as
our demonstration above.

> restart:
> with(Student[Calculus1]):
> with(plots):
> f := x -> sin(x):
> a := 0:
> Domain := -8..8:
> Range := -2..2:
> MaxDegree := 20:

© 2003 by Chapman & Hall/CRC

Adding Text to Animations 145

The heart of the code is a function Ti that generates a single plot (output=
plot) of a Taylor approximation of order i. To accomplish the display of the
order, we will include it in the title. We use the title option, which expects
a string, together with sprintf, which produces one.

> T := i -> TaylorApproximation(sin(x), x=0, order=i,
output=plot, thickness=2, view=[Domain,Range],
labels=["",""], axesfont=[HELVETICA,18],
title=sprintf("Taylor approximation\nof order %d", i),
titlefont=[TIMES,ROMAN,24]):

Finally, we display a sequence of these plots for i from 1 to MaxDegree.

> display(seq(T(i), i=1..MaxDegree), insequence=true);

Taylor approximation
of order 1

–2
–1
0
1
2

–8 –4 4 8

Taylor approximation
of order 3

–2
–1
0
1
2

–8 –4 4 8

Taylor approximation
of order 5

–2
–1
0
1
2

–8 –4 4 8

7.9 Demonstrations: Experimenting with Taylor poly-
nomials

In the previous demonstrations, we fixed the value a at which we centered
the Taylor polynomials and varied the degree. It would be interesting to see
what happens if, instead, we were to fix the degree and vary a. Again, we
will implement this in two ways: using taylor and convert, and, for Maple
8, using TaylorApproximation.

7.9.1 Taylor polynomials with varying center

We begin by setting the same options.

> restart:
> with(plots):
> setoptions(labels=["",""], font=[TIMES,ROMAN,24],

thickness=2, axesfont=[HELVETICA,18]):

We use the sine function again as our example and fix the maximum degree
of the Taylor polynomial at 5. We choose a lowest and highest value for a,

© 2003 by Chapman & Hall/CRC

146 Maple Animation

set the domain to include those values plus some on each side, and choose a
number of frames and a suitable point at which to position text to display the
a-value.

> f := x -> sin(x):
> MaxDegree := 5:
> aLow := -7:
> aHigh := 7:
> Domain := aLow-1..aHigh+1:
> Range := -2..2:
> NumFrames := 30:
> TextPoint := 2,1.5:

Next, we plot the example function and create a function a(i) to compute
values of a from aLow to aHigh in increments of (aHigh−aLow)/NumFrames.
To make it clear in each frame exactly where the Taylor polynomial is centered,
we plot a point on the x-axis and display the a-value.

> fPlot := plot(f(x), x=Domain):
> a := i -> aLow + i*(aHigh-aLow)/NumFrames:
> aPlot := display(seq(pointplot([a(i),0], symbol=circle,
symbolsize=20, color=blue), i=0..NumFrames),
insequence=true):

> aValue := display(seq(textplot(
[TextPoint,sprintf("a = %.2f", a(i))], align=RIGHT),
i=0..NumFrames), insequence=true):

We create a function T to compute the Taylor polynomials, each depending,
this time, on the varying value of a. We then create a sequence of plots of
these polynomials and display them.

> T := a -> convert(taylor(f(x), x=a, MaxDegree+1),
polynom):

> TaylorPoly := display(seq(plot(T(a(i)), x=Domain,
numpoints=100, color=blue), i=0..NumFrames),
insequence=true):

> display(fPlot, aPlot, TaylorPoly, aValue, view=Range);

a = –5.60

–2

–1

0

1

2

–8 –6 –4 2 4 6 8

a = –4.67

–2

–1

0

1

2

–8 –6 –4 2 4 6 8

a = –3.73

–2

–1

0

1

2

–8 –6 –4 2 4 6 8

© 2003 by Chapman & Hall/CRC

Adding Text to Animations 147

7.9.2 Maple 8 alternative using TaylorApproximation

The TaylorApproximation procedure includes by default some of the ele-
ments that we created above. The value of a is in the title, and a plot of the
point (a, f(a)) is automatic, as is the function being approximated.

The preliminaries are the same.

> restart:
> with(Student[Calculus1]):
> with(plots):
> setoptions(labels=["",""], thickness=2,

axesfont=[HELVETICA,18]):
> f := x -> sin(x):
> MaxDegree := 5:
> aLow := -7:
> aHigh := 7:
> Domain := aLow-1..aHigh+1:
> Range := -2..2:
> NumFrames := 30:

We use the same function to compute the a-value. This time, the function
T will apply the procedure TaylorApproximation at the computed value of
a.

> a := i -> aLow + i*(aHigh-aLow)/NumFrames:
> T := a -> TaylorApproximation(sin(x), x=a,

order=MaxDegree, output=plot,
pointoptions=[symbolsize=20], view=[Domain,Range],
titlefont=[TIMES,ROMAN,24]):

So T (a(i)) is a call to TaylorApproximation to produce a Taylor polyno-
mial about the point aLow plus i increments of (aHigh−aLow)/NumFrames.
Finally, we display a sequence of these frames.

> display(seq(T(a(i)), i=0..NumFrames),
insequence=true);

Taylor Approximation of
f(x) = sin(x)

at the Point (–28/5, f(–28/5))

–2
0

2

Taylor Approximation of
f(x) = sin(x)

at the Point (–14/3, f(–14/3))

–2
0

2

Taylor Approximation of
f(x) = sin(x)

at the Point (–56/15, f(–56/15))

–2
0

2

© 2003 by Chapman & Hall/CRC

Chapter 8

Plotting Vectors

Near the close of the nineteenth century, Lord Kelvin, the great British physi-
cist, wrote that vectors have “never been of the slightest use to any crea-
ture.” [4, p. 772] In this chapter, we will give them a wee look nonetheless.
You will learn how to use Maple to compute dot products and cross prod-
ucts, to represent vectors as directed segments, and to enhance the illusion
of three-dimensionality for plots of vectors in space. As usual, we will create
some new animated demonstrations: one for teaching the concept of the cross
product vector, one for velocity and acceleration vectors in two dimensions,
and another for illustrating the central idea in the development of equations
of lines in space.

8.1 The two arrow procedures

There are two procedures in Maple, both called arrow, useful for plotting
a directed-segment representation of a vector, one in the plots package and
another in plottools. The plots version is the newer and more convenient.
It has fewer required arguments, and it plots three-dimensional vectors, by
default, as a cylinder with a cone on the end. Although the plottools version
does offer a cylindrical_arrow option to do that, it plots vectors, by default,
as planar arrows even in three dimensions. The disadvantage is that, if you
need to rotate a vector in three dimensions, as is likely, it will disappear
whenever your point of view happens to be edge-on to the plane containing
the arrow. We are going to opt here for the plots version of arrow.

This brings up a point worth considering. Suppose you want to use pro-
cedures from both plots and plottools in the same worksheet. If you load
both packages, then which arrow will be in effect, the plots or the plottools
version? The answer is the last one called. A with(package) statement re-
defines any procedures in package that are already available in the worksheet.
(Maple always warns you that the redefinition has occurred.) So

> with(plottools):
> with(plots):

149© 2003 by Chapman & Hall/CRC

150 Maple Animation

would make the plots version of arrow the active one. As a programming
practice, however, this is not ideal. It makes the code less transparent. A
better way is to load only those procedures that you need by qualifying the
with statement. This is done by specifying, after the package name, which of
the procedures you want to load. For example,

> with(plots, arrow, display):
> with(plottools, line):

loads only the arrow and display procedures from the plots package, and
only the line procedure from plottools.

Another way to avoid the potential confusion of conflicting procedure def-
initions is to use longer procedure names, which include the package name,
each time the procedure is used. For example, plots[display](arguments)
or plots[arrow](arguments). These longer names for the procedures tell
Maple where to find them, so no with statement is needed at all.

8.2 The arrow procedure of the plots package

One form of the arrow procedure is

arrow(initial point, vector, options)

which plots a directed-segment representation of vector beginning at initial
point. Both initial point and vector can be in the form of a point ([a,b] or
[a,b,c]), which is a list, or a vector (< a,b > or < a,b,c >), which is a column
vector. If initial point is omitted, it defaults to the origin. For the arrow
options, see Section 8.4. A simple and very plain example is

> with(plots):
> arrow([1,2], <3,1>, view=[-4..4,-4..4]);
> arrow(<3,1>, view=[-4..4,-4..4]);

–4

–3

–2

–1
0

1

2

3

4

–4 –3 –2 –1 1 2 3 4

© 2003 by Chapman & Hall/CRC

Plotting Vectors 151

–4

–3

–2

–1
0

1

2

3

4

–4 –3 –2 –1 1 2 3 4

which plots the vector 〈 3, 1 〉, first with initial point (1, 2), then with initial
point (0, 0). Using point notation for 〈 3, 1 〉 instead, we could have written

> with(plots):
> arrow([1,2], [3,1], view=[-4..4,-4..4]);
> arrow([3,1], view=[-4..4,-4..4]);

–4

–3

–2

–1
0

1

2

3

4

–4 –3 –2 –1 1 2 3 4

–4

–3

–2

–1
0

1

2

3

4

–4 –3 –2 –1 1 2 3 4

which accomplishes the same thing.
Typically, we will want to store representations of vectors for display later,

such as

© 2003 by Chapman & Hall/CRC

152 Maple Animation

> with(plots):
> v1 := arrow([1,2],<3,2>, color=red):
> v2 := arrow([1,2],<-2,3>, color=blue):
> display(v1, v2, view=[-4..4,-6..6]);

–6

–4

–2

0

2

4

6

–4 –3 –2 –1 1 2 3 4

These vectors certainly don’t look orthogonal, although they may look fine
on your screen. If not, you can correct that by using constrained scaling:

> display(v1, v2, scaling=constrained,
view=[-4..4,-6..6]);

–6

–4

–2

0

2

4

6

–4 –3 –2 1 2 3 4

One way that we can use arrow is to illustrate the geometry of the sum of
two vectors, by the parallelogram method,

> with(plots):
> v1 := arrow(<5,2>, color=blue):
> v2 := arrow([5,2], <1,4>, color=blue):
> s := arrow(<5,2> + <1,4>, color=red):
> display(v1, v2, s, scaling=constrained,

view=[-8..8,-8..8]);

© 2003 by Chapman & Hall/CRC

Plotting Vectors 153

–8

–6

–4

–2
0

2

4

6

8

–8 –6 –4 –2 2 4 6 8

or the tip-to-tail method,

> with(plots):
> v1 := arrow(<5,2>, color=blue):
> v2 := arrow(<5,2>, <1,4>, color=blue):
> s := arrow(<5,2> + <1,4>, color=red):
> display(v1, v2, s, scaling=constrained,

view=[-8..8,-8..8]);

–8

–6

–4

–2
0

2

4

6

8

–8 –6 –4 –2 2 4 6 8

Three-dimensional vectors can be plotted in a similar way. The parallelo-
gram method for vector sums in space is illustrated by

> with(plots):
> v1 := arrow(<2,-1,2>, color=green):
> v2 := arrow(<-2,4,1>, color=green):
> s := arrow(<2,-1,2> + <-2,4,1>, color=red):
> display(v1, v2, s, axes=normal, scaling=constrained);

0
1
2
3

–1

1
2

3
4

–2
–1

1
2

© 2003 by Chapman & Hall/CRC

154 Maple Animation

and the tip-to-tail method by

> with(plots):
> v1 := arrow(<2,-1,2>, color=green):
> v2 := arrow([2,-1,2], <-2,4,1>, color=green):
> s := arrow(<2,-1,2> + <-2,4,1>, color=red):
> display(v1, v2, s, axes=normal, scaling=constrained);

0

1

2

3

–1

1
2

3

0.5
1

1.5
2

To give arrows in space a more three-dimensional appearance, we can add
some shading, as if from a light source, using the lightmodel option. Notice
how much more rounded and substantial the arrows appear in

> display(v1, v2, s, axes=normal, scaling=constrained,
lightmodel=light3);

0

1

2

3

–1

1
2

3

0.5
1

1.5
2

The choices for lightmodel are light1, light2, light3, and light4. You
can experiment with these by using the Color menu. (Click in the plot to
select it, and the plot3d menus will appear.) It is also possible to design
your own model using the option light=[φ,θ,r,g,b]. This option simulates
a light source from the direction given by θ and φ, the angles (measured in
degrees) of spherical coordinates, but notice that they are listed in reverse
order. The values r, g, and b are the red, green, and blue intensities, each in
the interval [0, 1]. For example,

> display(v1, v2, s, axes=normal, scaling=constrained,
light=[80,-10,.9,.9,.9]);

© 2003 by Chapman & Hall/CRC

Plotting Vectors 155

0

1

2

3

–1

1
2

3

0.5
1

1.5
2

which puts the light source roughly over your left shoulder.
Another way to use the arrow procedure is to create a directed segment

from one point to another by specifying the initial and terminal points. The
general form, which employs the difference option, is

arrow(initial point, terminal point, difference=true,
other options)

For example,

> with(plots):
> arrow([-2,1], [3,3], difference=true, color=green,

view=[-4..4,-4..4]);

–4

–3

–2

–1
0

1

2

3

4

–4 –3 –2 –1 1 2 3 4

and

> with(plots):
> arrow([3,0,0], [1,4,2], difference=true, axes=normal,

scaling=constrained, color=green, lightmodel=light3);

0

1

2

0
1

2
3

4

1.5
2

2.5
3

© 2003 by Chapman & Hall/CRC

156 Maple Animation

Default is difference=false.

8.3 Dot product and cross product

Dot product (inner product or scalar product) is readily available by way
of the “.” operator. For example,

> a := <-2,3,1>;
> b := <1,-1,2>;
> a.b;

a :=



−2

3
1




b :=




1
−1

2




−3

For the cross product (vector product), we will need the LinearAlgebra
package, which contains the CrossProduct procedure. For example,

> with(LinearAlgebra):
> a := <1,2,3>;
> b := <2,1,4>;
> c := CrossProduct(<1,2,3>,<2,1,4>);

a :=




1
2
3




b :=




2
1
4




c :=




5
2

−3




The LinearAlgebra package also has a DotProduct procedure, so we could
have found a · b using

> with(LinearAlgebra):
> a := <-2,3,1>;
> b := <1,-1,2>;
> DotProduct(a,b);

© 2003 by Chapman & Hall/CRC

Plotting Vectors 157

a :=



−2

3
1




b :=




1
−1

2




−3

The LinearAlgebra package, as the name suggests, is the place to find
Maple’s matrix procedures, of which we will have occasion to use only a
few. There is also an older, less efficient, linalg package. For a look, en-
ter ?LinearAlgebra or ?linalg at the Maple prompt. Maple 8 has a new
VectorCalculus package that supports a wide range of coordinate systems
and allows adding your own. Enter ?VectorCalculus for details.

8.4 The arrow options

In addition to the difference option and the pertinent plotting options,
the arrow procedure of the plots package offers some of its own. There are
six: shape, length, width, head_width, head_length, and plane.

The shape option specifies the appearance of the arrow. We have already
seen two of the choices, double_arrow and cylindrical_arrow, since these
are the defaults for two and three dimensions, respectively. The other two,
arrow and harpoon, are illustrated by

> with(plots):
> arrow(<1,2>, shape=arrow, thickness=2,

view=[-3..3,-3..3]);
> arrow(<1,2>, shape=harpoon, thickness=2,

view=[-3..3,-3..3]);

–3

–2

–1

0

1

2

3

–3 –2 –1 1 2 3

© 2003 by Chapman & Hall/CRC

158 Maple Animation

–3

–2

–1

0

1

2

3

–3 –2 –1 1 2 3

The length option can be used either to specify the length of the arrow
directly or to specify a value by which the arrow is to be scaled. For example,
the specification length=4 creates an arrow of length 4, but the specification
length=[4,relative=true] creates an arrow multiplied by the scalar 4. The
default length is length=[1,relative=true]. For example,

> with(plots):
> arrow(<1,1>, length=2, color=blue, scaling=constrained,

view=[-3..3,-3..3]);

–3

–2

–1

0

1

2

3

–3 –2 –1 1 2 3

plots an arrow of length 2 in the direction of the vector 〈 1, 1 〉, and

> with(plots):
> arrow(<1,1>, length=[2,relative=true], color=blue,

scaling=constrained, view=[-3..3,-3..3]);

–3

–2

–1

0

1

2

3

–3 –2 –1 1 2 3

© 2003 by Chapman & Hall/CRC

Plotting Vectors 159

plots an arrow twice as long as the vector 〈 1, 1 〉. That is, it plots 2 〈 1, 1 〉. A
unit vector in the same direction as 〈 1, 1 〉 may be plotted using

> with(plots):
> arrow(<1,1>, length=1, color=blue, scaling=constrained,
view=[-3..3,-3..3]);

–3

–2

–1

0

1

2

3

–3 –2 –1 1 2 3

A unit vector in the opposite direction may be plotted with

> with(plots):
> arrow(<1,1>, length=-1, color=blue, scaling=constrained,

view=[-3..3,-3..3]);

–3

–2

–1

0

1

2

3

–3 –2 –1 1 2 3

The width option can be used either to specify the width of the arrow
directly or the ratio of width to length. The specification width=.1 creates
an arrow of width .1, but width=[.1,relative=true] creates an arrow whose
width is one tenth of its length. The default is width=[.05,relative=true].
For example,

> with(plots):
> arrow(<3,1>, width=.2, color=blue, view=[-3..3,-3..3]);

© 2003 by Chapman & Hall/CRC

160 Maple Animation

–3

–2

–1

0

1

2

3

–3 –2 –1 1 2 3

plots an arrow of width .2, but

> with(plots):
> arrow(<3,1>, width=[.2,relative=true], color=blue,

view=[-3..3,-3..3]);

–3

–2

–1

0

1

2

3

–3 –2 –1 1 2 3

plots an arrow whose width is two tenths of its length.
The head_width option is used to specify either the width of the head

of the arrow directly or the ratio of the width of the head to the width
of the body of the arrow. For example, head_width=.2 creates an arrow
with a head of width .2, and head_width=[3,relative=true] creates an ar-
row whose head is three times as wide as the body of the arrow. Default is
head_width=[2,relative=true]. Similarly, head_length=.4 creates an ar-
row with a head of length .4, and head_length=[.4,relative=true] creates
an arrow whose head is four tenths of the total length of the arrow. Default
is head_length=[.2,relative=true].

Whenever the choice specified for the shape option is double_arrow,
harpoon, or arrow, the arrow created is planar. If you are rotating such
an arrow in three dimensions, then, it will disappear whenever your view-
point happens to be in the same plane as the arrow. The simplest way to
prevent this is not to choose any shape in the first place, and just let this
option default to cylindrical_arrow. If your preference for a planar arrow
is unshakable, however, you can specify the plane that contains the arrow
by using the plane option. The command arrow(P, a, plane=b) plots an

© 2003 by Chapman & Hall/CRC

Plotting Vectors 161

arrow with initial point P in the direction of the vector a and in the plane
containing the point P that is parallel to a and a×b. If a and b are parallel,
the option is just ignored. Try, for example,

> with(plots):
> v1 := arrow(<1,0,0>, shape=double_arrow, plane=<0,0,1>,
color=red):

> v2 := arrow(<1,1,0>, shape=double_arrow, plane=<-1,1,1>,
color=blue):

> v3 := arrow(<0,1,0>, shape=double_arrow, plane=<1,0,0>,
color=green):

> display(v1, v2, v3, axes=normal, scaling=constrained,
view=-0.5..0.5);

–0.4

0
0.2
0.4

0.2
0.4
0.6
0.8
1

0.2
0.4

0.6
0.8
1

where the point P defaults to the origin. Rotate this plot so you can see
how the planes containing these arrows are oriented. The vector b may be
expressed in point form [b1,b2,b3], instead of vector form <b1,b2,b3>.

It is good to have so much control over the appearance. Typically, however, I
choose a width that seems appropriate, use it for all the arrows in the plot, and
let the other options default. Generally, this looks better than having arrows
with varying width. Moreover, it is the length of an arrow (representing the
magnitude of a vector) that is the more important thing to focus on in the
plot. In animations, this length is often changing. If the width is changing,
too—as, by default, it would—it is a distraction from the central idea.

8.5 Demonstration: The cross product vector

The cross product vector is fundamental to the geometry of three dimen-
sions, so it is important that students have a clear mental picture of its geomet-
rical properties. Topics such as equations of planes and lines of intersection of
two planes, and the distance between a point and a plane go more smoothly

© 2003 by Chapman & Hall/CRC

162 Maple Animation

when I have spent a few extra minutes sharing with the students some useful
Maple plots. Three plots will be helpful.

The first will show two vectors a and b and their cross product a × b so
that we can verify that a × b looks orthogonal to both a and b. We load
the packages we need, choose two example vectors, and compute their cross
product.

> restart:
> with(plots):
> with(LinearAlgebra):
> a := <1,2,3>;
> b := <2,-1,2>;
> c := CrossProduct(a,b);

a :=




1
2
3




b :=




2
−1

2




c :=




7
4

−5




Next, we create representations of these vectors using arrow and some labels
for them using textplot3d.

> a_arrow := display(arrow(a, width=.25, color=blue),
textplot3d([a[1],a[2],a[3]," a"], color=black,
font=[HELVETICA,BOLD,14], align={ABOVE,RIGHT})):

> b_arrow := display(arrow(b, width=.25, color=blue),
textplot3d([b[1],b[2],b[3],"b "], color=black,
font=[HELVETICA,BOLD,14], align={ABOVE,LEFT})):

> c_arrow := display(arrow(c, width=.25, color=red),
textplot3d([c[1],c[2],c[3]," a x b"], color=black,
font=[HELVETICA,BOLD,14], align=RIGHT)):

The choice of a width of .25 is the result of some experimentation to find
a value that works well for this particular plot. In creating the labels, we
have used a[i], b[i], and c[i] to access the components of the vectors, then
located the labels at the terminal points of the vectors. Now, we display these
structures.

> display(a_arrow, b_arrow, c_arrow, axes=normal,
scaling=constrained, lightmodel=light3, view=-5..5);

© 2003 by Chapman & Hall/CRC

Plotting Vectors 163

 a x b

b
 a

–4

–2

2

4

–1 1 2 3 4
246

The second plot will show, in addition to a, b, and a×b, the parallelogram
whose area has the same magnitude as a × b. To plot the parallelogram,
we will use the procedure polygonplot3d from the plots package, which
expects a list of the vertices, that is, a list of lists. The vertices will be the
origin together with the terminal points of the position vectors a, a + b, and
b. The terminal points are just the components of those vectors, but, to be
useable by polygonplot3d, we need to convert the vectors to lists. To do
that, we will use the convert procedure (Section 7.7.1).

> P := polygonplot3d([[0,0,0], convert(a,list),
convert(a+b,list), convert(b,list)], color=green):

> display(a_arrow, b_arrow, c_arrow, P, axes=normal,
scaling=constrained, lightmodel=light3, view=-5..5);

 a x b

b
 a

–4

–2

2

4

–1 1 2 3 4
246

It would be instructive to see what happens to a×b and the parallelogram
as the angle between a and b varies. We will fix a and let b rotate about the
common initial point.

First, we choose a vector a and create a label for it.

> a := <0,3/2,0>:
> a_arrow := display(arrow(a, width=.1, color=blue),
textplot3d([a[1],a[2]+.2,a[3],"a"], color=black,
font=[HELVETICA,BOLD,14], align=BELOW)):

© 2003 by Chapman & Hall/CRC

164 Maple Animation

We will build the frame sequence with a loop. We rotate b in the yz-plane
by setting b = 〈 0, cos(πi/10), sin(πi/10) 〉 for i = 1, 2, . . . , 20. In the body of
the loop, for each i we create the vector b and its label, the vector c = a× b
and its label, and the corresponding parallelogram, then append a display of
these to the existing frame sequence.

> FrameSequence := NULL:
> for i from 1 to 20 do
> b := <0,cos(Pi/10*i),sin(Pi/10*i)>:
> b_arrow := display(arrow(b, width=.1, color=blue),

textplot3d([b[1],b[2],b[3],"b"], color=black,
font=[HELVETICA,BOLD,14], align={ABOVE,LEFT})):

> c := CrossProduct(a,b);
> c_arrow := display(arrow(c, width=.1, color=red),

textplot3d([c[1],c[2],c[3]," a x b"], color=black,
font=[HELVETICA,BOLD,14], align=LEFT)):

> P := polygonplot3d([[0,0,0], convert(a,list),
convert(a+b,list), convert(b,list)], color=green):

> FrameSequence := FrameSequence,
display(b_arrow, c_arrow, P)

> end do:

Finally, we store a display of the frames in sequence, then display this together
with the fixed vector a, which is the background plot.

> Frames := display(FrameSequence, insequence=true):
> display(a_arrow, Frames, scaling=constrained,

lightmodel=light4, orientation=[40,70]);

a
 a x b

b

a a x b

b

a x b a

b

Before I use this demonstration, I establish that a×b is orthogonal to both
a and b and that its direction obeys the right-hand rule. (If the fingers of
your right hand curl in the direction from a toward b, your thumb points in
the direction of a×b.) Then I use the first plot, which shows only the vectors.
I rotate this a little so we can check that a × b looks orthogonal to both a
and b. Then I prove that |a×b| = |a||b| sin θ, where θ is the angle between a
and b. So, in addition, the length of the cross product of a and b is the area
of the parallelogram determined by a and b. Then I show the second plot,
which includes this parallelogram. Next, we discuss that a and b are parallel
exactly when their cross product is the zero vector. After this, I tell the

© 2003 by Chapman & Hall/CRC

Plotting Vectors 165

students that it would be useful to watch what happens, as the angle between
a and b changes, to the parallelogram and the cross product vector. I step
the animation one frame at a time. We check that a×b obeys the right-hand
rule and that it lengthens or shortens as the parallelogram’s area increases or
decreases. When a and b are opposite in direction, I point out that it makes
sense that the parallelogram and cross product have disappeared. When the
cross product’s direction is away from the viewer and into the screen, I point
out that it is, in fact, obeying the right-hand rule. Finally, when a and b have
the same direction, the parallelogram and cross product have vanished once
again.

8.6 Demonstration: Velocity and acceleration vectors in
two dimensions

An important application of vectors is their use to represent velocity and
acceleration. To demonstrate this idea, it would be ideal to see how the
velocity and acceleration vectors behave, and how they interact, as a point
moves along a curved path. We will create an animation to do that. We will
make three plots: one to show the point as it moves along the curve, another
to show the changing velocity vector, and a third to show both the velocity
and the acceleration vectors. This demonstration will be two-dimensional; we
will create a three-dimensional version in the next chapter.

We begin by calling the necessary package. We choose constrained scaling
so that the lengths of the vectors will not be distorted, and select a suitable
view.

> restart:
> with(plots):
> setoptions(scaling=constrained,

view=[-0.85..0.85,-1.1..0.7]):

As the path for the point, we will use the position function 〈 f(t), g(t) 〉 =
〈 sin 3t cos t, sin 3t sin t 〉 on [π/4, 3π/4]. We need to create vector-valued func-
tions for the position, velocity, and acceleration. Recall from Section 6.3 that
useful notations for the first and second derivatives of a function f are D(f)
and (D@@2)(f), respectively.

> f := t -> sin(3*t)*cos(t);
> g := t -> sin(3*t)*sin(t);
> alpha := Pi/4;
> beta := 3*Pi/4;
> Position := t -> <f(t), g(t)>:
> Velocity := t -> <D(f)(t), D(g)(t)>:
> Acceleration := t -> <(D@@2)(f)(t), (D@@2)(g)(t)>:

© 2003 by Chapman & Hall/CRC

166 Maple Animation

f := t → sin(3 t) cos(t)

g := t → sin(3 t) sin(t)

α :=
π

4

β :=
3 π

4

Next, we plot and store the curve, which is the background plot.

> Curve := plot([f(t), g(t), t=alpha..beta], style=line,
color=blue, thickness=2):

We now choose a number of frames (beyond the first one) NumFrames and
create a function for the parameter t that we can use to compute values from
α to β in increments of (β − α)/NumFrames.

> NumFrames := 30:
> t := i -> alpha + i*(beta-alpha)/NumFrames:
> Scale := .15:

The factor Scale is used to scale down the vectors so that they are not so large
in relation to the curve. This artifice, which improves the appearance of the
plot, amounts to a change in units, so nothing is lost mathematically.

Next, we generate a moving point, as we did in Section 5.7, and sequences
of arrows for the velocity and acceleration vectors.

> Points := display(seq(pointplot([f(t(i)), g(t(i))],
style=point, symbol=circle, symbolsize=17, color=black),
i=0..NumFrames), insequence=true):

> VelocityVectors := display(seq(arrow(Position(t(i)),
Scale*Velocity(t(i)), width=.02, color=red),
i=0..NumFrames), insequence=true):

> AccelerationVectors := display(seq(arrow(
Position(t(i)), Scale*Acceleration(t(i)), width=.02,
color=green), i=0..NumFrames), insequence=true):

Finally, we display the three animations.

> display(Curve, Points);

–1
–0.8
–0.6
–0.4
–0.2

0

0.2
0.4
0.6

–0.8 –0.4 0.2 0.4 0.6 0.8

–1
–0.8
–0.6
–0.4
–0.2

0

0.2
0.4
0.6

–0.8 –0.4 0.2 0.4 0.6 0.8

–1
–0.8
–0.6
–0.4
–0.2

0

0.2
0.4
0.6

–0.8 –0.4 0.2 0.4 0.6 0.8

© 2003 by Chapman & Hall/CRC

Plotting Vectors 167

> display(Curve, VelocityVectors);

–1
–0.8
–0.6
–0.4
–0.2

0

0.2
0.4
0.6

–0.8 –0.4 0.2 0.4 0.6 0.8

–1
–0.8
–0.6
–0.4
–0.2

0

0.2
0.4
0.6

–0.8 –0.4 0.2 0.4 0.6 0.8

–1
–0.8
–0.6
–0.4
–0.2

0

0.2
0.4
0.6

–0.8 –0.4 0.2 0.4 0.6 0.8

> display(Curve, VelocityVectors, AccelerationVectors);

–1
–0.8
–0.6
–0.4
–0.2

0

0.2
0.4
0.6

–0.8 –0.4 0.2 0.4 0.6 0.8

–1
–0.8
–0.6
–0.4
–0.2

0

0.2
0.4
0.6

–0.8 –0.4 0.2 0.4 0.6 0.8

–1
–0.8
–0.6
–0.4
–0.2

0

0.2
0.4
0.6

–0.8 –0.4 0.2 0.4 0.6 0.8

When I use this demonstration, first I show just the point moving along
the curve. I click the button in the context bar to make the animation cycle
continuously and let the students watch the point move for a while. I want
them to become familiar with its motion. As they watch, I call their attention
to the fact that the point slows down as it approaches the tight turn at the
bottom and speeds up as it comes out of the turn, as a driver might do when
negotiating such a curve.

Then I show the plot that includes the velocity vector, making it play
continuously, too. I point out two things. The vector is always pointing in
the direction of the inertial path, that is, the path the particle would follow
if the forces that are currently holding it on the curve were to cease doing
so. The other thing is that the velocity vector shortens as the particle slows
down, as it should since speed is the magnitude of velocity, and lengthens as
the particle speeds up.

Then I show the plot that contains both the velocity and the accelera-
tion vectors. Here, I start with the animation paused and point out, again,
two things. The acceleration vector acts to push the particle off its inertial
(straight-line) path, always, therefore, acting toward the inside of the turn. I
step the animation through a few frames so we can watch that happen. Then
I point out that, whenever the vector projection of the acceleration onto the
velocity is in the same direction as the velocity, the particle is speeding up,
and whenever the vector projection of acceleration onto velocity is in the op-
posite direction to the velocity, the particle slows down. Finally, I let the
animation run continuously so the students can watch the interaction of the
two vectors as the point moves along the curve.

© 2003 by Chapman & Hall/CRC

168 Maple Animation

8.7 Demonstration: Lines in space

A development of an equation of a line in space, whether we are aiming
for parametric form, symmetric form, or vector form, will begin with vectors.
A fixed point and a direction are sufficient to determine a line. Let P be
the fixed point whose position is given by the vector r0, and let the direction
be given by the vector v. Then every point on the line has position vector
r(t) = r0 + tv for some scalar t (and the converse). To convince students of
that, we seek a demonstration that shows the three vectors, r, r0, and tv,
as t varies over real values. We want students to see the terminal point of r
tracing out points along the line.

The line procedure (Section 6.4) from the plottools package will be useful
here. As usual, we will also want some procedures from the plots package.
To avoid confusing the different arrow procedures in these two packages, we
will call just the procedures we need from each.

> restart;
> with(plots, arrow, display, textplot3d):
> with(plottools, line):
> setoptions3d(scaling=constrained):

As our example, we will use r0 = 〈 1, 2, 3 〉 and v = 〈 2, 3, 2 〉. In this
demonstration, we take advantage of the option to use point notation instead
of vector notation for r0 and v. This way, our notation will do double duty.
It will serve to represent both a point and a position vector. We can then use
r0 and v in procedures that expect their arguments to be points.

> r0 := [1,2,3]:
> v := [2,3,2]:
> r := t -> r0 + t*v:

Next, we create an arrow to represent r0 and a label for it, then display
them together as r0Vector . To position the label near the middle of the arrow,
we divide each component of r0 by 2. The ith component of r0 is denoted
r0[i]. In this way, we create a sequence V1LabelPos of three values to use as
the position of the label in textplot3d (Section 7.2).

> V1 := arrow(r0, color=green, width=.2):
> V1LabelPos := r0[1]/2, r0[2]/2, r0[3]/2:
> V1Label := textplot3d([V1LabelPos, "r0"], color=green,

font=[TIMES,BOLD,18], align=LEFT):
> r0Vector := display(V1, V1Label):

Similarly, for v we create an object vVector . The midpoint of the directed
segment from P (1, 2, 3) representing v has position vector r(1/2).

© 2003 by Chapman & Hall/CRC

Plotting Vectors 169

> V2 := arrow(r0, v, color=red, width=.2):
> V2MidPt := r(1/2):
> V2LabelPos := V2MidPt[1], V2MidPt[2], V2MidPt[3]:
> V2Label := textplot3d([V2LabelPos, "v"], color=red,
font=[TIMES,BOLD,18], align={ABOVE,LEFT}):

> vVector := display(V2, V2Label):

To plot the line, we choose two points and use the line procedure. The
points whose position vectors are r(−1.5) and r(2.5) work well in this case.

> L := line(r(-1.5), r(2.5), color=black, thickness=3):

Here, we have taken advantage of our representation of r as a list (point form).
We can hand r(−1.5) and r(2.5) directly to the line procedure, which expects
lists.

We then display the line and the two vectors that determine it.

> display(r0Vector, vVector, L, axes=normal,
orientation=[10,75], light=[60,-30,.9,.9,.9]);

r0

v
2

4

6

8

–2 2 4 6 8
4

Some tweaking may be in order. If you are using Maple 8, this plot probably
looks fine. In Maple 7, it probably doesn’t. If the labels interfere with the
arrows, you can adjust V1LabelPos leftward and V2LabelPos upward. On my
screen, this works in Maple 7:

> V1LabelPos := r0[1]/2, r0[2]/2-1, r0[3]/2:
> V2LabelPos := V2MidPt[1], V2MidPt[2], V2MidPt[3]+.4:

Opting for a loop structure, we will first need to initialize a sequence S in
which to keep the frames. To do a thorough job, we will show the vector tv for
both positive and negative values of t. Starting at 1, we will let t increase in
increments of .2 to 2, then decrease in decrements of .2 to −1. To accomplish
that, we just create two sequences and append one to the other.

> S := NULL:
> ParameterValues := seq(1+.2*i, i=0..5),

seq(2-.2*i, i=0..15):

© 2003 by Chapman & Hall/CRC

170 Maple Animation

Inside the loop, we form an arrow, tvVector , for the vector tv and a label for
it. The label is in two parts: tLabel for the scalar t, which should be italic,
and vLabel for the vector v, which we will make bold as is often done for
vectors. We take advantage of the opportunity offered by the two separate
parts to color them differently. We also create an arrow SumVector for the
vector sum r(t) = r0 + tv, then display all these elements as a single frame
and append it to the frame sequence S.

> for t in ParameterValues do
> tvVector := arrow(r0, t*v, width=.2, color=red);
> tvMidPt := r(t/2);
> tvLabelPos := tvMidPt[1], tvMidPt[2], tvMidPt[3];
> tLabel := textplot3d([tvLabelPos, "t "], color=black,

font=[TIMES,ITALIC,18], align={ABOVE,LEFT});
> vLabel := textplot3d([tvLabelPos, " v"], color=red,

font=[TIMES,BOLD,18], align={ABOVE,LEFT});
> SumVector := arrow(r(t), width=.2, color=blue);
> S := S, display(SumVector, tvVector, tLabel, vLabel)
> end do:

Again, the position of the label tvLabelPos may need an upward adjustment,
particularly in Maple 7.

Finally, we store a display of the frames in sequence,

> Sum_and_tvVectors := display(S, insequence=true):

then display the background plot and the animated elements.

> display(r0Vector, Sum_and_tvVectors, L, axes=normal,
orientation=[10,75], light=[60,-30,.9,.9,.9]);

r0

tv
2

4

6

8

–2 2 4 6 8
4

r0

tv
2

4

6

8

–2 2 4 6 8
4

r0

tv

2

4

6

8

–2 2 4 6 8
4

After defining the vector form of the equation of a line, and before I use this
demonstration, I often show an example in two dimensions on the blackboard,
drawing the position vector, the direction vector, and the line. When I use this
demonstration, I show the first plot—the one with no animated elements—and
rotate it. This allows the students to look for a moment at the geometrical
objects. Then I play the animation, letting it loop, and explain that the scalar
t is varying over values between 1 and −2, and as this happens, the terminal
point of the (blue) position vector r(t) traces out the line.

© 2003 by Chapman & Hall/CRC

Chapter 9

Plotting Space Curves

A significant benefit of a computer algebra system such as Maple is its ability
to plot a curve in three dimensions. The capability to rotate the plot in real
time is a remarkably effective aid to visualizing the curve’s shape. In this
chapter, we will discuss two ways to represent space curves. One is the stan-
dard curved-line representation. The other, a tube, significantly improves the
three-dimensionality of the representation. We will create three new demon-
strations. One shows the relationship between a vector-valued function and
a space curve. Another is an elaborate one for demonstrating the directional
derivative and the gradient vector. The third demonstrates in three dimen-
sions the ideas of velocity and acceleration, showing the changing velocity and
acceleration vectors as a point moves along a curved path in space.

9.1 The spacecurve procedure

To plot a curve in three dimensions, we can use the spacecurve procedure
of the plots package. One form is

spacecurve([f(t),g(t),h(t)], t=a..b, options)

where f , g, and h are the component functions of the curve. The options are
the same ones as for plot3d, except for the grid option, which is not appli-
cable here. For example, to plot the space curve whose parametric equations
are

x = sin 3t cos t

y = sin 3t sin t

z = t

we may use

> with(plots):
> spacecurve([sin(3*t)*cos(t), sin(3*t)*sin(t), t],

t=0..Pi, axes=normal, shading=z);

171© 2003 by Chapman & Hall/CRC

172 Maple Animation

0

1

2

3

–0.8
–0.4

0.4

–0.8
–0.4

0.4
0.8

We have given the domain for the parameter outside the list, which is con-
sistent with the other three-dimensional parametric form, a surface defined
using two parameters (see Section 2.2). Syntax does not require this, however.
We may include the parameter’s domain within the list instead. This is useful
whenever we have more than one space curve to plot—spacecurve accepts a
set of lists—and the curves have different domains. We can also include any
options local to a particular curve inside the list with that curve’s component
functions. For example,

> with(plots):
> spacecurve({[t,6*cos(t),6*sin(t),t=0..4*Pi,color=red],

[6*cos(t),t,6*sin(t),t=0..8*Pi,color=blue,numpoints=100]},
thickness=2, axes=normal, scaling=constrained);

–5
0
5

5
10

15
20

25

4
8

12

The numpoints option defaults to 50 as it does for curves in two dimensions.
The list of component functions can be replaced by a list of points. In this

case, spacecurve connects successive points with line segments. For example,

> with(plots):
> spacecurve([[0,0,1], [0,1,0], [1,0,0], [0,0,1]],

axes=normal, color=green);

© 2003 by Chapman & Hall/CRC

Plotting Space Curves 173

0
0.2
0.4
0.6
0.8
1

0.2
0.4

0.6
0.8

1

0.2
0.4

0.6
0.8

1

9.2 Demonstration: Curves in space

One way to help students understand what a vector-valued function is,
geometrically, is to connect the function to a space curve. Think of placing all
the vectors in the range of the function in standard position (initial point at
the origin) and collecting all the terminal points of the vectors. That collection
is a space curve. Having read those two sentences, you may have a picture in
mind. It might even be moving. Let’s make a short animation that will give
that mental image to students, too. It should show a vector swinging about
the origin, sweeping out a space curve.

We will use the vector-valued function r(t) = 〈 sin 3t cos t, sin 3t sin t, t 〉 for
our example.

> restart:
> with(plots):
> setoptions3d(thickness=3, axes=normal,
scaling=constrained, orientation=[10,60],
lightmodel=light2, view=[-3..3,-3..3,-1..7]):

> r := t -> [sin(3*t)*cos(t), sin(3*t)*sin(t), t];

r := t → [sin(3 t) cos(t), sin(3 t) sin(t), t]

As we did in Section 8.7, and for similar reasons, we have chosen to represent r
in point form so that r is a list. Since the spacecurve procedure expects a list,
we can use r as a parametric form of the curve in a call to spacecurve. Since
arrow will accept a list, r will also serve as the terminal point of the arrows
we use to represent the vectors. We also add some shading using lightmodel
to strengthen the illusion of three-dimensionality.

We will use a loop to generate the sequence of frames. We begin by initial-
izing it and choosing a number of frames.

© 2003 by Chapman & Hall/CRC

174 Maple Animation

> NFrames := 20:
> FrameSeq := NULL:

In the body of the loop, we want to plot a vector and a portion of the space
curve from, say, t = 0 to the tip of the vector.

> for i from 0 to NFrames do
> rVector := arrow(r(2*Pi*i/NFrames), color=red,

width=.2):
> Curve := spacecurve(r(t), t=0..2*Pi*i/NFrames+0.01,

color=black):
> FrameSeq := FrameSeq, display(Curve, rVector)
> end do:

So we generate, for each i, an arrow in standard position to represent the
vector r(2πi/NFrames) and the associated space curve from t = 0 to (near)
t = 2πi/NFrames. We have added a small value, 0.01, to the upper limit of
the domain of t because spacecurve wants the domain for the parameter to
be nonempty. We then append a display of these two objects to the frame
sequence. We omitted the initial point in the arrow procedure, letting it
default to the origin, because we want the vectors to be in standard position.

There is no background plot, so we finish by just displaying the frame
sequence.

> display(FrameSeq, insequence=true);

–1

1
2
3
4
5
6
7

–3 –2 –1 2 3

–2

2
–1

1
2
3
4
5
6
7

–3 –2 –1 2 3

–2

2
–1

1
2
3
4
5
6
7

–3 –2 –1 2 3

–2

2

When I use this demonstration, I first explain that a space curve is the
set of all the terminal points of vectors (represented by directed segments in
standard position) in the range of a vector-valued function, then I show this
animation. After seeing the animation once, everyone knows the relationship
between a vector function and a space curve. No lengthy discussion is needed.
I usually pause and ask students to guess what would be the projection of this
space curve onto the xy-plane. It isn’t easy. I have tried this with audiences
of mathematicians. (I didn’t show them the defining equation of the space
curve, of course.) Most are surprised, when I rotate the plot so that the view
is straight down the z-axis, to see a three-leaved rose take shape.

© 2003 by Chapman & Hall/CRC

Plotting Space Curves 175

9.3 Demonstration: Directional derivative and gradient
vector

These are the concepts that prompted me to learn to create animations. I
used to take my students outside and position them at various points on a
hillside, having them point in the direction of the gradient vector and extend
their arms more or less in accordance with the magnitude of the gradient at
the particular spot where they stood. It was marginally effective, but subject
to the weather (in Michigan). For directional derivatives, I could draw what
I wanted to illustrate reasonably well on a blackboard, but I believed that
the best way to help students understand the directional derivative is to show
them what happens to it as the direction actually changes. And for that, I
needed animation.

In this elaborate demonstration, we will create all the elements we might
want to have on hand to demonstrate what a directional derivative is and how
it relates to the gradient vector. Then we can choose which ones we prefer to
use. A list is:

• a surface z = f(x, y)
• a point P (a, b) in the xy-plane
• a unit vector u, for the changing direction, represented as an arrow

from P in the xy-plane
• the vertical plane through P and parallel to u
• the trace of the surface in the vertical plane
• the point (a, b, f(a, b)) on the trace
• the line tangent to the trace at (a, b, f(a, b)) and within the vertical

plane
• the slope (the directional derivative) of the tangent line in the direc-

tion u
• the gradient vector

To demonstrate what happens as direction changes, we want u to rotate about
P so we can observe the effect on the other objects.

We start by choosing a suitable view and some labels and fonts. We will
use lightmodel to add some shading and give the appearance of depth.

> restart:
> with(plots):
> with(plottools, line):
> setoptions3d(axes=boxed, view=[-2..2,-2..2,-0.15..3],

font=[TIMES,ROMAN,24], labels=[x,y,""],
labelfont=[TIMES,BOLDITALIC,24], axesfont=[HELVETICA,18],
lightmodel=light4, scaling=constrained):

© 2003 by Chapman & Hall/CRC

176 Maple Animation

We have loaded just the line procedure from the plottools package to avoid
redefining arrow, as discussed in Section 8.1.

We choose the number of frames we will be using and, with that, calculate
the increment ∆θ for the angle that u makes with the x-axis.

> NumFrames := 16:
> DeltaTheta := 2*Pi/NumFrames:

As our example, we will use the function f(x, y) = 3 sinx sin y/xy and the
point P (1, 1). We store a plot of the surface as well as a plot of the point
(1, 1, 0), about which the unit vector will rotate, and the point (1, 1, f(1, 1)),
through which the tangent line will pass.

> f := (x,y) -> 3*sin(x)*sin(y)/(x*y);
> Surface := plot3d(f(x,y), x=-2..2, y=-2..2,

style=patchnogrid, shading=zhue, orientation=[20,75]):
> Points := pointplot3d({[1,1,0], [1,1,f(1,1)]},

color=black, symbol=circle):

f := (x, y) → 3 sin(x) sin(y)
y x

The unit vectors have the form 〈 cos(i∆θ), sin(i∆θ) 〉, which we will repre-
sent in three dimensions as a sequence of arrows with initial point (1, 1, 0) in
the direction ui = 〈 cos(i∆θ), sin(i∆θ), 0 〉 for i = 0, 1, 2, . . . ,NumFrames −
1. We first form two component functions, u1(i) = cos(i∆θ) and u2(i) =
sin(i∆θ), that we can use again later.

> u1 := i -> cos(i*DeltaTheta):
> u2 := i -> sin(i*DeltaTheta):
> u := i -> arrow([1,1,0], <u1(i),u2(i),0>, width=.1,

color=red):
> UnitVectors := display(seq(u(i), i=0..NumFrames-1),

insequence=true):

We define the plane Pi through (1, 1, 0) and parallel to ui parametrically
by [1 + r u1(i), 1 + r u2(i), z], where we will use r ∈ [−1, 1] and z ∈ [0, 3].

> P := i -> [1+r*u1(i), 1+r*u2(i), z]:
> VerticalPlanes := animate3d(P(i), r=-1..1, z=0..3,

i=0..NumFrames-1, frames=NumFrames, grid=[7,10],
color=gray, style=wireframe):

The choices grid=[7,10] and style=wireframe render the planes substantial
enough to be clearly visible, but transparent enough that they do not hide
other features. (To eliminate the internal grid lines, use grid=[2,2].)

The points on a trace are exactly the points on the surface that are also on
some vertical plane. So the trace Ti of the surface in the vertical plane Pi is
the space curve defined parametrically by [x, y, f(x, y)], where x = 1+r u1(i)
and y = 1 + r u2(i). We will use r ∈ [−1, 1] again.

© 2003 by Chapman & Hall/CRC

Plotting Space Curves 177

> T := i -> [1+r*u1(i), 1+r*u2(i), f(1+r*u1(i),1+r*u2(i))]:
> Traces := display(seq(spacecurve(T(i), r=-1..1),
i=0..NumFrames-1), color=black, thickness=2,
insequence=true):

The gradient vector at P (1, 1) is ∇f = 〈 ∂
∂xf(1, 1), ∂

∂y f(1, 1) 〉, which we
will represent in three dimensions as an arrow with initial point (1, 1, 0) in
the direction 〈 ∂

∂xf(1, 1), ∂
∂y f(1, 1), 0 〉. First, we form ∇f , denoting it Del f ,

then access its components, ∇f1 and ∇f2, using Del f [1] and Del f [2]. Recall
from Section 6.3 that ∂f/∂x and ∂f/∂y are denoted D[1](f) and D[2](f),
respectively.

> Del_f := <D[1](f)(1,1),D[2](f)(1,1)>:
> GradientVector := arrow([1,1,0], <Del_f[1],Del_f[2],0>,

width=.1, color=green):

The tangent to the trace Ti passes through the point (1, 1, f(1, 1)) and has
direction 〈u1(i), u2(i),∇f(1, 1) · 〈u1(i), u2(i) 〉 〉. So the tangent line has the
parametric form [1 + r u1(i), 1 + r u2(i), f(1, 1) + r∇f(1, 1) · 〈u1(i), u2(i) 〉].
We will just find two points P1 and P2 on this line, corresponding to r = −1
and r = 1, respectively, then we will use the line procedure of plottools to
generate the tangent lines. Recall from Section 8.3 that the operator “.” can
be used to denote the dot product.

> P1 := i ->
[1-u1(i), 1-u2(i), f(1,1)-Del_f.<u1(i),u2(i)>]:

> P2 := i ->
[1+u1(i), 1+u2(i), f(1,1)+Del_f.<u1(i),u2(i)>]:

> TanLine := i -> line(P1(i), P2(i), thickness=2,
color=blue):

> Tangents := display(seq(TanLine(i), i=0..NumFrames-1),
insequence=true):

We next compute the directional derivative ∇f(1, 1)·ui so that we can print
its value. We convert it to a string using sprintf as described in Section 7.5,
choose a suitable location, and print it using textplot3d.

> DirectDeriv := i -> Del_f.<u1(i),u2(i)>:
> DerivativeValues := display(seq(textplot3d(

[0,-2,3,sprintf("D = %f", DirectDeriv(i))], align=RIGHT,
color=blue), i=0..NumFrames-1), insequence=true):

Finally, we display everything in three separate plots so that we can use
them as suggested below.

> display(Surface, Points, VerticalPlanes, UnitVectors,
Traces, Tangents, DerivativeValues);

© 2003 by Chapman & Hall/CRC

178 Maple Animation

D = -.760274

–2
0

2 x–2 –1 0 1y
0

1

2

3
D = -.411457

–2
0

2 x–2 –1 0 1y
0

1

2

3
D = 0.000000

–2
0

2 x–2 –1 0 1y
0

1

2

3

> display(Surface, Points, UnitVectors, Traces, Tangents,
DerivativeValues);

D = -.760274

–2
0

2 x–2 –1 0 1y
0

1

2

3
D = -.411457

–2
0

2 x–2 –1 0 1y
0

1

2

3
D = 0.000000

–2
0

2 x–2 –1 0 1y
0

1

2

3

> display(Surface, Points, UnitVectors, Traces, Tangents,
DerivativeValues, GradientVector);

D = .411457

–2
0

2 x–2 –1 0 1y
0

1

2

3
D = .760274

–2
0

2 x–2 –1 0 1y
0

1

2

3
D = 1.075190

–2
0

2 x–2 –1 0 1y
0

1

2

3

I have found this demonstration to be useful enough that I use it several
times. I think it is best used early. First, I define the directional derivative
as a limit, prove that D〈u1,u2〉f(x, y) = ∂

∂xf(x, y)u1 + ∂
∂y f(x, y) u2, work an

example, then show the demonstration immediately. What I want the students
to understand from the beginning is the geometry so that they will have an
image to tie to the concept.

I start by showing the first plot with animation stopped. I rotate it to help
students get oriented. Then I point out all the objects in the plot: the surface,
the unit vector at the point P and the vertical plane they determine, the trace
of the surface in this plane, and the tangent line to the trace. I start with a
frame in which the directional derivative is nonzero—say negative—and ex-
plain that, of the two possible directions along the tangent line, the unit vector
specifies one, and the line is, in fact, downward-sloping in this direction. If
the unit vector u were in the opposite direction, then the directional deriva-
tive would be the opposite of its present value. Then I step through a few
frames, pointing out the changing direction of u and its effect on the vertical

© 2003 by Chapman & Hall/CRC

Plotting Space Curves 179

plane, trace, tangent line, and slope. I stop when u has direction opposite its
starting direction and verify that the directional derivative is the negative of
its starting value. I also stop when u has the direction of the positive end of
the x-axis and note that the directional derivative there is the same as the
partial derivative with respect to x. Similarly, for the partial with respect to
y.

There is a good deal of information in this plot, embodied by the several
objects in it, and, although all of it is useful at some point, some people find
it a little too much to deal with at one time. It helps to take something out. I
recommend removing the vertical plane, as in the second display statement.
I play the animation slowly and let the students watch it for a while.

The next class, after the students have practiced finding directional deriva-
tives, I use the demonstration a second time. First, I define the gradient
vector ∇f and prove that the directional derivative is a maximum when u
has the same direction as ∇f and that this maximum value is |∇f |. The
third display statement in the demonstration includes ∇f (in green). I step
through this animation and point out that the directional derivative does
reach its maximum value when u is in the direction of ∇f . I stop the anima-
tion at the point when u and ∇f have the same direction and explain that,
since the directional derivative is a little more than 1, ∇f should be a little
longer than u. If you rotate the plot a bit, you can see that ∇f does peek out
a little beyond u.

This animation is useful for demonstrating some other properties, too. The
directional derivative is the scalar projection of ∇f onto u. Step the animation
to the point when the directional derivative is about 3/4, then turn the plot
upside down, rotating it so that your point of view is directly beneath the
xy-plane, that is, from the negative end of the z-axis. From this viewpoint,
you can see how ∇f and u are related to each other without the distortion
of perspective. Now think of projecting ∇f (green) onto u (red), and this
projection will, indeed, be about 3/4 of the length of u. Now when ∇f and u
are orthogonal, the scalar projection, and therefore the directional derivative,
should be zero. Without rotating the plot yet, step through a few frames
until the two vectors are orthogonal, then rotate the plot back to near its
original orientation so that you can see the displayed value of the directional
derivative, which is, of course, zero.

9.4 The tubeplot procedure

Clearly, spacecurve is a useful procedure in many plotting situations.
Whenever the exact shape of the curve is central, however, we can convey
this information more effectively with a tube. The procedure tubeplot of

© 2003 by Chapman & Hall/CRC

180 Maple Animation

the plots package does this. The syntax is similar to that for spacecurve.
Compare

> with(plots):
> spacecurve([4*cos(t),4*sin(t),t], t=0..4*Pi, axes=normal,

scaling=constrained);

0
2
4
6
8
10
12

–4
–2

2
4

–4
–2

2
4

with

> with(plots):
> tubeplot([4*cos(t),4*sin(t),t], t=0..4*Pi, axes=normal,

scaling=constrained);

0
2
4
6
8
10
12

–4
–2

2
4

–4
–2

2
4

Notice how much more three-dimensional the curve appears when plotted as
a tube. At points where the curve passes in front of itself, it is clear which
portion of the curve is nearer and which farther, and that is especially helpful
for curves less familiar than a helix. To strengthen further the appearance of
three-dimensionality, we can add some shading using lightmodel.

> with(plots):
> tubeplot([4*cos(t),4*sin(t),t], t=0..4*Pi, axes=normal,

scaling=constrained, lightmodel=light4);

© 2003 by Chapman & Hall/CRC

Plotting Space Curves 181

0
2
4
6
8
10
12

–4
–2

2
4

–4
–2

2
4

The tubeplot procedure offers its own options in addition to the ones for
spacecurve. The option tubepoints=n will create a tube whose cross-section
is a regular polygon with n−1 sides. Default is n = 10. The numpoints option,
as it applies to tubeplot, specifies the number of such polygons to be used
along the length of the tube. Default is 50. Compare

> with(plots):
> tubeplot([4*cos(t),4*sin(t),t], t=0..4*Pi, tubepoints=5,

numpoints=8, axes=normal, scaling=constrained);

0
2
4
6
8
10
12

–4
–2

2
4

–4
–2

2
4

with

> with(plots):
> tubeplot([4*cos(t),4*sin(t),t], t=0..4*Pi, tubepoints=15,

numpoints=70, axes=normal, scaling=constrained);

0
2
4
6
8
10
12

–4
–2

2
4

–4
–2

2
4

© 2003 by Chapman & Hall/CRC

182 Maple Animation

The radius option can be used to specify a radius for the tube other than
the default value of 1. It is a value that you will usually want to adjust to an
appropriate size for the particular curve and scale in your plot. The radius
can also be variable, and we can use that fact to get an acceptable plot quickly
of a surface of revolution:

> with(plots):
> f := x -> -x^2 + 4*x + 2:
> a := 0:
> b := 3:
> tubeplot([0,t,0], t=a..b, radius=f(t), tubepoints=50,

axes=normal);

–6
–4
–2
0
2
4
6

0.5 1 1.5 2 2.5 3

–5

5

The tubeplot procedure will accept a set of lists, parametrically defining
a set of space curves. Any options local to a particular curve can be specified
within its list. For example, we can get a quick plot of the solid generated
by revolving about the x-axis the region bounded by y = −x2 + 4x + 2 and
y = x2 − 2x + 2 with

> with(plots):
> f := x -> -x^2 + 4*x + 2:
> g := x -> x^2 - 2*x + 2:
> a := 0:
> b := 3:
> tubeplot({[0,t,0, radius=f(t)], [0,t,0, radius=g(t)]},

t=a..b, tubepoints=50, axes=normal);

–6
–4
–2
0
2
4
6

0.5 1 1.5 2 2.5 3

–5

5

© 2003 by Chapman & Hall/CRC

Plotting Space Curves 183

To appreciate this graceful plot, which we made with so little effort, rotate it
a little so that you can see inside it. If you value terse code, you might like
knowing that we could have produced this solid with the single statement,

> plots[tubeplot]({[0,t,0, radius=-t^2 + 4*t + 2],
[0,t,0, radius=t^2 - 2*t + 2]}, t=0..3, tubepoints=50,
axes=normal);

which employs the long form of the procedure name (Section 8.1). My own
preference is for code that reflects mathematical notation. I hope that makes
it more readable by others. It makes it more readable by me when I return
to it later.

Incidentally, the Student[Calculus1] package of Maple 8 has procedures
SurfaceOfRevolution and VolumeOfRevolution. Using these, code that
produces equivalent plots to our two examples is

> restart:
> with(Student[Calculus1]):
> f := x -> -x^2 + 4*x + 2:
> g := x -> x^2 - 2*x + 2:
> a := 0:
> b := 3:
> SurfaceOfRevolution(f(x), x=a..b, output=plot);
> VolumeOfRevolution(f(x), g(x), x=a..b, output=plot);

The Surface of Revolution Around the Horizontal Axis off(x) = -x^2+4*x+2on the Interval [0, 3]

–6
–4
–2

2
4
6

–4

4
0.5 1 1.5 2 2.5 3

e Volume of Revolution Around the Horizontal Axis Betweenf(x) = -x^2+4*x+2andg(x) = x^2–2*x+2on the Interval [0, 3]

–6
–4
–2

2
4
6

–4

4
0.5 1 1.5 2 2.5 3

© 2003 by Chapman & Hall/CRC

184 Maple Animation

9.5 Demonstration: Velocity and acceleration vectors in
three dimensions

To gain a full understanding of velocity and acceleration vectors, a student
should see them at work in three dimensions. With this demonstration, we
finish what we began in Section 8.6. We create an animation to demonstrate
the behavior and interaction of velocity and acceleration as a point moves
along a curved path in space. Maple’s power is particularly helpful in this
case. The excellent moving image is illuminating, and I can tell that the
demonstration helps my students. After I made it and watched it for a while,
I am sure that I understood the behavior of these vectors better myself.

For our example, we will use the position function 〈 f(t), g(t), h(t) 〉 =
〈 sin 3t cos t, sin 3t sin t, 5/2 sin2 t 〉 on [π/4, 5π/4]. We will proceed in much the
same way as we did in creating the two-dimensional version of this demon-
stration in Section 8.6. We begin in the usual way, then form vector-valued
functions for position, velocity, and acceleration.

> restart:
> with(plots):
> setoptions3d(scaling=constrained,
view=[-3..3,-3..3,-0.5..3]):

> f := t -> sin(3*t)*cos(t);
> g := t -> sin(3*t)*sin(t);
> h := t -> 2.5*sin(t)^2;
> alpha := Pi/4;
> beta := 5*Pi/4;
> Position := t -> <f(t), g(t), h(t)>:
> Velocity := t -> <D(f)(t), D(g)(t), D(h)(t)>:
> Acceleration := t ->
<(D@@2)(f)(t), (D@@2)(g)(t), (D@@2)(h)(t)>:

f := t → sin(3 t) cos(t)

g := t → sin(3 t) sin(t)

h := t → 2.5 sin(t)2

α :=
π

4

β :=
5 π

4
Next, we need a plot of the curve to serve as the background plot. We add

shading, using lightmodel.

> Curve := tubeplot([f(t), g(t), h(t)], t=alpha..beta,
radius=.12, axes=normal, color=cyan, thickness=1,
orientation=[60, 50], lightmodel=light4):

© 2003 by Chapman & Hall/CRC

Plotting Space Curves 185

We choose a number of frames and a scale factor, and create the function
t for the parameter. Then we generate arrows to represent the velocity and
acceleration vectors. This animation is consumptive. In the interest of ef-
ficiency, we have not plotted the moving point this time. It will be clear
enough where it is since the arrows do emanate from it. If it takes very long
or uses too much of your computer’s available memory to generate this plot,
NumFrames can, of course, always be reduced.

> NumFrames := 30:
> t := i -> alpha + i*(beta-alpha)/NumFrames:
> Scale := .4:
> VelocityVectors := display(seq(arrow(

Position(t(i)), Scale*Velocity(t(i)), width=.24,
color=red), i=1..NumFrames), insequence=true):

> AccelerationVectors := display(seq(arrow(
Position(t(i)), Scale*Acceleration(t(i)), width=.24,
color=green), i=1..NumFrames), insequence=true):

Finally, we generate two plots.

> display(Curve, VelocityVectors);

–0.5

0.5
1
1.5
2
2.5
3

–3 –2 –1
2 3

–3–2–1
123

–0.5

0.5
1
1.5
2
2.5
3

–3 –2 –1
2 3

–3–2–1
123

–0.5

0.5
1
1.5
2
2.5
3

–3 –2 –1
2 3

–3–2–1
123

> display(Curve, VelocityVectors, AccelerationVectors);

–0.5

0.5
1
1.5
2
2.5
3

–3 –2 –1
2 3

–3–2–1
123

–0.5

0.5
1
1.5
2
2.5
3

–3 –2 –1
2 3

–3–2–1
123

–0.5

0.5
1
1.5
2
2.5
3

–3 –2 –1
2 3

–3–2–1
123

I use this demonstration directly after the two-dimensional one that we
made in Section 8.6, and I emphasize the same kinds of things. The particle
slows down as it approaches the tight turn—this time, at the top. As this
happens, the vector projection of acceleration onto velocity becomes opposite
to the velocity, and the velocity vector shortens. The acceleration vector acts
to push the particle off a straight-line path, always acting toward the inside
of the turn. I let the animation that includes both velocity and acceleration

© 2003 by Chapman & Hall/CRC

186 Maple Animation

cycle continuously and rotate it gently from side to side as it runs, allowing
the students to observe the interaction of the vectors from several points of
view.

© 2003 by Chapman & Hall/CRC

Chapter 10

Transformations and Morphing

In this chapter, we will develop tools to demonstrate linear transformations
by gradually transforming the space. The plottools package contains some
procedures that we can use to do this. We will look at those, as well as some
other procedures within plottools that are generally useful tools. We will see
how to implement a matrix transformation in Maple and discuss a technique
for morphing. Then we will develop demonstrations for linear transformations
in two and three dimensions.

10.1 The plottools package

The plottools package contains several procedures that are useful in cre-
ating animations. Two of them, circle and line, are procedures that we
have already used in demonstrations. For completeness, we reproduce them
here. The circle procedure has the form

circle([c1,c2], radius, options)

where (c1, c2) is the center, radius defaults to 1, and the options are the same
as those for the plot statement. The line procedure has the forms

line([x1,y1], [x2,y2], options)

and

line([x1,y1,z1], [x2,y2,z2], options)

which plot the line segment between the points (x1, y1) and (x2, y2) and the
points (x1, y1, z1) and (x2, y2, z2), respectively. The options are the same as
for plot or plot3d. The structures produced by circle and line can be
plotted using display.

With the polygon procedure, we can create a polygonal plot structure
in two or three dimensions, then display it using display. The essential
argument is just a list of the vertices. The syntax is

polygon([[x1,y1], [x2,y2],. . . , [xn,yn]], options)

187© 2003 by Chapman & Hall/CRC

188 Maple Animation

or

polygon([[x1,y1,z1], [x2,y2,z2],. . . , [xn,yn,zn]], options)

The usual plotting options are available. For example,

> with(plottools):
> with(plots):
> display(polygon([[0,0], [2,0], [1,sqrt(3)]],

color=green), scaling=constrained);

0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

0.5 1 1.5 2

and

> with(plottools):
> with(plots):
> display(polygon([[1,0,0], [0,1,0], [0,0,1]],

color=yellow), axes=normal);

0
0.2
0.4
0.6
0.8
1

0.2
0.4

0.6
0.8

1

0.2
0.4

0.6
0.8

1

The style option offers choices such as patch and patchnogrid. You can
specify these settings in the polygon or the display statement, and, in Maple
7, you can change them after the polygon is displayed by clicking on the plot
to select it and using the Style menu. In Maple 8, options specified in the
polygon statement are protected from change. (See “hard-coded” options in

© 2003 by Chapman & Hall/CRC

Transformations and Morphing 189

Section 2.14.) Also, you can emphasize the edges by choosing a larger value
for the thickness under the same menu or by using the thickness option. For
example,

> with(plottools):
> with(plots):
> display(polygon([[1,0,0], [0,1,0], [0,0,1]],

color=yellow, thickness=3), axes=normal);

0
0.2
0.4
0.6
0.8
1

0.2
0.4

0.6
0.8

1

0.2
0.4

0.6
0.8

1

The plottools package also has some useful built-in routines for plotting
polyhedra. For example,

> with(plottools):
> Icos := icosahedron([2,2,2], 3):
> with(plots):
> display(Icos, scaling=constrained, axes=normal);

0

2

4

1 2 3 4 5

12345

plots an icosahedron centered at the point (2, 2, 2) and scaled by a factor of
3. You can also build your own polyhedron from polygons. For example,

> with(plots):
> with(plottools):
> P1 := [0,0,0]:

© 2003 by Chapman & Hall/CRC

190 Maple Animation

> P2 := [1,0,0]:
> P3 := [1,1,0]:
> P4 := [0,1,0]:
> P5 := [0,0,1]:
> P6 := [1,0,1]:
> P7 := [1,1,1]:
> P8 := [0,1,1]:
> P9 := [.5,.5,1.4]:
> face1 := polygon([P1,P2,P3,P4], color=navy):
> face2 := polygon([P1,P2,P6,P5], color=turquoise):
> face3 := polygon([P2,P3,P7,P6], color=aquamarine):
> face4 := polygon([P3,P4,P8,P7], color=sienna):
> face5 := polygon([P4,P1,P5,P8], color=gray):
> face6 := polygon([P5,P6,P9], color=maroon):
> face7 := polygon([P6,P7,P9], color=tan):
> face8 := polygon([P7,P8,P9], color=wheat):
> face9 := polygon([P8,P5,P9], color=khaki):
> display(face1, face2, face3, face4, face5, face6, face7,

face8, face9, scaling=constrained);

where we have created polygonal faces from the points P1, P2, . . . , P9.
Two other procedures, rotate and transform, are pertinent to our topic.

We will discuss them separately. For the details on other plottools proce-
dures, type ?plottools at the Maple prompt.

10.2 The rotate procedure

For rotations in two or three dimensions, the plottools package contains a
handy procedure. In its two-dimensional form, the rotate procedure rotates
an object counterclockwise about a point. The syntax is

© 2003 by Chapman & Hall/CRC

Transformations and Morphing 191

rotate(P, α, [x0,y0])

which rotates the structure P counterclockwise α radians about the point
(x0, y0). For example,

> with(plottools):
> with(plots):
> T := polygon([[0,0], [2,0], [1,sqrt(3)]], color=green):
> display(T, scaling=constrained);
> display(rotate(T, Pi/8, [2,0]), scaling=constrained);

0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

0.5 1 1.5 2

–0.5

0

0.5

1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

The rotate procedure has two forms in three dimensions. The form

rotate(P, α, β, γ)

rotates the object P through α radians about the x-axis, β radians about
the y-axis, and γ radians about the z-axis. The left-hand rule determines the
direction of the rotation. (If your left thumb points in the positive direction
of the axis, your fingers curl in the direction of the rotation.) As an example,
we can use this procedure to get a high-quality plot of a quadric surface with
an oblique axis. We created superior plots of quadric surfaces with axis the
z-axis in Sections 3.5, 3.6, 3.7, and 3.8, so we can just rotate one of those. We
will rotate the hyperboloid of one sheet that we created in Section 3.8 using
cylinderplot.

© 2003 by Chapman & Hall/CRC

192 Maple Animation

> with(plots):
> with(plottools):
> r := (theta,z) ->

6*sqrt((z^2+1)/(9*(cos(theta))^2+4*(sin(theta))^2)):
> Hyperboloid := cylinderplot(r(theta,z), theta=0..2*Pi,

z=-2..2, axes=boxed, scaling=constrained):
> Hyperboloid;
> rotate(Hyperboloid, Pi/3, -Pi/3, 0);

–4
–2
0
2
4

x
–6 –4 –2 0 2 4 6y

–2

0

2

z

–4
0

4
–4 –2 0 2 4

–4
–2
0
2
4

The other form is

rotate(P, α, [[x1,y1,z1],[x2,y2,z2]])

which rotates the structure P through α radians about the line determined by
the points (x1, y1, z1) and (x2, y2, z2). The positive direction (for determining
the left-hand rule) along this line is from (x2, y2, z2) toward (x1, y1, z1). For
example,

> with(plots):
> with(plottools):
> T := display(torus([1,1,0]), scaling=constrained,
axes=boxed):

> T;
> rotate(T, Pi/8, [[2,0,0],[0,2,0]]);

© 2003 by Chapman & Hall/CRC

Transformations and Morphing 193

–2
–1

0
1

2
3

4

–2 –1 0 1 2 3 4

–1

0

1

–2
–1

0
1

2
3

4

–2 –1 0 1 2 3 4

–1

0

1

which plots a torus centered at the point (1, 1, 0), then plots it rotated π/8
radians about the line through the points (0, 2, 0) and (2, 0, 0).

10.3 The transform procedure

The transform procedure is a general one that applies, to all the points
of a plot structure, a transformation defined by a mapping from Rm to Rn,
where m and n are either 2 or 3. The syntax of the mapping is to send each
ordered pair or triple to a list of length two or three. So the procedure takes
the form

transform(ordered pair or triple -> list of two or three)

For example, the shear that sends each point (x, y) in the plane to the point
(x+y, y) can be represented by transform((x,y)->[x+y,y]). The reflection
in the line y = x can be written transform((x,y)->[y,x]). To illustrate
the effects, we will plot a rectangle and its image under those transformations.

> with(plots):
> with(plottools):
> setoptions(view=[-3..3,-3..3], scaling=constrained):

© 2003 by Chapman & Hall/CRC

194 Maple Animation

> rect := polygon([[0,0], [2,0], [2,1], [0,1]],
color=plum):

> Shear := transform((x,y) -> [x+y,y]):
> Refl := transform((x,y) -> [y,x]):
> display(rect);
> display(Shear(rect));
> display(Refl(rect));

–3

–2

–1

0

1

2

3

–3 –2 –1 1 2 3

–3

–2

–1

0

1

2

3

–3 –2 –1 1 2 3

–3

–2

–1

0

1

2

3

–3 –2 –1 1 2 3

We can also use transform to reorient a three-dimensional plot by exchang-
ing the axes. As an example, we will again use the plot from Section 3.8 of
the hyperboloid of one sheet with axis the z-axis and use transform to create
plots whose axes are the x- and y-axes.

© 2003 by Chapman & Hall/CRC

Transformations and Morphing 195

> with(plots):
> with(plottools):
> r := (theta,z) ->
6*sqrt((z^2+1)/(9*(cos(theta))^2+4*(sin(theta))^2)):

> Hyperboloid := cylinderplot(r(theta,z), theta=0..2*Pi,
z=-2..2, axes=boxed):

> T1 := transform((x,y,z) -> [z,x,y]):
> T2 := transform((x,y,z) -> [x,z,y]):
> T1(Hyperboloid);
> T2(Hyperboloid);

–2
–1

0
1

2

–4
–2

0
2

4

–4

0

4

–4
–2

0
2

4

–2
–1

0
1

2

–4

0

4

10.4 Matrix transformations

Although the transformation defined by transform need not be a linear
one, whenever it is, we can express the transformation in the standard way—
by using a matrix. A convenient way to create an m × n matrix in Maple is
by columns:

< <a11,a21,. . .,am1> | <a12,a22,. . . ,am2> | · · · | <a1n,a2n,. . . ,amn> >

© 2003 by Chapman & Hall/CRC

196 Maple Animation

(Recall from Section 8.2 that <x1,x2,. . .,xm> is a column vector.) For ex-
ample,

> M := < <1,2> | <3,4> | <5,6> >;

M :=
[

1 3 5
2 4 6

]

We can accomplish multiplication of a matrix and a vector using the “.”
operator, which we used in Section 8.3 for the dot product of two vectors. For
example,

> A := < <1,2> | <3,4> >;
> X := <x,y>;
> A.X;

A :=
[

1 3
2 4

]

X :=
[

x
y

]

[
x + 3 y

2 x + 4 y

]

The “.” operator is a talented one, accepting several types of arguments. For
information, type ?. at the Maple prompt.

We can effect the shear and reflection in the previous section, then, by using
two matrices S and R, respectively, as follows:

> S := < <1,0> | <1,1> >;
> S.<x,y>;

S :=
[

1 1
0 1

]

[
x + y

y

]

and

> R := < <0,1> | <1,0> >;
> R.<x,y>;

R :=
[

0 1
1 0

]

[
y
x

]

© 2003 by Chapman & Hall/CRC

Transformations and Morphing 197

The result, as expected, is a column vector. The transform procedure wants
the result (that is, the image under the transformation) to be a list. So,
whenever we want to use matrix notation for a linear transformation, we need
to convert the result to a list, so as not to disappoint transform. This is
easily done with the convert procedure.

> convert(S.<x,y>, list);
> convert(R.<x,y>, list);

[x + y, y]

[y, x]

Using matrix notation, then, we could have written the linear transformations
in the previous section as

> with(plots):
> with(plottools):
> setoptions(view=[-3..3,-3..3], scaling=constrained):
> rect := polygon([[0,0], [2,0], [2,1], [0,1]],
color=plum):

> S := < <1,0> | <1,1> >:
> Shear := transform((x,y) -> convert(S.<x,y>, list)):
> R := < <0,1> | <1,0> >:
> Refl := transform((x,y) -> convert(R.<x,y>, list)):
> display(rect);
> display(Shear(rect));
> display(Refl(rect));

–3

–2

–1

0

1

2

3

–3 –2 –1 1 2 3

–3

–2

–1

0

1

2

3

–3 –2 –1 1 2 3

© 2003 by Chapman & Hall/CRC

198 Maple Animation

–3

–2

–1

0

1

2

3

–3 –2 –1 1 2 3

10.5 Morphing

To morph one plot into another is to display a sequence of frames that
depict a gradual transition from one plot to the other. We can think of this
as a mapping, and we can accomplish it by moving each point in the first plot
along the line segment that connects the point to its image in the second plot.
In two dimensions, then, to send the point (x1, y1) to the point (x2, y2), we
can plot points ((1− k) x1 + kx2, (1− k) y1 + ky2) for values of k from 0 to 1.
This is the essence of morphing. We have a mixture of (x1, y1) and (x2, y2).
We start out with all (x1, y1) and no (x2, y2) in the mix. As k increases from
0 to 1, we get less (x1, y1) and more (x2, y2), until we end with no (x1, y1)
and all (x2, y2).

To illustrate the method, we will morph the curve (the evolute of an ellipse)
defined parametrically by

x1(t) = 2 cos3 t

y1(t) = 3 sin3 t, 0 ≤ t ≤ 2π

into the curve (a nephroid) defined by

x2(t) = 3 cos t − cos 3t

y2(t) = 3 sin t − sin 3t, 0 ≤ t ≤ 2π

The mapping, here, is just (x1(t), y1(t)) �→ (x2(t), y2(t)). Our first plot is

> x1 := t -> 2*cos(t)^3;
> y1 := t -> 3*sin(t)^3;
> plot([x1(t),y1(t), t=0..2*Pi], scaling=constrained);

x1 := t → 2 cos(t)3

y1 := t → 3 sin(t)3

© 2003 by Chapman & Hall/CRC

Transformations and Morphing 199

–3

–2

–1

0

1

2

3

–2 –1 1 2

and the second plot is

> x2 := t -> 3*cos(t)-cos(3*t);
> y2 := t -> 3*sin(t)-sin(3*t);
> plot([x2(t),y2(t), t=0..2*Pi], scaling=constrained);

x2 := t → 3 cos(t) − cos(3 t)
y2 := t → 3 sin(t) − sin(3 t)

–4

–2

2

4

–2 –1 1 2

To accomplish the morphing, we can use animate.

> with(plots):
> animate([(1-k)*x1(t)+k*x2(t),(1-k)*y1(t)+k*y2(t),

t=0..2*Pi], k=0..1, scaling=constrained);

–3

–2

–1
0

1

2

3

–2 –1 1 2

–3

–2

–1
0

1

2

3

–2 –1 1 2

–3

–2

–1
0

1

2

3

–2 –1 1 2

© 2003 by Chapman & Hall/CRC

200 Maple Animation

–3

–2

–1
0

1

2

3

–2 –1 1 2

–3

–2

–1
0

1

2

3

–2 –1 1 2

–3

–2

–1
0

1

2

3

–2 –1 1 2

10.6 Linear transformations

The study of linear transformations offers an opportunity to add geometric
fullness to the algebraic beauty of linear algebra. Typically, we illustrate
linear transformations only in R2, and do so by showing a square at the origin
and, next to it, its image, as shown in Figure 10.1. But if our students are

–2

–1

0

1

2

–2 –1 1 2

–2

–1

0

1

2

–2 –1 1 2

FIGURE 10.1: Square and its image under a linear transformation

really to understand the geometry of linear transformations, then they should
understand this in the richer context of R3. We will create demonstrations to
illustrate linear transformations in both R2 and R3. Although we could just
show an object, then have it snap to its image under the transformation, this
would not demonstrate effectively how it becomes transformed. A better way
is to cause the object to morph into its image. This way, students can see
the space transforming, not just the space transformed. Moreover, they can
follow each basis vector as it undergoes the transformation.

© 2003 by Chapman & Hall/CRC

Transformations and Morphing 201

10.6.1 Demonstrations: Linear transformations of RRR2

In this demonstration, we will show an object undergoing a linear trans-
formation of R2 defined by the matrix A. To do this, we will combine the
transform procedure with morphing. We begin by calling the packages that
we need, choosing some options, and creating an object to transform.

> restart:
> with(plots):
> with(plottools):
> setoptions(style=patch, view=[-3..3,-3..3],

scaling=constrained, axesfont=[HELVETICA,18]):
> rect := polygon([[0,0], [2,0], [2,1], [0,1]],

color=plum):

Next, we choose a number of frames (beyond the first) N and create two func-
tions. The function F performs the morphing. It varies the mix of [x, y]T

and A[x, y]T as k ranges from 0 to N . The function L carries out the trans-
formation.

> N := 20:
> F := (x,y) -> (1-k/N)*<x,y> + k/N*(A.<x,y>):
> L := transform((x,y) -> convert(F(x,y), list)):

We choose an example matrix to represent the linear transformation, in this
case the reflection in the line y = x, then create and display a sequence of
frames.

> A := < <0,1> | <1,0> >;
> Frames := seq(L(rect), k = 0..N):
> display(Frames, insequence=true);

A :=
[

0 1
1 0

]

–3
–2
–1
0

1
2
3

–3 –2 1 2 3

–3
–2
–1
0

1
2
3

–3 –2 1 2 3

–3
–2
–1
0

1
2
3

–3 –2 1 2 3

–3
–2
–1
0

1
2
3

–3 –2 1 2 3

–3
–2
–1
0

1
2
3

–3 –2 1 2 3

–3
–2
–1
0

1
2
3

–3 –2 1 2 3

© 2003 by Chapman & Hall/CRC

202 Maple Animation

Let’s generalize this example. We create a matrix for reflection in the line
y = mx so that we can easily change the slope m to experiment a little with
reflections through various lines.

> A := 1/(1+m^2) * < <1-m^2,2*m> | <2*m,m^2-1> >;
> m := 2:
> Frames := seq(L(rect), k = 0..N):
> display(Frames, insequence=true);

A :=

[
1 − m2 2 m

2 m m2 − 1

]

1 + m2

–3
–2
–1
0

1
2
3

–3 –2 1 2 3

–3
–2
–1
0

1
2
3

–3 –2 1 2 3

–3
–2
–1
0

1
2
3

–3 –2 1 2 3

–3
–2
–1
0

1
2
3

–3 –2 1 2 3

–3
–2
–1
0

1
2
3

–3 –2 1 2 3

–3
–2
–1
0

1
2
3

–3 –2 1 2 3

Finally, let’s change the linear transformation to a rotation through θ about
the origin. We just change the matrix A.

> A :=
< <cos(theta),sin(theta)> | <-sin(theta),cos(theta)> >;

> theta := Pi/4:
> Frames := seq(L(rect), k = 0..N):
> display(Frames, insequence=true);

A :=
[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]

–3
–2
–1
0

1
2
3

–3 –2 1 2 3

–3
–2
–1
0

1
2
3

–3 –2 1 2 3

–3
–2
–1
0

1
2
3

–3 –2 1 2 3

© 2003 by Chapman & Hall/CRC

Transformations and Morphing 203

–3
–2
–1
0

1
2
3

–3 –2 1 2 3

–3
–2
–1
0

1
2
3

–3 –2 1 2 3

–3
–2
–1
0

1
2
3

–3 –2 1 2 3

10.6.2 Demonstrations: Linear transformations of RRR3

Let’s adapt our previous demonstration for use in three dimensions. This
time, we will want to label the axes to make the orientation of the plot clearer.
Labels for the x- and y-axes will be enough.

> restart:
> with(plots):
> with(plottools):
> setoptions3d(style=patch, axes=normal,

scaling=constrained, labels=["x","y",""],
labelfont=[TIMES,BOLDITALIC,24],
axesfont=[HELVETICA,18]):

We need an object to transform. The obelisk that we created in Section 10.1
above will work well.

> P1 := [0,0,0]:
> P2 := [1,0,0]:
> P3 := [1,1,0]:
> P4 := [0,1,0]:
> P5 := [0,0,1]:
> P6 := [1,0,1]:
> P7 := [1,1,1]:
> P8 := [0,1,1]:
> P9 := [.5,.5,1.4]:
> face1 := polygon([P1,P2,P3,P4], color=navy):
> face2 := polygon([P1,P2,P6,P5], color=turquoise):
> face3 := polygon([P2,P3,P7,P6], color=aquamarine):
> face4 := polygon([P3,P4,P8,P7], color=sienna):
> face5 := polygon([P4,P1,P5,P8], color=gray):
> face6 := polygon([P5,P6,P9], color=maroon):
> face7 := polygon([P6,P7,P9], color=tan):
> face8 := polygon([P7,P8,P9], color=wheat):
> face9 := polygon([P8,P5,P9], color=khaki):
> obelisk := display(face1, face2, face3, face4, face5,

face6, face7, face8, face9):

© 2003 by Chapman & Hall/CRC

204 Maple Animation

We readily adapt the functions F and L for three dimensions. We will keep
the number of frames the same.

> N := 20:
> F := (x,y,z) -> (1-k/N)*<x,y,z> + k/N*(A.<x,y,z>):
> L := transform((x,y,z) -> convert(F(x,y,z), list)):

We choose a linear transformation to use as an example. This one is the
composition of a reflection in the xy-plane and a reflection in the vertical
plane y = x.

> A := < <0,1,0> | <1,0,0> | <0,0,-1> >;
> Frames := seq(L(obelisk), k = 0..N):
> display(Frames, insequence=true);

A :=




0 1 0
1 0 0
0 0 −1




–1
–0.5
0

0.5
1

0.4
y

1
x

–1
–0.5
0

0.5
1

0.4
y

1
x

–1
–0.5
0

0.5
1

0.4
y

1
x

–1
–0.5
0

0.5
1

0.4
y

1
x

–1
–0.5
0

0.5
1

0.4
y

1
x

–1
–0.5
0

0.5
1

0.4
y

1
x

For demonstrating other linear transformations, it will be useful to have a
few standard ones on hand. These are the matrices for rotations through θ
(according to the right-hand rule) about the coordinate axes. We will set them
as functions of θ so that, for example, RotX(θ) will be the matrix representing
the rotation through θ about the x-axis.

> RotX := theta -> < <1,0,0> | <0,cos(theta),sin(theta)> |
<0,-sin(theta),cos(theta)> >:

> RotY := theta -> < <cos(theta),0,-sin(theta)> | <0,1,0> |
<sin(theta),0,cos(theta)> >:

> RotZ := theta -> < <cos(theta),sin(theta),0> |
<-sin(theta),cos(theta),0> | <0,0,1> >:

We can use them to demonstrate, for example, a rotation through π/3 about
the x-axis:

© 2003 by Chapman & Hall/CRC

Transformations and Morphing 205

> A := RotX(Pi/3);
> Frames := seq(L(obelisk), k = 0..N):
> display(Frames, insequence=true);

A :=




1 0 0

0
1
2

−
√

3
2

0
√

3
2

1
2




0.4
0.8
1.2

–0.8
0.4 0.8y 0.8 x

0.4
0.8
1.2

–0.8
0.4 0.8y 0.8 x

0.4
0.8
1.2

–0.8
0.4 0.8y 0.8 x

0.4
0.8
1.2

–0.8
0.4 0.8y 0.8 x

0.4
0.8
1.2

–0.8
0.4 0.8y 0.8 x

0.4
0.8
1.2

–0.8
0.4 0.8y 0.8 x

(The axis labels land in places that are less than ideal. This must be a difficult
problem.)

A product of these matrices will, of course, represent the composition of
the corresponding linear transformations. For example, the composition of a
rotation through π/2 about the y-axis and a rotation through π/3 about the
x-axis is

> A := RotX(Pi/3).RotY(Pi/2);
> Frames := seq(L(obelisk), k = 0..N):
> display(Frames, insequence=true);

A :=




0 0 1
√

3
2

1
2

0

−1
2

√
3

2
0




© 2003 by Chapman & Hall/CRC

206 Maple Animation

0
0.4
0.8
1.2

0.40.81.2y
1
x 0

0.4
0.8
1.2

0.40.81.2y
1
x 0

0.4
0.8
1.2

0.40.81.2y
1
x

0
0.4
0.8
1.2

0.40.81.2y
1
x 0

0.4
0.8
1.2

0.40.81.2y
1
x 0

0.4
0.8
1.2

0.40.81.2y
1
x

These demonstrations give students something concrete to tie to the concept
of linear transformation. I think it is important and motivating for students
to have these mental images from the start, so I use the demonstrations early.
Just after I have defined linear transformations and shown that every matrix
transformation is linear, I use the demonstration for R2. I show two or three
examples—usually reflections in lines and rotations about the origin. I run
the animations several times and let the students get the geometry well in
mind.

After we have developed more theory, which is soon, I use the demonstration
for R3. As background, the students need to understand that the columns of
the transformation matrix are the images of the standard basis vectors. I use
the demonstrations to show some examples, usually some rotations about axes
and then compositions of them. I point out that the standard basis vectors
are represented as the edges of the obelisk that lie along the coordinate axes.
I suggest to students that they focus on those edges as they watch the space
transforming. After that, I let the students decide what should become of
each standard basis vector. I enter these into the worksheet as the columns
of A, and we watch as each basis vector morphs to its image. It is a powerful
demonstration that linear transformations can be created at will in this way.
It is also useful to point out that, since every basis vector must go somewhere,
every linear transformation must have a transformation matrix.

© 2003 by Chapman & Hall/CRC

Bibliography

[1] Abbott, E.A., with a new introduction by Banchoff, T., Flatland: A
Romance of Many Dimensions, Princeton University Press, Princeton,
1991.

[2] Carroll, L., “Jabberwocky,” in The Complete Works of Lewis Carroll, il-
lustrated by Tenniel, J., introduction by Woollcott, A., Modern Library,
New York, c. 1970, 153–155.

[3] Coxeter, H.S.M., Alicia Boole Stott, in Women of Mathematics: A
Biobibliographic Sourcebook, Grinstein, L.S. and Campbell, P.J., Eds.,
Greenwood Press, New York, 1987, 220–224.

[4] Kline, M., Mathematical Thought from Ancient to Modern Times,
Princeton University Press, New York, 1972.

[5] Monagan, M.B. et al., Maple 7 Programming Guide, Waterloo Maple
Inc., Waterloo, 2001.

[6] Monagan, M.B. et al., Maple 8 Advanced Programming Guide, Waterloo
Maple Inc., Waterloo, 2002.

[7] Monagan, M.B. et al., Maple 8 Introductory Programming Guide, Wa-
terloo Maple Inc., Waterloo, 2002.

[8] Waterloo Maple, based in part on the work of Char, B.W., Maple 7
Learning Guide, Waterloo Maple Inc., Waterloo, 2001.

[9] Waterloo Maple, based in part on the work of Char, B.W., Maple 8
Learning Guide, Waterloo Maple Inc., Waterloo, 2002.

207
© 2003 by Chapman & Hall/CRC

