
2.10. Vectors and Matrices 37

will give you a summation expression for the Riemann sum obtained by dividing the
interval from a to b into n equal subintervals and erecting on each subinterval a rectangle
whose height is the value of expression at the righthand end of the subinterval. If you use
rightbox instead of rightsum, you get the diagram for the same Riemann sum.

There are corresponding commands leftsum and leftbox which use values at the
lefthand ends of the subintervals and middlesum and middlebox which use values in
the middle of the subintervals.

The command

simpson(expression,x=a..b,n);
gives the summation expression which would arise if you used Simpson’s Rule to get an
approximate value for the integral of expression from a to b.

The expressions given by the comands rightsum, leftsum, middlesum and simp-
son are not numerical values — they are in the form of a sum such as

1

10

(
10∑
i=1

(
1

100
i2
))

.

To see the actual value of the summation, apply value. This will, in general, give an
algebraic expression and you may need to use evalf in order to get a meaningful answer.
If the value of n is large then value will produce an enormous amount of messy output,
so it is best to combine all these procedures into one command by entering

evalf(value(rightsum(f(x),x=a..b,n)));
(or alternatively, use a colon at the end of the value command line).

2.10 Vectors and Matrices
2.10.1 Vectors.

Maple uses a capital V for vectors when you use the LinearAlgebra package. (Be
careful not to use vector with a small ‘v’. You will not get an error as this is used by an
older package called linalg, but things may not work as you expect.)

You create Vectors by using the Vector procedure, or more easily by angle brackets
(the < and > signs):

<sequence>;
where sequence is a sequence of expressions (which can be numbers). For example, the
command

v := < 1,-5,4 >;
assigns to the variable v a value which is a 3-dimensional Vector with components 1, −5
and 4 (in that order). Alternatively, one could use

v := Vector([1,-5,4]);

You can also use fuctions to define Vectors. For example, to create a Vector in R3

whose entries are 1,4 and 9 respectively, use
Vector(3, i -> i^2);

2.10.2 Matrices
Maple uses a capital M for a matrix in the LinearAlgebra package. (Be careful

not to use matrix with a small ‘m’. You will not get an error as this is used by an older
package called linalg, but things may not work as you expect.)

38 CHAPTER 2. MAPLE COMMANDS AND LANGUAGE.

You create a Matrix using pairs of angle brackets (or the Matrix procedure). You
enclose the columns of the Matrix as a collection of Vectors, separated by vertical lines
| and linked together with an outer set of angle brackets. For example, you can assign
the matrix 1 2 3

3 −1 5
3 −2 4


to the variable A with the command

A := < <1,3,3> | <2,-1,-2> | < 3,5,4> >;

Note the outer set of angle brackets < > which make the object into a Matrix.
These outer brackets must be there even if the matrix only has one column, as in

A := < <1,2,3> >;
Note that Maple does NOT regard a Vector as the same thing as a Matrix with one
column, but the differences will probably not be relevant to you in first year.

An alternative way to enter matrices is by rows rather than columns: all you need to
do is “swap the commas and bars around”. So the prevous matrix can be defined by

A := < <1|2|3> , < 3|-1|5> , <3|-2|-4> >;
However, it is better to think of matrices in columns rather than rows so the ‘collection of
columns’ method is preferable. It is also easier to type commas rather than the vertical
bars, of course, and there are fewer bars in the collection of columns method.

You can also create a Matrix using a function that tells Maple how to calculate each
entry. For a Matrix you need a function of two variables (and to give two dimensions),
for example,

Matrix(3,2, (i,j) -> i^2+j^3);

It is conventional in mathematics to use a single capital letter to denote a matrix, but
Matrix names in Maple do not have to follow this convention — they could be a lower
case letter or any valid Maple name. But remember that A and a are not the same name.
Also be warned that some letters (such as D) are reserved.

Note that the default behaviour of Maple, for both Vectors and Matrices, is to display
a placeholder when any dimension of a Vector or Matrix is larger than 10. For example,
try

Vector(11, i -> i^3);
To see how to alter this behaviour look up the Maple help page for interface.

2.10.3 Selecting Components of Vectors and Matrices
If the value of A is a Matrix, you can use the notation A[i,j] to refer to the entry in

the ith row and jth column of A. For example, if the value of A is1 2 3
3 −1 5
3 −2 4


then A[3,2] has the value -2.

Similarly, if the value of a variable v is a Vector, you can use v[n] to refer to its nth
entry. For example, if (the list) v has been assigned a value by

2.10. Vectors and Matrices 39

v := [1,2,-4,9];
then v[3] will have the value −4 because the third entry in the list is −4 . Note that
the same notation also works for lists.

You can use these notations in commands to change the value of entries. For example,
the commands

v[2] := 12: A[2,1] := 13:
will assign the value 12 to the second entry of the list v and the value 13 to the entry in
the second row and first column of the Matrix A.

You can do the same thing with a set, but this is dangerous because the order of
entries in a set is not fixed, so you cannot be sure which entry Maple will regard as being
the nth entry.

2.10.4 Manipulating Vectors and Matrices
The last section shows how to create and display Vectors and Matrices. However, we

cannot do any useful linear algebra without first loading the LinearAlgebra package,
which provides many procedures for dealing with Vectors, Matrices and linear equations.
In these Notes we will only give an outline of some of the basic procedures. To find out
more about these and other procedures available in LinearAlgebra, use Maple’s Help.

To use the procedures in this package, it is easiest to first load it with the command

with(LinearAlgebra):
Note the use of the colon here, which supresses the (very long) list of new funcitons in
LinearAlgebra. You can use a command from this package directly by giving its full
name: you do this by adding LinearAlgebra:- to the start of the command. This is
what Maple will do if you operate with the context sensitive menus (see section 1.3.4).

The package LinearAlgebra also allows you to enter a diagonal matrix (i.e. a matrix
A with aij = 0 for i 6= j) by using DiagonalMatrix. You can use either a list or a
Vector as the argument of DiagonalMatrix. For example,

A := DiagonalMatrix([1,2]);

A :=

[
1 0
0 2

]
.

There is the useful command IdentityMatrix for creating (of course) identity matrices.
For example, the 6× 6 identity matrix is

id6 := IdentityMatrix(6);

Also, new Matrices can be constructed by combining Vectors and/or Matrices. If we
have Vectors, say v1, v2 and v3, then we can form a Matrix which has these vectors as
columns by using the angle brackets and vertical bars

< v1 | v2 | v3 >;
Similarly, if we have matrices A, B and C of appropriate sizes we can combine them

side by side (called augmenting) into a large matrix by using

< A | B | C > ;
or one on top of the other (called stacking) by using

< A , B , C >;

Conversely, you can extract vectors from matrices by using Column(A,i) to create a
Vector whose components are the entries in the ith column of the Matrix A. For example,

40 CHAPTER 2. MAPLE COMMANDS AND LANGUAGE.

v := Column(A,2);
We also have Row for rows — but this creates a row Vector, which is not something
we’ll be dealing with.

If you use a range (for example 2..3) you can extract more than one column (as a
sequence).

Note that the things created by Column (and Row) are Vectors (or sequences of
Vectors) and not Matrices

Another procedure which selects parts of matrices is SubMatrix. The command

SubMatrix(A, a..b, c..d);
(where a..b and c..d are ranges of positive integers) produces a smaller Matrix whose
entries are the values of A[i,j] for a≤i≤b and c≤j≤d, arranged in the same relative
positions as they had in A.

You can also use SubMatrix in the form

SubMatrix(A, [1,4..6], [2..4]);
to get the submatrix whose entries are the values of A[i,j] for i in the list [1,4,5,6]
and j in the list [2,3,4].

Maple also let’s you define Vectors and Matrices using an indexing function. If f is
a function that takes one argument, Vector(5, f) gives a vector with the 5 entries,
f(1) , f(2) , f(3) , f(4) , f(5) . Similarly, if g is a function that takes two arguments,
Matrix(2, 3, g) produces a Matrix with 2 rows and 3 columns in which the element

in the i th row and j th column is given by g(i, j) . See section 2.21 for examples.

2.11 Gaussian Elimination.
The LinearAlgebra package provides the procedure RowOperation which allows

you to solve systems of simultaneous linear equations by going step by step through the
steps of Gaussian elimination. The one procedure will do different things, depending on
what arguments you give it. So:

< A | b> augment Matrix A by Vector b to give (A|b)
RowOperation(A,[i,j]) swap rows i and j in A
RowOperation(A,i,m) multiply row i of A by the value of m
RowOperation(A,[i,j],m) replace row i with row i + (row j)*m in A

i.e. add m times row j to row i
(NOTE THE ORDER CAREFULLY)

Note that the Matrices produced by these procedures are NOT assigned as new values
for the original variable A (unless you specifically instruct Maple to do that by adding the
option inplace=true, see the help page). Usually you will assign the resulting matrix
to a new variable (as in the following example) OR just allow Maple to display the result
and use % to refer to it in your next command.

Example

If you want to apply Gaussian elimination to the augmented matrix

(A|b) =

0 1 2 1
2 −1 −2 1
1 2 4 0

∣∣∣∣∣∣
1
−1
5



2.11. Gaussian Elimination. 41

then you could proceed as follows. (Note that some of the command lines end in a colon.
This is to save space by suppressing display of the result.)

> with(LinearAlgebra):
> A := < <0,2,1> | <1,-1,2> |< 2,-2,4> | <1,1,0> >:
> b := < 1,-1,5 >:
> m1 := < A | b >;

m1 :=

0 1 2 1 1
2 −1 −2 1 −1
1 2 4 0 5


> m2 := RowOperation(m1,[1,2]);

m2 :=

2 −1 −2 1 −1
0 1 2 1 1
1 2 4 0 5


> m3 := RowOperation(m2,[3,1],-1/2);

m3 :=

2 −1 −2 1 −1
0 1 2 1 1
0 5/2 5 −1/2 11/2


> m4 := RowOperation(m3,[3,2],-5/2);

m4 :=

2 −1 −2 1 −1
0 1 2 1 1
0 0 0 −3 3


This matrix is now in echelon form. We could use the procedure BackwardSubstitute
at this point but instead we will carry out the backsubstitution on the matrix itself.

> m5 := RowOperation(m4,3,-1/3);

m5 :=

2 −1 −2 1 −1
0 1 2 1 1
0 0 0 1 −1


> m6 := RowOperation(m5,[2,3],-1):
> m7 := RowOperation(m6,[1,3],-1);

m7 :=

2 −1 −2 0 0
0 1 2 0 2
0 0 0 1 −1


> m8 := RowOperation(m7,[1,2],1);

m8 :=

2 0 0 0 2
0 1 2 0 2
0 0 0 1 −1



42 CHAPTER 2. MAPLE COMMANDS AND LANGUAGE.

> reduced := RowOperation(m8,1,1/2);

reduced :=

1 0 0 0 1
0 1 2 0 2
0 0 0 1 −1


We now have the fully reduced form and we can read off the general solution as

[1, 2− 2λ, λ,−1]

where λ is an arbitrary parameter representing an arbitrary choice of the third variable.
When Maple is solving systems of linear equations, it uses names like t1 , t2 for

arbitrary parameters which may occur in the general solution. So the solution of the
above set of equations would be displayed as

[1, 2− 2 t1, t1,−1]

if you were using Maple, or as [1, 2-2*_t[1], _t[1], -1] in text files or when
you are using plain Maple without a Maple window.

In the above example, intermediate matrices were assigned to named variables so that
we could go back to an earlier stage if we found that we had made a mistake. Alternatively
you could simply use % to apply each command to the previous result. The above example
would then start with something like

<A | b>;
RowOperation(%,1,2);
RowOperation(%,[3,1],-1/2);
RowOperation(%,[3,2],-5/2);

The LinearAlgebra package also provides procedures which do all or parts of the Gaus-
sian elimination process in one step. In particular, you can use:

GaussianElimination(A) gives the row-echelon form of A
ReducedRowEchelonForm(A) gives the fully-reduced form of A
BackwardSubstitute(W) does backsubstitution on a matrix W in echelon

form, assuming that W has been been derived
from an augmented matrix of the form (A|b)

LinearSolve(A,b) solves A.x=b
Basis({v1,v2,...,vn}) finds a basis for the vector space spanned by

the set {v1, v2, . . . , vn} of Vectors.

NOTES:

1. Maple does all its reductions using rational numbers, unless the original matrix
had some floating point numbers in it. If you want to see the results in floating
point, apply evalf in the way which was described in section 2.5.7. If the matrix
involved is large and has floating point entries, the procedures GaussianElimina-
tion, ReducedRowEchelonForm and LinearSolve will not always give exactly
correct answers because of problems with rounding errors when doing floating point
arithmetic.

2.12. Vector and Matrix Arithmetic 43

2. Maple can solve linear sytems with unknown parameters in them. In particular, it
can solve systems in which each of the entries in the righthand side is an unassigned
variable, for example

b := < b1 , b2 , b3 >;

3. If you are doing MATH1231 or MATH1241, you should look up the Maple help files
for the procedures Rank, RowSpace, ColumnSpace, Transpose, Determinant,
Eigenvalues, Eigenvectors, CharacteristicPolynomial. To anyone who
has studied the linear algebra section of MATH1231/1241, the effects of these
procedures should be obvious from their names.

2.12 Vector and Matrix Arithmetic
The last section shows how to create and display Vectors and Matrices. However, we

cannot do any useful linear algebra without first loading the LinearAlgebra package,
which provides many procedures for dealing with Vectors, Matrices and linear equations.
(Technically, LinearAlgebra is called a module, but you can ignore this distinction.)
In these Notes we will only give an outline of some of the basic procedures. To find out
more about these and other procedures available in LinearAlgebra, use Maple’s Help.

To use the procedures in this package, it is easiest to first load it with the command

with(LinearAlgebra):
Note the use of the colon here, which supresses the (very long) list of new funcitons in
LinearAlgebra.

However, you can use a command directly by giving its full name: you do this by
adding LinearAlgebra:- to the start of the command. This is what Maple will do if
you operate with the context sensitive menus (see section 1.3.4).

Vectors and Matrices can be added, subtracted and multipled by scalars using the
usual operators +, - and *. Two Matrices can be multipled using the . operator. The
. operator is also used to give the dot product of two Vectors. A square Matrix can be
raised to an integer power using ^.

For example, to find the linear combination 2v− 3w of the vectors v and w we use

2*v - 3*w;
and we can enter the formula for a general point on the line through the points with
position vectors v and w (i.e. the formula x = (1 − λ)v + λw , where λ is an arbitrary
parameter). We do this by

x := (1-lambda)*v + lambda*w;
Note that A^(-1) gives the inverse matrix.

When using these operations, you must of course ensure that the Matrices and Vectors
are of the appropriate dimensions and, in the case of the negative power of a matrix, that
the matrix is invertible.

If you enter an expression involving these operations, Maple will automatically carry
out the operations. For example, to enter the mathematical expression Ax + b , we use

A.x + b ;
If values have already been assigned to A, x and b then A.x+b will be evaluated, but if
some of these variables are unassigned then you will get an answer involving the unassigned
variables.

44 CHAPTER 2. MAPLE COMMANDS AND LANGUAGE.

A useful convention in Maple is that, in expressions involving matrices, a scalar con-
stant can be treated as that scalar multiple of an appropriate identity matrix I . For
example, if A is a square matrix then the command

1 + A + 2*A^2 ;
evaluates the polynomial expression I + A + 2A2 , where I is the appropriate identity
matrix. This convention enables you to substitute matrices into polynomials. For exam-
ple,

subs(x=A, 1+x+2*x^2);
gives the expression I + A+ 2A2 (because the 1 is interpreted as an identity matrix).

If you use the dot with two Vectors of the same size, Maple will calculate their dot
(inner) product. So

v := <2,1,2> : w := <-4,2,1>:
v.w;

will return −4 , the dot product of the two vectors.
The transpose of a Matrix or Vector is given by the Transpose function from the

LinearAlgebra package. For example, if A is a 2 by 3 Matrix, then Transpose(A) is
the 3 by 2 Matrix which is the transpose of A. If v is a Column vector, then Transpose(v)
is the corresponding row Vector.

2.13 Vector Geometry
Maple provides facilities for doing geometry in Rn and, in particular, in R3 .

2.13.1 Dot and Cross Products, Length
The LinearAlgebra package provides the procedures

DotProduct(v,w) (or v.w) dot product of v and w
CrossProduct(v,w) cross product of v and w

To calculate the length of a vector, you need to use the procedure Norm, in the
LinearAlgebra package, but it must be used with care. If v is a Vector, then the
command Norm(v,2) will give the length of the Vector. (The reason for the 2 is that
Norm can be used for rather more general purposes which you will not need to know about
in first year mathematics.)

There is also a distance procedure in the student package, which gives the dis-
tance between two points (represented by lists or Vectors). Use Maple’s Help for more
information.

2.13.2 Three-dimensional Geometry.
The package geom3d contains many useful procedures for solving problems in R3 .

In fact, many of the geometric problems involving planes from the MATH1131 Algebra
Notes can by solved with procedures in geom3d. The following is an outline of some of
the things which you can do with geom3d.

The method of assigning a name to a point, line or plane is not quite what you might
expect. To say that A is the point (1, 2, 3) , you do NOT enter A := [1,2,3]; — this
is assigning a point to a name. You enter point(A,[1,2,3]); — you are assigning
a name to a point. The command line is used to assign a name to a line. The line
may be specified by giving two points on it or a point on it and a direction parallel to it.
The command plane is used to assign a name to a plane. The plane may be specified

2.13. Vector Geometry 45

by giving a cartesian equation for it or three (non-collinear) points on it or a point on
it and a normal direction or a point on it and two lines parallel to it. The command
sphere is used to assign a name to a sphere. A sphere may be specified by giving its
cartesian equation or four points on it or the end-points of a diameter or its center and its
radius. To display the specifications of one of these things you need to use detail (see
the example below). For a plane, the detail includes a cartesian equation for the plane.
If you want to find a normal to a plane p use

NormalVector(p);
Be warned that if you specify a plane or sphere by means of an equation then Maple

will want you to specify the names of the variables which are associated with the three
axes. You can do this by listing them as a third argument to the plane or sphere
command, as in

plane(P,x+y+z=1,[x,y,z]);
If you leave out the [x,y,z] then Maple will, rather strangely, prompt you with the

request enter the name of the x-axis, to which you reply x;, and similarly for
the other two axes. The semi-colons are compulsory here. Depending on the way Maple
is set up, this might be done using a pop-up dialogue box.

When you have set up objects of these types you can, for example, use the command
distance to find the distance between two of them or the command intersection
to find the intersection of two of them or the command FindAngle to find the angle
between two of them (where appropriate).

You can also use Equation to find a cartesian equation for a line, plane or sphere
and center for the center of a sphere and coordinates to find the coordinates of a
point.

Use the Maple Help to find out more about any of these commands and to find out
about the many other commands available in geom3d.

In the following example, we first label the points A(0, 1, 2) and B(2, 3, 1) and the
line AB through A and B . Applying detail to AB shows that the direction of the
line is (2, 2,−1) and the line can be expressed in parametric vector form as

x =

0
1
2

+ t

 2
2
−1

 , t ∈ R.

Then we assign the label P to the plane through C(4, 5, 6) with normal (1, 1, 1) and
use detail to find that P can be described by the cartesian equation

x+ y + z = 15.

Then we assign the label X to the point of intersection of the line AB and the plane
P and find that the coordinates of X are (8, 9,−2) . Next we find that the plane ABC
through the three points A,B,C can be described by the cartesian equation

12x− 12y + 12 = 0.

Finally, we find the sphere S passing through A , C , X and Y (0, 7, 4) this time giving
the coordinates axes as x , y and z and calling its centre Q , and see that it has volume
288π , its equation is

5 + x2 + y2 + z2 − 8x− 10y = 0,

	INTRODUCTION TO MAPLE
	What Does Maple Do?
	The Maple Window
	Math Palettes

	Using an Maple Worksheet
	Managing several worksheets
	Types of Regions in the Worksheet
	Entering Maple Commands
	Context Sensitive Menus
	Aborting Commands
	Inserting Comments
	Changing Maple Commands

	Saving a Maple worksheet
	Exporting a Maple Input File

	Maple On-line Help
	The Help Browser
	Using the Results

	Maple and Moodle

	MAPLE COMMANDS AND LANGUAGE.
	Arithmetic.
	Variables: Assignment and Unassignment.
	Assigning
	Variable Names
	Unassigning

	Expressions and Functions.
	Built-in Functions.
	Evaluating a Function and Substituting in an Expression.
	Simplifying an Expression.
	Defining functions with the arrow operator.

	Elementary Calculus.
	Limits
	First Derivatives
	Unevaluated Derivatives
	Higher Order Derivatives
	Implicit Differentiation
	Maxima and Minima
	Integration
	Partial Fractions

	Collections of Expressions, etc.
	Sequences
	Sets and Lists
	Converting Structures
	Selecting Operands
	Sorting
	Substituting into a Structure
	Applying Functions to each Entry of a Structure
	Sums and Products

	Equations.
	Solving Equations.

	Complex Numbers.
	Plotting.
	Plotting Piecewise-defined Functions
	Plotting Data Points
	Parametric Plots
	Polar and Implicit Plots
	3-D plots

	The student Calculus Package.
	Inert procedures.
	Change of Variable
	Integration by Parts
	Riemann Sums and Simpson's Rule

	Vectors and Matrices
	Vectors.
	Matrices
	Selecting Components of Vectors and Matrices
	Manipulating Vectors and Matrices

	Gaussian Elimination.
	Vector and Matrix Arithmetic
	Vector Geometry
	Dot and Cross Products, Length
	Three-dimensional Geometry.

	Partial Derivatives
	Ordinary Differential Equations.
	Taylor Series.
	 Discrete Mathematics.
	Greatest Common Divisors
	Modular Arithmetic
	Set Algebra
	Solving Recurrence Relations

	Assuming properties.
	Conditions and the if – then construction.
	Conditions
	The if – then construction

	Looping with for and while.
	Two further examples

	Functions and Procedures.
	Procedures.

	Common Mistakes
	Reading Files into Maple.
	More Maple.

	MORE ON THE MAPLE GUI.
	Maple's Default Settings
	Maple Settings in the Labs
	A Maple Window
	Worksheets and Documents
	The Menu Bar
	The File Menu
	The Edit Menu
	The View Menu
	The Insert Menu
	The Format Menu
	The Tools menu
	The Options submenu

	The Help Menu
	Alternatives to Commonly Used Menu Options
	The Tool Bar
	Keystroke Alternatives

	2D Math input
	Symbol recognition

	SUMMARY OF MAPLE COMMANDS.
	INDEX

