
11.5 How to learn more 95

Now that you know the basics of Beamer, we encourage you to explore. For example,
you can learn how to do each of the following:

Enhance the look of your slides with “Beamer blocks.”

Jump forward and backward in your presentation, and link to Web documents.

Generate a Table of Contents for your talk.

11.5 How to learn more

You can learn more about Beamer at:

ctan.org/tex-archive/macros/latex/contrib/beamer/doc/beameruserguide.pdf

There are many other good guides to Beamer on the World Wide Web. You can search for
guides by entering “Beamer tutorial” in a Web browser. The LATEX Beamer Class Homepage
is located at:

latex-beamer.sourceforge.net

You may want to create a simple Beamer presentation, perhaps using the examples in this
chapter, and then add to your presentation by following some of the more detailed advice
that you can find on the Web.

Exercises

Use Beamer to give presentations on the following topics.

1. Give a presentation on the Pythagorean Theorem. Be sure to include diagrams of
right triangles.

2. Give a presentation on Pascal’s triangle.

3. Give a presentation on the Fundamental Theorem of Calculus. Include diagrams.

4. Give a presentation on Linear Programming optimization methods. You may want to
include a discussion of the Simplex Algorithm.

5. Give a presentation on Numerical Analysis used in solving equations.

6. Give a presentation on some theorems of Graph Theory. Include diagrams.

7. Give a presentation on fast Fourier transforms.

8. Give a presentation on a mathematician chosen from [5] or [6]. Give biographical
background on the person and describe some of the mathematics that the person
created.

9. Give a presentation on a topic in mathematics and art, chosen from [28], [13], or [41].

Chapter 12

Getting Started with Mathematica R�,

Maple R�, and Maxima

Arguably the most important software tool for a mathematics student is the computer
algebra system (CAS). No other software puts so much mathematical potential into a single
tool.

12.1 What is a computer algebra system?

A computer algebra system is a program with which you can perform calculations,
evaluate functions, create graphics, and develop your own programs. The key feature of
computer algebra systems is the ability to manipulate expressions symbolically. Typical
manipulations possible in a CAS include simplifying expressions, factoring, taking deriva-
tives, computing integrals (symbolically and numerically), and solving systems of equations.
This chapter explores the basics of three popular computer algebra systems, and it contains
simple examples for you to try.
Mathematica, created by Stephen Wolfram, is probably the world’s most recognized

computer algebra system. It was originally released in 1988 and is still being developed and

97

98 12 Getting Started with Mathematica R , Maple R , and Maxima

improved. In addition to its raw power, one notable feature of Mathematica is its use of the
“notebook.” Mathematica notebooks allow a user to combine written text with calculations
in one integrated document.
Maple, created by Waterloo Maple under the trade name Maplesoft, dates back to

the early 1980s. It is one of the dominant commercial computer algebra systems and
favored by many institutions. Like Mathematica, it can create integrated documents, called
worksheets, that combine text, calculations, and hyperlinks.
Maxima is a free software computer algebra system. It is derived from an early computer

program, Macsyma, which dates back to the 1960s and was made available under an open
source license starting in 1998. Because it is free, it is especially attractive to students.
Maxima can create documents that combine text with calculations through a graphical
front end called wxMaxima.

12.2 How to use a CAS as a calculator

When using any computer algebra system as a calculator, it is important to understand
that it is a bit difficult to translate mathematical writing directly to the computer. Humans
instinctively adapt to ambiguity, but software is less flexible. For example, mathematicians
use parentheses for grouping, as in (x 1)(x+2). But they also use parentheses to indicate
ordered pairs, like (1, 3), and to denote functions f(x).
Another ambiguity that is perhaps a bit more subtle occurs with “equals.” Humans

have little trouble understanding that sometimes we intend equals to assign values, as with
“let x = 2.” At other times, we mean to assert equality; a circle is the set of points (x, y)
such that x2 + y2 = 1.
Each computer algebra system addresses the job of translating mathematical syntax into

unambiguous “computer syntax” in its own way. To a first-time software user this can feel
somewhat unintuitive, even quirky, but mastering the language of your favorite CAS is an
important part of using it effectively.

Mathematica as a calculator

Since Mathematica notebooks are used for text as well as calculations, you will almost
immediately notice one idiosyncrasy when you try to use Mathematics as a calculator. The
ENTER key does not run a calculation (it ends a paragraph or makes it possible to enter
multi-line computations). To use Mathematica as a calculator, type the expression you wish
to evaluate and press SHIFT+ENTER. (The special ENTER key on the lower-right corner
of the keypad of an extended keyboard also works.)

Example 12.1. We add 2 and 2 to get . . . 4.

In[1]:= 2 + 2

Out[1]= 4

Note. Mathematica assigns line numbers to the input and output, e.g., the “In[1]:=” and
“Out[1]=” above. You do not type them yourself.

To multiply two numbers, type the numbers with a space between them. Use a caret (^)
for exponentiation. Notice that Mathematica can handle very large numbers easily, even
numbers with hundreds of digits.

12.2 How to use a CAS as a calculator 99

Example 12.2. A product, and the value of 3100.

In[2]:= 1024 59049

Out[2]= 60466176

In[3]:= 3^100

Out[3]= 515377520732011331036461129765621272702107522001

The values of important mathematical constants (such as π, e, and i) are stored in
Mathematica. To distinguish them from variables you might create yourself, Mathematica’s
internal constants are capitalized (Pi, E, I, etc.).
The built-in constants are handled algebraically, but we can request the numerical value

of an expression with the N function.

Example 12.3. Calculations with π, e, and i.

In[4]:= Pi

Out[4]= Pi

In[5]:= N[Pi]

Out[5]= 3.14159

In[6]:= N[E]

Out[6]= 2.71828

In[7]:= I I

Out[7]= -1

If you want a numerical result given to a high degree of accuracy, use the command
N[_,_]. The first argument of this function is the number to be calculated. The second
argument is the number of decimal places to which the number is computed.

Example 12.4. We calculate π to 100 decimal places.

In[8]:= N[Pi,100]

Out[8]= 3.1415926535897932384626433832795028841971693993751

05820974944592307816406286208998628034825342117068

Note. You can obtain information about a specific command by typing a question mark
followed by the name of the command. For instance, to find out about the function N, type:

In[9]:= ? N

N[expr] gives the numerical value of expr. N[expr, n]

attempts to give a result with n-digit precision.

100 12 Getting Started with Mathematica R , Maple R , and Maxima

In addition to processing numerical calculations, Mathematica performs algebraic op-
erations. If a variable has not been assigned a value, Mathematica will work with it alge-
braically.

Example 12.5. We set a equal to 17, and then calculate with a and the (undefined)
variable b.

In[10]:= a = 17

Out[10]= 17

In[11]:= -b (a^3 + a - 15)

Out[11]= -4915 b

To work with the output of the previous command, use the special variable % (percentage
sign).

Example 12.6. We compute the square of the output of the previous example.

In[12]:= %^2

2

Out[12]= 24157225 b

Mathematica also performs matrix calculations. Matrices are entered with braces and
are stored as lists of lists.

Example 12.7. We define two matrices:

M =
1 2 3
4 5 6
7 8 9

and N =
0 1 0
0 0 1
1 0 0

.

In[13]:= m = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};

In[14]:= n = {{0, 1, 0}, {0, 0, 1}, {1, 0, 0}};

Note. The ; (semicolon) symbol is used to separate commands, allowing you to perform
more than one calculation on a line. If you end a command with a semicolon, the output
will not be displayed.

Example 12.8. We add and multiply the matrices.

In[15]:= m + n

Out[15]= {{1, 3, 3}, {4, 5, 7}, {8, 8, 9}}

In[16]:= m . n

Out[16]= {{3, 1, 2}, {6, 4, 5}, {9, 7, 8}}

We may want to use the same variables (e.g., a, m, and n in the above computations)
later in a different context. Therefore, it is a good idea to “clear” the values of variables
when we are finished using them. We can then check that the values of these variables have
disappeared.

12.2 How to use a CAS as a calculator 101

In[17]:= Clear[a,m,n]

In[18]:= {a, m, n}

Out[18]= {a, m, n}

Maple as a calculator

Maple syntax is different from Mathematica syntax, but some things are only slightly
different. For instance, to form the product of two expressions, we must explicitly use an
asterisk () in Maple. Other things are exactly opposite. For instance, in Maple, ENTER
evaluates an expression, whereas SHIFT+ENTER merely breaks the line (i.e., inserts a soft
break).
Historically, expressions in Maple had to be “terminated” with a semicolon (;). Newer

versions no longer have this requirement, although the semicolon is still allowed. We have
kept with the old convention to stay compatible with all versions of Maple.

Example 12.9. We add 2 and 2 to get . . . 4.

> 2 + 2;

4

To multiply two numbers, type the numbers with an asterisk (*) between them. Use a
caret (^) for exponentiation. Notice that Maple can handle very large numbers easily, even
numbers with hundreds of digits.

Example 12.10. A product and the value of 3100.

> 1024*59049;

60466176

> 3^100;

515377520732011331036461129765621272702107522001

The values of important mathematical constants (such as π and i) are stored in Maple.
They are capitalized to distinguish them from variables you might create yourself (e.g., Pi,
and I). Notably, e is not represented by E in Maple; you must use exp(1) instead.
The built-in constants are handled algebraically, but we can request the numerical value

of expressions with the evalf() function, which evaluates them as “floating point” values.

Example 12.11. Calculations with π, e, and i.

> Pi;

Pi

> evalf(Pi);

3.141592654

> exp(1);

e

> I*I;

-1

If you want a numerical result given to a high degree of accuracy, include a second
argument in the evalf() function. The first argument is the number to be calculated. The
second argument is the number of decimal places to which the number is computed.

102 12 Getting Started with Mathematica R , Maple R , and Maxima

Example 12.12. We calculate π to 100 decimal places.

> evalf(Pi, 100);

3.1415926535897932384626433832795028841971693993751058 \

20974944592307816406286208998628034825342117068

Note. You can obtain information about a specific command by typing a question mark
(?) followed by the name of the command. For instance, to find out about the function
evalf(), type ? evalf.

In addition to processing numerical calculations, Maple performs algebraic operations.
If a variable has not been assigned a value, Maple will work with it algebraically.

Example 12.13. We set a equal to 17, and then calculate with a and the (undefined)
variable b.

> a := 17;

a:=17

> -b*(a^3 + a - 15);

-4915 b

If you want to work with the output of the previous command, use the special variable
% (percentage sign).

Example 12.14. We compute the square of the output of the previous example.

> %^2;

2

24157225 b

Maple can also perform matrix calculations. Many of Maple’s matrix functions are part
of a package called linalg, which must be loaded first.

Example 12.15. Loading Maple’s linear algebra package.

> with(linalg):

Note. Lines in Maple may be terminated with a colon (:) to suppress the output of the
calculation.

Matrices are entered as lists of lists (in square brackets) using the matrix() function.
Matrix operations must occur inside of evalm if we expect them to be evaluated in the
usual way. Notice that Matrix multiplication is somewhat special; it uses the &* operator
and not the usual *.

Example 12.16. Matrices in Maple.

> m := matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]):

> n := matrix([[0, 1, 0], [0, 0, 1], [1, 0, 0]]):

> m;

m

> evalm(m);

[1 2 3]

[4 5 6]

[7 8 9]

> evalm(m+n);

[1 3 3]

[4 5 7]

[8 8 9]

12.2 How to use a CAS as a calculator 103

> evalm(m &* n);

[3 1 2]

[6 4 5]

[9 7 8]

We may want to use the same variables (e.g., a) later in a different context. Therefore,
it’s a good idea to “unassign” the values of variables when we’re finished using them. We
can then check that the values of these variables have disappeared.

> a := 17;

a:=17

> unassign(’a’);

> a;

a

Maxima as a calculator

Maxima expects all expressions to end with a semicolon (;), and if you use “command
line Maxima,” it will continue to prompt for input (without evaluating) until you enter
a semicolon. In this respect, Maxima is not unlike many computer languages such as C
or Java. This behavior can be convenient as well, since long computations may be split
over several lines. The graphical front end, wxMaxima, uses SHIFT+ENTER to run a
calculation, like Mathematica does, and will supply a terminating semicolon if you forget
one.

Example 12.17. Here we do some simple addition and subtraction. The subtraction is
split over two lines.

(%i1) 2+2;

(%o1) 4

(%i2) 3 -

1 ;

(%o2) 2

As you use Maxima, you will notice that the input prompt increments each time you
enter a calculation: first (%i1), then (%i2). Each piece of output is also marked, beginning
with (%o1). As long as the program remains running, these names can be used as variables
in later computations. In a similar spirit, the percent sign alone (%) always refers to “the
last answer.”

Example 12.18. Compute with the last answer, or with an arbitrary previous answer.

(%i1) 2+2;

(%o1) 4

(%i2) 3 * %;

(%o2) 12

(%i3) 5 * %i1;

(%o3) 20

Maxima can handle very large numbers, larger than may be convenient to work with on
a hand-held calculator.

104 12 Getting Started with Mathematica R , Maple R , and Maxima

Example 12.19. We evaluate 3100.

(%i4) 3^100;

(%o4) 515377520732011331036461129765621272702107522001

Many standard constants, such as π, e, and the imaginary unit i, are part of Maxima.
Maxima uses a syntax with percent signs to signify the built-in constants, very much like
the special variables that represent the results of previous calculations. So %pi, %e, and %i
denote π, e, and i.
Maxima handles constants algebraically when possible, but we can force numerical pre-

sentation with the special symbol numer.

Example 12.20. Calculations with π, e, and i.

(%i1) %pi;

(%o1) %pi

(%i2) %pi,numer;

(%o2) 3.141592653589793

(%i3) %e,numer;

(%o3) 2.718281828459045

(%i4) %i * %i;

(%o4) - 1

To specify arbitrary “big floating point” precision, there is also a special symbol called
bfloat.

Example 12.21. The number π calculated to 100 decimal places.

(%i1) %pi,bfloat,fpprec=100;

(%o1) 3.14159265358979323846264338327950288419716939937\

5105820974944592307816406286208998628034825342117068b0

Note. Big floating point results are always presented in scientific notation, so do not forget
to read the exponent following the “b”. The result above is in fact 3.14 . . . 100.

Note. You can obtain information about a specific symbol (or function) by typing a question
mark (and space) followed by the name of the symbol. This is one of the few times Maxima
does not want a terminating semicolon. For example, to find out about the special symbol
numer:

(%i1) ? numer

-- Special symbol: numer

‘numer’ causes some mathematical functions (including

exponentiation) with numerical arguments to be evaluated

in floating point. It causes variables in ‘expr’ which

have been given numerals to be replaced by their values.

It also sets the ‘float’ switch on.

There are also some inexact matches for ‘numer’.

Try ‘?? numer’ to see them.

(%o1) true

12.2 How to use a CAS as a calculator 105

In addition to numerical calculations, Maxima can work with variables and do algebraic
operations. The colon (:) is the assignment operator. We use it to define variables. If a
variable has not been assigned a value, Maxima will work with it algebraically.

Example 12.22. We set a equal to 17, and then calculate with a and the (undefined)
variable b.

(%i1) a : 17;

(%o1) 17

(%i2) -b * (a^3 + a - 15);

(%o2) - 4915 b

We can tell Maxima that we wish it to handle a variable name algebraically, even if
it knows how to evaluate it, by using the single quote (’) symbol. For example, in an
expression, ’x will not be expanded, even if a value of x has already been defined. When
we are ready to have Maxima evaluate an expression, we can use the ev() function.

Example 12.23. Quoting a variable prevents evaluation.

(%i1) x : 2;

(%o1) 2

(%i2) y : x^2;

(%o2) 4

(%i3) z : ’x^2;

2

(%o3) x

(%i4) ev(z);

(%o4) 4

Maxima can handle vectors and matrices that contain values or variables, and it can do
the usual mathematical operations on them. Simple row vectors may be entered as lists in
square brackets. Matrices with more than one row are defined using the matrix() function,
which takes the rows of the matrix as its arguments.

Note. The asterisk (*) and caret (^) operators both work component-wise on matrices (i.e.,
on each entry). Use dot (.) and double caret (^^) for matrix multiplication and matrix
exponentiation, respectively.

Example 12.24. Matrices in Maxima.

(%i1) M : matrix([17, b], [1, 17]);

[17 b]

(%o1) []

[1 17]

(%i2) M . M;

[b + 289 34 b]

(%o2) []

[34 b + 289]

(%i3) M + M;

[34 2 b]

(%o3) []

[2 34]

(%i4) [1, 0] . M;

(%o4) [17 b]

106 12 Getting Started with Mathematica R , Maple R , and Maxima

(%i5) M ^^ 2;

[b + 289 34 b]

(%o5) []

[34 b + 289]

The kill() function is used to clear variables. For example, if we wish to clear the
variable M to use it in some other way, we can kill it.

Example 12.25. Clearing (killing) the variable M .

(%i6) kill(M);

(%o6) done

(%i7) M;

(%o7) M

12.3 How to compute functions

Functions in Mathematica

The operator N, which we saw earlier, is actually a function. Mathematica contains
many such built-in functions, and you can usually guess the names of common functions.
For instance, Sin[x] computes sin x.

Note. In Mathematica, every built-in function name begins with a capital letter. Arguments
of functions follow in square brackets.

Example 12.26. We calculate sin(π/2) and the binomial coefficient 7
2 .

In[1]:= Sin[Pi/2]

Out[1]= 1

In[2]:= Binomial[7,2]

Out[2]= 21

Some functions have outputs that are lists.

Example 12.27. The command FactorInteger determines the prime factorization of an
integer. Here we find the prime factorization of the number 60466176.

In[3]:= FactorInteger[60466176]

Out[3]= {{2, 10}, {3, 10}}

The output tells us that 60466176 = 210 310.

In the next example, we calculate and display a table of function values.

Example 12.28. The function Prime[n] gives the nth prime number. Using this function,
we construct a table of the first 100 prime numbers.

12.3 How to compute functions 107

Command Meaning Example Input Meaning

Sqrt[] square root Sqrt[5] 5

Exp[] exponential Exp[x] ex

Log[] natural logarithm Log[10] ln 10

Log[,] logarithm Log[10,5] log10 5

Sin[] sine Sin[x] sin x

Cos[] cosine Cos[x] cos x

Tan[] tangent Tan[x] tan x

Sum[,] sum Sum[a[i],{i,1,n}]
n
i=1 ai

Product[,] product Product[a[i],{i,1,5}]
5
i=1 ai

Mod[,] modulus Mod[10,3] 10 mod 3

TABLE 12.1: Some Mathematica functions.

In[4]:= Table[Prime[n], {n, 1, 100}]

Out[4]= {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,

> 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107,

> 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173,

> 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239,

> 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311,

> 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383,

> 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457,

> 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541}

Mathematica can evaluate functions both arithmetically and symbolically.

Example 12.29. The sums
10
i=1 i

2 and
n
i=1 i

2.

In[5]:= Sum[i^2, {i, 1, 10}]

Out[5]= 385

In[6]:= Sum[i^2, {i, 1, n}]

1

Out[6]= - n (1 + n) (1 + 2 n)

6

As we can see, Mathematica knows that
n
i=1 i

2 = n(n+ 1)(2n+ 1)/6.

Table 12.1 displays some useful Mathematica functions.

You can define your own functions. To create a function f(x), write f[x_] := followed
by the definition of f .

Example 12.30. We define a function f(x) = x3 + sinx.

In[7]:= f[x_] := x^3 + Sin[x]

108 12 Getting Started with Mathematica R , Maple R , and Maxima

In[8]:= f[Pi/2]

3

Pi

Out[8]= 1 + ---

8

We can differentiate and integrate our function.

In[9]:= D[f[x],x]

2

Out[9]= 3 x + Cos[x]

In[10]:= Integrate[f[x],x]

4

x

Out[10]= -- - Cos[x]

4

In[11]:= Integrate[f[x], {x, 0, Pi}]

1 4

Out[11]= - (8 + Pi)

4

Note. Mathematica does not supply an additive constant (+C) for indefinite integrals.

You can define functions recursively (in terms of previous values), as with the function
below. Notice the use of = for the assignment of initial values in contrast with := for the
definition of the iteration.

Example 12.31. We define the Fibonacci sequence.

In[1]:= f[0] = 1;

In[2]:= f[1] = 1;

In[3]:= f[n_] := f[n] = f[n-2] + f[n-1]

In[4]:= Table[f[n], {n, 0, 10}]

Out[4]= {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89}

You may wonder at the construction in line 3. In Mathematica, := is the “delayed”
assignment operator as opposed to =, which does immediate assignment. When we use
delayed assignment, Mathematica will wait to fully evaluate an expression.
To explore this idea, consider the first time we ask Mathematica for the value f[3]. Since

we used :=, the value of 3 will be substituted for n on the right side of the definition, which
will evaluate to the expression f[3] = f[1] + f[2] (which is actually an assignment itself).
Mathematica already knows the values of f[1] and f[2] and consequently sets f[3] = 2

12.3 How to compute functions 109

using the immediate assignment operator. The = also “returns a value,” the value that we
see.
In more detail, the steps performed by Mathematica to do the evaluation of f[3] are:

1. f[3] = f[3-2] + f[3-1] (this is the right-hand side of the :=, with 3 substituted
for n in all places)

2. f[3] = f[1] + f[2]

3. f[3] = 1 + 1 (from previously defined values)

4. f[3] = 2 (this is ready to perform immediate assignment)

5. 2 (the return value of the = assignment).

Of course, all we see is the final result:

In[5]:= f[3]

Out[5] = 2

The consequence of doing the computation this way is that Mathematica now knows
permanently that f[3] has the value 2 and will never have to evaluate it again (say, when
we ask for f[4] or any other value). This becomes important for larger values, like f[100],
which would evaluate too slowly if we created the function less carefully.

Functions in Maple

Some of the commands we’ve seen, like matrix() and evalf(), are actually functions.
Maple contains many built-in functions, including common mathematical functions like
sin() and cos().

Example 12.32. We calculate sin(π/2) and the binomial coefficient 7
2 .

> sin(Pi/ 2);

1

> binomial(7, 2);

21

Maple also has functions related to Number Theory. For example, ifactor() determines
the prime factorization of an integer.

> ifactor(60466176);

10 10

(2) (3)

Maple can easily generate sequences (i.e., a table or list of values). Using the seq()
function and the ithprime() function (which returns the ith prime number), we construct
a list of the first 100 prime numbers.

> seq(ithprime(n), n=1..100);

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,

67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137,

139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,

110 12 Getting Started with Mathematica R , Maple R , and Maxima

Command Meaning Example Input Meaning

sqrt() square root sqrt(5) 5

exp() exponential exp(x) ex

ln() or log() natural logarithm ln(10) or log(10) ln 10

log10() common logarithm log10(5) log10 5

sin() sine sin(x) sinx

cos() cosine cos(x) cos x

tan() tangent tan(x) tan x

sum(,) sum sum(i^2,i=1..n)
n
i=1 i

2

mul(,) product mul(i^2,i=1..5)
5
i=1 i

2

mod(,) modulus mod(10,3) 10 mod 3

TABLE 12.2: Some Maple functions.

211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277,

281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359,

367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439,

443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521,

523, 541

Maple has functions that compute sums and products, which it can evaluate both arith-
metically and symbolically.

Example 12.33. The sums
10
i=1 i

2 and
n
i=1 i

2.

> sum(i^2, i=1..10);

385

> sum(i^2, i=1..n);

3 2

(n+1) (n+1) n 1

----- - ----- + - + -

3 2 6 6

Maple knows in its own way that
n
i=1 i

2 = n(n+ 1)(2n+ 1)/6.

Table 12.2 displays some useful Maple functions.

You can create your own functions. To create a function, use the := and -> operators.

Example 12.34. We define a function f(x) = x3 + sinx.

> f := x -> x^3 + sin(x);

3

f := x -> x + sin(x)

> f(Pi/2);

3

Pi

--- + 1

8

12.3 How to compute functions 111

We can differentiate and integrate our function.

> diff(f(x), x);

2

3 x + cos(x)

> integrate(f(x), x);

4

x

--- - cos(x)

4

> integrate(f(x), x=0..Pi);

4

Pi

--- + 2

4

Note. Maple does not supply an additive constant (+C) for indefinite integrals.

Functions in Maxima

Some of the commands we’ve seen, like matrix() and kill(), are actually functions.
Maxima contains many built-in functions, including common mathematical functions like
sin() and cos().

Example 12.35. We compute a couple of trigonometric functions.

(%i1) sin(%pi/2);

(%o1) 1

(%i2) cos(%pi/4);

1

(%o2) -------

sqrt(2)

Maxima also contains functions for counting things, like binomial coefficients, as well as
for dealing with numbers and factorizations.

Example 12.36. Computing with some of Maxima’s other functions:

(%i1) binomial(7, 3);

(%o1) 35

(%i2) factor(210);

(%o2) 2 3 5 7

(%i3) next_prime(1);

(%o3) 2

(%i4) next_prime(8);

(%o4) 11

(%i5) prev_prime(2009);

(%o5) 2003

Some functions must be loaded before they are available. For example, by default
Maxima does not load the permutation() function. It is contained in a packaged called
functs. Similarly, it does not load all of the functions you might use to do descriptive
statistics (like means or standard deviations).

112 12 Getting Started with Mathematica R , Maple R , and Maxima

Example 12.37. Loading functions into Maxima:

(%i8) load(functs);

(%o8) /usr/share/maxima/5.13.0/share/simplification/functs.mac

(%i9) permutation(10, 3);

(%o9) 720

(%i10) load (descriptive)$

(%i11) mean([1, 2, 3, 4, 5]);

(%o11) 3

Note. The dollar sign ($) at the end of a line serves exactly as a semicolon, but will suppress
the output. Notice that there is no (%o10) above.

Maple has functions that compute sums and products, and it can evaluate them both
arithmetically and symbolically.

Example 12.38. Maxima can compute products and sums:

(%i17) prod(sqrt(i), i, 1, 4);

3/2

(%o17) 2 sqrt(3)

(%i18) sum(i^2, i, 1, n);

n

====

\ 2

(%o18) > i

/

====

i = 1

Note. The variable simpsum controls whether Maxima will perform simplifications to sums.
It is false by default. Setting it to true will make Maxima return a closed form for the sum
above.

Example 12.39. Maxima will simplify sums when simpsum is true:

(%i19) simpsum : true;

(%o19) true

(%i20) sum(i^2, i, 1, n);

3 2

2 n + 3 n + n

(%o20) ---------------

6

Maxima knows that
n
i=1 i

2 = n(n+ 1)(2n+ 1)/6.

Maxima can also apply a condition to a calculation. For example, if we are interested
in the previous sum when n = 10, we could reevaluate it with that condition placed after
the comma (,) operator.

12.3 How to compute functions 113

Command Meaning Example Input Meaning

sqrt() square root sqrt(5) 5

exp() exponential exp(x) ex

log() natural logarithm log(10) ln 10

sin() sine sin(x) sin x

cos() cosine cos(x) cos x

tan() tangent tan(x) tan x

sum(,,,) sum sum(i^2,i,1,n)
n
i=1 i

2

prod(,,,) product prod(i^2,i,1,5)
5
i=1 i

2

mod(,) modulus mod(10,3) 10 mod 3

TABLE 12.3: Some Maxima functions.

Example 12.40. Evaluating an expression at a particular value:

(%i21) %, n=10;

(%o21) 385

Table 12.3 displays some useful Maxima functions.

To define your own functions, use the := operator.

Example 12.41. We define a function f(x) = x3 + sinx.

(%i1) f(x) := x^3 + sin(x);

3

(%o1) f(x) := x + sin(x)

(%i2) f(%pi/2);

3

%pi

(%o2) ---- + 1

8

We can differentiate and integrate our function.

(%i3) diff(f(x), x);

2

(%o3) cos(x) + 3 x

(%i4) integrate(f(x), x);

4

x

(%o4) -- - cos(x)

4

(%i5) integrate(f(x), x, 0, %pi);

4

%pi + 8

(%o5) --------

4

Note. Maxima does not supply an additive constant (+C) for indefinite integrals.

114 12 Getting Started with Mathematica R , Maple R , and Maxima

Functions in Maxima may also be defined recursively (in terms of previous values).
Perhaps the easiest way is to code the function as a small program. For example, the
famous Fibonacci sequence might be defined like this:

Example 12.42. Defining and evaluating the Fibonacci sequence.

(%i1) f(n) := if n<2 then 1 else f(n-1)+f(n-2);

(%o1) f(n) := if n < 2 then 1 else f(n - 1) + f(n - 2)

(%i2) makelist(f(n), n, 1, 10);

(%o2) [1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

Although technically correct, this is a very inefficient way to compute Fibonacci numbers.
The problem is that the same values of the Fibonacci sequence must be computed over and
over again (the evaluation of f(3) computes f(1) twice, for example). Large values like
f(100) will take much too long to compute using this naive definition. From a performance
point of view, it would have been better to use a loop (or some even better method) instead
of recursion for this particular computation.

12.4 How to make graphs

Graphs in Mathematica

Mathematica offers many graphing options. We show a few examples here. You can
create graphs of functions using Mathematica’s Plot command.

Example 12.43. A graph of the function y = sin x, for 0 x 2π.

In[1]:= Plot[Sin[x], {x, 0, 2 Pi}]

1 2 3 4 5 6

-1

-0.5

0.5

1

You can graph several curves together.

Example 12.44. A graph of three lines, y = 4x + 1, y = x + 4, and y = 9x 8, for
0 x 2.

In[1]:= f[x_] := 4 x + 1;

In[2]:= g[x_] := -x + 4;

In[3]:= h[x_] := 9 x - 8;

In[4]:= Plot[{f[x], g[x], h[x]}, {x, 0, 2}]

12.4 How to make graphs 115

0.5 1 1.5 2

-7.5

-5

-2.5

2.5

5

7.5

10

You can create 3-dimensional graphs of surfaces using the Plot3D command.

Example 12.45. A graph of the surface z = e (x
2+y2), for 2 x, y 2.

In[1]:= Plot3D[E^(-(x^2 + y^2)), {x, -2, 2}, {y, -2, 2}]

-2

-1

0

1

2
-2

-1

0

1

2

0

0.25

0.5

0.75

1

-2

-1

0

1

Example 12.46. We plot a sphere using parametric equations.

In[1]:= ParametricPlot3D[{Sin[phi] Cos[theta],

Sin[phi] Sin[theta], Cos[phi]},

{phi, 0, Pi}, {theta, 0, 2 Pi}]

See Figure 2 in the color insert.

If you want an Encapsulated PostScript (EPS) version of your image, use an Export
command.

In[2]:= Export["newgraph.eps", %]

116 12 Getting Started with Mathematica R , Maple R , and Maxima

The graphics file, newgraph.eps, is stored in a “working directory,” which you can identify
using the Directory command.

In[3]:= Directory[]

Out[3]= C:\\Program Files\\Wolfram Research\\Mathematica\\7

Graphs in Maple

Maple can create beautiful graphs, and a few examples are shown here. You can create
graphs of functions using the plot() function.

Example 12.47. A graph of the function y = sin x, for 0 x 2π.

> plot(sin(x), x=0..2*Pi);

You can graph several curves together by passing a set of functions to the plot()
function.

Example 12.48. A graph of three lines, y = 4x + 1, y = x + 4, and y = 9x 8, for
0 x 2.

> f := x -> 4*x+1:

> g := x -> -x + 4:

> h := x -> 9*x - 8:

> plot({ f(x), g(x), h(x) }, x=0..2);

12.4 How to make graphs 117

You can create 3-dimensional graphs of surfaces using the plot3d() function.

Example 12.49. A graph of the surface z = e (x
2+y2), for 2 x, y 2.

> plot3d(exp(-(x^2 + y^2)), x=-2..2, y=-2..2);

See Figure 3 in the color insert.

The plot3d() function can also perform parametric plots if you pass a list (in square
brackets) of the (x, y, z) coordinates of your surface.

Example 12.50. A parametric plot of a torus.

> plot3d([(2+cos(v))*cos(u), (2+cos(v))*sin(u), sin(v)],

u = 0 .. 2*Pi, v = 0 .. 2*Pi,

axes = framed, labels = [x, y, z], scaling = constrained);

See Figure 4 in the color insert.

Images generated in Maple may be saved in several different formats. Simply right-click
the image you wish to save and choose Export.

Graphs in Maxima

Maxima can graph both curves and surfaces. You can create graphs of curves with the
plot2d() command.

Example 12.51. A graph of the function y = sin x, for 0 x 2π.

(%i1) plot2d(sin(x), [x, 0, 2*%pi])$

-1

-0.5

 0

 0.5

 1

 0 1 2 3 4 5 6

s
in

(x
)

x

Note. If you use wxMaxima, substitute wxplot2d() for plot2d() to create “inline” graphics
that are integrated into your document.

You can graph several curves together by combining them in a list (i.e., in square brack-
ets).

118 12 Getting Started with Mathematica R , Maple R , and Maxima

Example 12.52. A graph of three lines, y = 4x + 1, y = x + 4, and y = 9x 8, for
0 x 2

(%i1) f(x) := 4*x + 1;

(%o1) f(x) := 4 x + 1

(%i2) g(x) := -x + 4;

(%o2) g(x) := - x + 4

(%i3) h(x) := 9*x - 8;

(%o3) h(x) := 9 x - 8

(%i4) plot2d([f(x), g(x), h(x)], [x,0,2])$

See Figure 5 in the color insert.

You can create 3-dimensional graphs of surfaces using the plot3d() command.

Example 12.53. A graph of the surface z = e (x
2+y2), for 2 x, y 2.

(%i1) plot3d(%e^(-(x^2+y^2)), [x,-2,2], [y,-2,2])$

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

%e
(
-y

2
-x

2
)

Note. In wxMaxima documents, use wxplot3d() to create inline 3D plots.

The plotting engine that lies beneath Maxima is called gnuplot, and it is a very functional
program of its own. By adding extra arguments to the plot3d() command, we can ask
gnuplot to enhance the graphs that we construct in Maxima. For example, we can choose
different coloring algorithms, we can draw contour lines on the surface (or beneath it), we
can specify a particular viewing angle, or we can label the axes.

Example 12.54. A nicely colored surface with contour lines and labeled axes.

(%i1) plot3d(%e^(-(x^2+y^2)), [x,-2,2], [y,-2,2],

[gnuplot_preamble, "set pm3d; set hidden3d; set contour both;\

set xlabel ’x’; set ylabel ’y’; set zlabel ’z’;\

set key top left"])$

See Figure 6 in the color insert.

Gnuplot settings that you may wish to include:

set contour base

12.4 How to make graphs 119

set contour surface

set contour both

set cntrparam levels 10

set cntrparam levels discrete 1,2,4,8 (sets contour lines at specific values)

set hidden3d (makes the surface opaque)

set nohidden3d (makes the surface transparent)

set key (moves the legend key to different places)

set pm3d (colors the surface according to height)

set surface (draws the surface)

set nosurface (hides the surface, but contour lines and pm3d will still show)

set xlabel ’x axis’

set ylabel ’y axis’

set zlabel ’z axis’

set view 45,115 (rotates the viewpoint around x-axis and z-axis)

Maxima doesn’t have a command for printing a plot, but it does have options for saving a
plot to a file, which you can then print. The most useful file formats are probably PostScript
and PNG (Portable Network Graphics). Since gnuplot actually does the plotting, we simply
have Maxima tell gnuplot what we want. If we don’t specify, plots will be saved with the
name maxplot.ps (for PostScript files) or maxplot.png (for PNG files).

Example 12.55. Saving a plot to a file.

(%i1) plot2d(x^2, [x,0,3], [gnuplot_term, ps])$

(%i2) plot2d(x^2, [x,0,3], [gnuplot_term, png])$

Maxima will try to guess the best place to save your files, usually your “home” directory
on GNU/Linux or Unix systems and in the “My Documunts” folder on Windows systems.
The variable maxima_tempdir determines where images will be saved. Notice that even on
systems running Microsoft Windows, Maxima uses forward slashes to indicate folders (just
as browsers do with Web addresses).

Example 12.56. Changing the default location for saved images.

(%i3) maxima_tempdir;

(%o3) C:/Documents and Settings/dbindner

(%i4) maxima_tempdir : "C:/";

(%o4) C:/

We can also specify a file name if we wish. For example, if we want a plot of y = x2 saved
as (encapsulated) PostScript with the file name parabola.eps, we could do something like
this:

Example 12.57. Naming the file that a Maxima plot is saved to.

(%i5) plot2d(x^2, [x,0,3],

[gnuplot_term, ps], [gnuplot_out_file, "parabola.eps"])$

120 12 Getting Started with Mathematica R , Maple R , and Maxima

12.5 How to do simple programming

Programming in Mathematica

Mathematica supports a full spectrum of programming paradigms, including procedural,
functional, transformational, and object-oriented approaches. We give a sampling here.
A Do loop is a simple kind of program that performs a calculation some fixed number of

times.

Example 12.58. A calculation related to the fractal known as the Mandelbrot set. We set
c = 0.5 + 0.5i and z = 0 + 0i. Then we iterate the function f(z) = z2 + c ten times.

In[1]:= c = -0.5 + 0.5 I;

In[2]:= z = 0 + 0 I;

In[3]:= Do[z = z^2 + c, {10}];

In[4]:= z

Out[4]= -0.11932 + 0.219608 I

In[5]:= Clear[c,z]

This is fine for a one-time computation. But perhaps we wish to run the same program
several times, with different values for c and different numbers of iterations. To do this, we
create a module, which is a procedure containing local variables.

Example 12.59. We define a module containing the local variable z. The values of c and
i (the number of iterations) are input when the module is called.

In[1]:= f[c_, i_] := Module[{z}, z = 0 + 0 I;

Do[z = z^2 + c, {i}];

z

]

In[2]:= f[-0.5 + 0.5 I, 10]

Out[2]= -0.11932 + 0.219608 I

Notice that z has no value outside the module.

In[3]:= z

Out[3]= z

It is good programming practice to use modules, and to make them small and easy to
understand.

One useful feature of functions in Mathematica is that they are “threaded” over lists
automatically and applied to each list item.

Example 12.60. We thread addition and cubing operations over the list a, b, c .

12.5 How to do simple programming 121

In[1]:= a := 6; c := 2+I;

In[2]:= 1000 + {a,b,c}^3

3

Out[2]= {1216, 1000 + b , 1002 + 11 I}

Sometimes functions are complex enough to be called programs.

Example 12.61. We define a function

f(n) =
1

n
k n

φ(k)2n/k.

Note. From the Pólya theory of counting, f(n) is the number of distinct (up to rotation
and flipping) necklaces formed by n beads of two types.

The summation is over a set of numbers, namely, the set of positive divisors of n. This
set is obtained in Mathematica as Divisors[n]. We need to apply the summand, φ(k)2n/k,
to each element of this set. The summand contains a “dummy variable,” k. To define the
summand as a Mathematica function, we replace each instance of the dummy variable with
the marker # (number sign).

EulerPhi[#]2^(n/#)&

The & (ampersand) identifies the function as a “pure function” in which the argument is
denoted by #.

Then we apply the function to the set Divisors[n] as follows.

EulerPhi[#]2^(n/#)&/@Divisors[n]

(The construction f/@s applies a function f to a set s.)

Finally, we add the elements of the set produced by this process. The expression Plus@@s
adds the elements of the set s. Thus, we can now define our function in Mathematica.

In[1]:= f[n_] := (1/n)Plus@@(EulerPhi[#]2^(n/#)&/@Divisors[n])

We test our function.

In[2]:= f[4]

Out[2]= 6

It is easy to verify by inspection that there are exactly six different necklaces made of four
beads of two types.

And now we compute a large value of the function.

In[3]:= f[100]

Out[3]= 12676506002282305273966813560

122 12 Getting Started with Mathematica R , Maple R , and Maxima

Programming in Maple

Programming in Maple is similar to programming in Mathematica. In Maple, programs
are called procedures. Let’s create a procedure to find the greatest common divisor (gcd)
of two positive integers. Recall that the Euclidean algorithm for finding the gcd of integers
a and b is based on the relation

gcd(a, b) = gcd(b, r),

where a = bq + r, with 0 r < b. In Maple, the remainder r is given by modp(a,b).
Here is our procedure, which we call ourgcd.

> ourgcd := proc(a,b)

local atemp, btemp;

(atemp, btemp) := (a, b);

while btemp > 0 do

(atemp, btemp) := (btemp,modp(atemp,btemp));

end do;

atemp;

end proc:

We use the construction proc() and end proc to begin and end a procedure. The
inputs in the procedure are a and b. In the second line, we declare the variables to be used
in the procedure (atemp and btemp). In the third line, we set values for these variables.
The fourth line begins with a while loop, which has a test condition (btemp > 0) and a
command to be performed (the key step). The command is bracketed by do and end do.
Finally, an output (the value of atemp) is output.

> ourgcd(15,24);

3

Programming in Maxima

Interesting and powerful programs may be expressed in Maxima. In fact, Maxima can
be programmed in two different ways. Not only is Maxima a full-fledged programming
language, but Maxima itself is written in Lisp, and it is possible to graft custom Lisp
programs into Maxima. Both simple and elaborate programs can generally be written
without resorting to Lisp, however, building on the syntax that we have already learned.
A thru-do loop is a simple kind of program that performs a calculation some fixed

number of times.

Example 12.62. A calculation related to the fractal known as the Mandelbrot set. We set
c = 0.5 + 0.5i and z = 0. Then we iterate f(z) = z2 + c ten times.

(%i1) c : -0.5 + 0.5*%i;

(%o1) 0.5 %i - 0.5

(%i2) z : 0;

(%o2) 0

(%i3) thru 10 do z : z^2 + c;

(%o3) done

(%i4) expand(z);

(%o4) 0.21960760831735 %i - 0.11932015744635

12.5 How to do simple programming 123

This is fine for a one-time computation. But perhaps we wish to run the same program
several times, using different values of c and for a different number of iterations. To do this,
we can create a function to perform the computation.
An essential part of getting complex functions to work well is the block() function,

which is used in Maxima to encapsulate a program. The block() function does two impor-
tant tasks that help protect our code.
The first useful thing that block() does is provide a new variable name space. If the

first argument in a block is a list of variable names (or variable initializations), then those
variables will be local to the block. A local variable z, for example, used in a program will
not overwrite a variable z you may have been using in a calculation elsewhere.
The second task that block() does is to evaluate a compound expression and return

the value of the last computation performed. Whatever value is calculated by the last step
of a program becomes the return value for the function.

Example 12.63. A function with one local variable, z, encapsulated in a block. Notice
that outside the program z has not been changed or defined.

(%i1) f(c,i) := block(

[z : 0],

thru i do z : z^2 + c,

expand(z)

);

(%o1) f(c, i) := block(z : 0, thru i do z : z + c, expand(z))

(%i2) f(-0.5+0.5*%i, 10);

(%o2) 0.21960760831735 %i - 0.11932015744635

(%i3) z;

(%o3) z

Note. The expressions that make up a compound expression are separated by commas,
not semicolons, and the last expression in the block is not followed by anything. The only
semicolon comes at the end of the block.

Programs in Maxima can be as elaborate as you can imagine and code. Here is a bit
longer example. A common task for Calculus students is to learn and compute Newton’s
method to find zeros of a function. Maxima has native ways to solve for zeros, but for this
example we program Newton’s method into Maxima directly.

Example 12.64. A hand-coded Newton’s method program used to find the square root of
81 (a solution to x2 81 = 0).

(%i1) newt(f, x, err) := block(

[df, old, i], /* local variables */

df : diff(f(’x), ’x), /* differentiate algebraically */

old : x,

x : ev(x-f(x)/df, numer),/* evaluate numerically */

for i:1 thru 20 do (

if abs(x-old) < abs(err) then return(x),

old : x,

x : ev(x-f(x)/df, numer)

)

124 12 Getting Started with Mathematica R , Maple R , and Maxima

/* if loop runs out without a return(), */

/* no value will be returned */

)$

(%i2) f(x) := x^2 - 81;

2

(%o2) f(x) := x - 81

(%i3) newt(f, 1, .001);

(%o3) 9.000000000007093

12.6 How to learn more

Learning more about Mathematica

There are many aspects of Mathematica not discussed in this introduction, such as
standard and add-on packages, sound, and animated graphics. Here are some resources for
you to investigate to learn more.

The definitive book about Mathematica is [59]. Good beginning books are [16] and [56].
For informative examples of Mathematica in a wide variety of settings, see [11], [36], [48],
and [58]. The books [27] and [26] show many applications of Mathematica to Calculus. For
a comprehensive guide to add-on packages, see [37].

For complete and up-to-date information describing Mathematica, you may want to visit
the Web site www.wolfram.com. Another interesting site, concerning the Mathematica in
Education and Research journal, is www.telospub.com/journal/MIER/.

Learning more about Maple

Maple is produced by Waterloo Maple, Inc. You can obtain more information at
www.maplesoft.com.

A favorite source to learn more about Maple is the MaplePrimes discussion site at
www.mapleprimes.com.

Learning more about Maxima

The Maxima project page is maxima.sourceforge.net. The project page contains
documentation in various languages for Maxima as well as links to sites for downloading
Maxima. Most notably, a version of Maxima that works on Microsoft Windows is available
as a free download from sourceforge.net/projects/maxima/files/.

Exercises

1. Graph each of the functions. Experiment with different domains or viewpoints to
display the best images.

Exercises 125

(a) f(x) =
x

1 + x2

(b) y = x sin(1/x)

(c) g(x, y) = cos(x) + sin(y)

(d) z =
xy

x2 + y2

2. Let f(x) =
x

1 + x2
.

(a) Find f (x) and f (x).

(b) Find f (1) and f (0).

(c) Find f (0) and f (1).

3. Find the prime factorization of each integer.

(a) 3,527,218,133,309,949,276,293

(b) 471,945,325,930,166,269

(c) 471,945,325,930,166,281

4. Compute each expression. Do you notice a pattern?

(a) 36 mod 7

(b) 610 mod 11

(c) 720 mod 21

(d) 722 mod 23

5. In 1976, Whitfield Diffie and Martin Hellman published a way for two people to share
a secret number when communicating over an insecure medium (like the Internet).

If Alice and Bob want to communicate, Alice picks a random prime p and another
random number g smaller than p. To create a shared secret, Alice and Bob each pick
part of the secret. Alice picks a random number a and Bob picks a random b. Alice
computes A = ga mod p, which she sends to Bob, and Bob computes B = gb mod p
to send to Alice. The actual secret is gab mod p, which both Alice and Bob can
compute, but which someone watching only the communication would find difficult
to reproduce (because it’s difficult to figure out what a and b are).

(a) Play the part of Alice. We’ll use p = 36479 for our prime and a random number
g = 14, which she shares with Bob (and potentially with the world). Then Alice
needs a secret value, and we’ll use a = 5013. Alice sends Bob the value A = ga

mod p. Compute 145013 mod 36479 to send to Bob.

(b) Play the part of Bob, who has received p, g,A from Alice. Bob needs a secret
value, and we’ll use b = 29252. Bob sends Alice the value B = gb mod p.
Compute 1429252 mod 36479 to send to Alice.

(c) Verify that when Alice computes S = Ba mod p she gets the same answer that
Bob does when he computes S = Ab mod p. This is their shared secret that no
one else knows.

6. A good estimate for the area under a curve can be obtained using the Midpoint rule,
which approximates the exact area using rectangles. Consider the curve y = 1 + x2

on the interval [0, 1]. Using Calculus, we can verify that the exact area is 4/3, but
even without Calculus we can approximate the area with rectangles.

126 12 Getting Started with Mathematica R , Maple R , and Maxima

1

1

2

Each rectangle has width 1/4 and touches the function at the midpoint of its top side,
giving rectangle heights of 1 + (1/8)2, 1 + (3/8)2, 1 + (5/8)2, and 1 + (7/8)2.

(a) Estimate the area under the curve by computing the sum:

3

i=0

0.25 1 +
1 + 2i

8

2

(b) Compute an expression for the area estimated by n rectangles:

n 1

i=0

1

n
1 +

1 + 2i

2n

2

7. To win the jackpot of the Missouri lottery, a ticket holder must correctly match 6 of
40 numbered balls (in any order).

(a) Compute 40
6 , the number of combinations of balls that may be a winning lottery

number.

(b) Each ticket holder picks two (different) sets of six numbers for the ticket and wins
if either set of six is an exact match. What is the probability that an individual
ticket wins the jackpot?

(c) If a person plays every month for 30 years, compute the probability of winning

at least one time: 1 1 2/ 406
360
.

8. Let M =
1 1
1 0

.

(a) Find M2, M3, . . . , M10.

(b) Do your answers suggest a way to compute Fibonacci numbers? Find the 100th
Fibonacci number.

(This method is much more efficient than the computation in Example 12.42 and
probably faster than the computation in Example 12.31.)

9. Find solutions to the following equations or systems of equations. Hint: If you use
Mathematica, the command you are looking for is Solve. Maple and Maxima both
use solve() to find algebraic solutions. Check the help for examples and syntax.

(a) Find x, if x2 + x = 1.

(b) Find x, if x2 + x = 1.

(c) Find x and y.

4x 3y = 5

6x+ 2y = 14

Exercises 127

(d) Find x, y, z, and t.

2x 2y + 3z + t = 8

3x+ 0y 6z + t = 19

6x 8y + 6z + 5t = 47

x+ 3y 3z t = 9

10. Some equations are difficult or impossible to solve explicitly, even with software. In
such situations, we often resort to numerical methods. Mathematica uses FindRoot,
Maple uses fsolve(), and Maxima uses find_root() to find numerical solutions to
equations. Here is an example where a numerical approach works well.

Assume that I invest $250 at the beginning of the year, $300 at the beginning of the
second quarter, $350 at the beginning of the third quarter, and $400 at the beginning
of the fourth quarter. At the end of the year, I have $1365 (because my investments
grow). To find my (continuous) rate of return, solve this equation for r:

250e1.0r + 300e0.75r + 350e0.5r + 400e0.25r = 1365.

11. If n is a positive number, and g > 0 is any “guess” for the square root of n, then a

better estimate of n is the average of g and n/g, i.e.,
g + n/g

2
. Write a function

called mysqrt that accepts one argument, begins with an initial guess of 1.0, finds 20
new guesses, and returns the answer.

12. The Collatz conjecture states that if we start from any natural number a0 = n and
form a sequence by the rule

ai+1 =
ai/2 if ai is even
3ai + 1 if ai is odd,

then the sequence eventually contains the value 1. For example, starting from a0 = 6,
we get the sequence 6, 3, 10, 5, 16, 8, 4, 2, 1 (we reached 1 after eight steps).

(a) Write a (recursive) function called collatz that accepts a single argument, n,
and returns:

0 if n is equal to 1

1+collatz(n/2) if n is even

1+collatz(3*n+1) if n is odd

Thus, collatz(n) is the number of steps needed to go from n to 1.

(b) Verify the values:

n collatz(n)

1 0
2 1
6 8
27 111

