
Connecting with
Computer Science
second edition

Greg Anderson
David Ferro
Robert Hilton
Weber State University

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

1439080356_FM_REV2.qxd 12/4/09 7:19 AM Page i

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Connecting with Computer Science,

Second Edition

Greg Anderson, David Ferro, Robert Hilton

Executive Editor: Marie Lee

Acquisitions Editor: Amy Jollymore

Senior Product Manager: Alyssa Pratt

Development Editor: Lisa M. Lord

Editorial Assistant: Zina Kresin

Content Project Manager: Matthew

Hutchinson

Art Director: Faith Brosnan

Copyeditor: Karen Annett

Proofreader: Foxxe Editorial Services

Indexer: Liz Cunningham

Photo Researcher: Abby Reip

Compositor: Pre-PressPMG

© 2011 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright

herein may be reproduced, transmitted, stored or used in any form or by

any means graphic, electronic, or mechanical, including but not limited to

photocopying, recording, scanning, digitizing, taping, Web distribution,

information networks, or information storage and retrieval systems,

except as permitted under Section 107 or 108 of the 1976 United States

Copyright Act, without the prior written permission of the publisher.

Library of Congress Control Number: 2009940546

ISBN-13: 978-1-4390-8035-1

ISBN-10: 1-4390-8035-6

Course Technology

20 Channel Center Street

Boston, MA 02210

Cengage Learning is a leading provider of customized learning solutions

with office locations around the globe, including Singapore, the United

Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office

at: international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson

Education, Ltd.

For your lifelong learning solutions, visit course.cengage.com

Visit our corporate website at cengage.com.

For product information and technology assistance, contact us at

Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,

submit all requests online at cengage.com/permissions

Further permissions questions can be e-mailed to

permissionrequest@cengage.com

Printed in Canada
1 2 3 4 5 6 16 15 14 13 12 11

Some of the product names and company names used in this book have been used for identification purposes only and may be

trademarks or registered trademarks of their respective manufacturers and sellers.

Any fictional data related to persons or companies or URLs used throughout this book is intended for instructional purposes

only. At the time this book was printed, any such data was fictional and not belonging to any real persons or companies.

Course Technology, a part of Cengage Learning, reserves the right to revise this publication and make changes from time to

time in its content without notice.

The programs in this book are for instructional purposes only.

They have been tested with care but are not guaranteed for any particular intent beyond educational purposes. The author and

the publisher do not offer any warranties or representations, nor do they accept any liabilities with respect to the programs.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

br ie f contents

chapter 1
history and social implications of computing 2

chapter 2
computing security and ethics 46

chapter 3
computer architecture 96

chapter 4
networks 134

chapter 5
the Internet 168

chapter 6
database fundamentals 204

chapter 7
numbering systems and data representations 248

chapter 8
data structures 276

chapter 9
operating systems 318

chapter 10
file structures 350

chapter 11
the human-computer interface 374

chapter 12
problem solving and debugging 406

chapter 13
software engineering 430

chapter 14
programming I 464

chapter 15
programming II 508

appendix A
answers to test yourself questions 559

appendix B
ASCII (American Standard Code for Information Interchange) table 594

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

iv brief contents

appendix C
Java and C++ reserved words 597

glossary 601

index 627

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

tab le o f contents

chapter 1: history and social implications of computing 2

in this chapter you will 3
the lighter side of the lab 4
why you need to know about . . . 5

ancient history 5
Pascal and Leibniz start the wheel rolling 6
Joseph Jacquard 6
Charles Babbage 7
Herman Hollerith 8

progression of computer electronics 10
wartime research drives technological innovation 10
ENIAC and EDVIAC 10

the computer era begins: the first generation 12
UNIVAC 13
IBM (Big Blue) 15

transistors in the second generation 16

circuit boards in the third generation 16
time-sharing 17

living in the ’70s with the fourth generation 18

the personal computer revolution 18
Intel 19
the Altair 8800 20
enter Bill Gates, Paul Allen, and Microsoft 21
the microcomputer begins to evolve 22
an Apple a day . . . 22

IBM offers the PC 23
MS-DOS 24

the Apple Macintosh raises the bar 25

other PCs (and one serious OS competitor) begin to emerge 26

the latest generation (fifth) 27
the Internet 27
LANs and WANs and other ANs 29
super software and the Web 29

the Microsoft era and more 32

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

what about the future? 34

one last thought 36

chapter summary 38
key terms 39
test yourself 40
practice exercises 41
digging deeper 44
discussion topics 44
Internet research 45

chapter 2: computing security and ethics 46

in this chapter you will 47
the lighter side of the lab 48
why you need to know about . . . 49

the intruder 50

how do they get in? 51
holes in the system 52
viruses, worms, and other nasty things 53
the human factor: social engineering 54
types of attacks 55

managing security: the threat matrix 56
vulnerabilities 57
threat: agents 57
threat: targets and events 57
measuring total risk 58

managing security: countermeasures 58
clean living (or only the paranoid survive) 59
passwords 62
antivirus software 64
using encryption to secure transmissions and data 65
securing systems with firewalls 69
protecting a system with routers 69
the DMZ 70
protecting systems with machine addressing 71
putting it all together 72

computer crime 72
defining computer crime 72
prosecuting computer crime 73
I fought the law and the law won 77

vi table of contents

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

ethics in computing 78
software piracy 80
viruses and virus hoaxes 81
weak passwords 81
plagiarism 81
cracking 82
health issues 82

privacy 83

one last thought 87

chapter summary 88
key terms 89
test yourself 90
practice exercises 91
digging deeper 94
discussion topics 94
Internet research 95

chapter 3: computer architecture 96

in this chapter you will 97
the lighter side of the lab 98
why you need to know about . . . 99

inside the box 99
the CPU 102
how transistors work 103

digital logic circuits 104
the basic Boolean operators 106
digital building blocks 107
gate behavior 110
complex circuits 111

Von Neumann architecture 116
buses 117
peripheral buses 118

storage 119
memory 119
mass storage 121

input/output systems 122
input devices 123
output devices 124

tab le o f contents vii
Clic

k t
o b

uy N
OW

!PD
F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

viii table of contents

interrupts and polling 126

choosing the best computer hardware 126

one last thought 127

chapter summary 128
key terms 128
test yourself 129
practice exercises 130
digging deeper 132
discussion topics 133
Internet research 133

chapter 4: networks 134

in this chapter you will 135
the lighter side of the lab 136
why you need to know about . . . 137

connecting computers 138

transmission media 138
guided media 139
unguided media: wireless technologies 142
protocols 144
ISO OSI reference model 147

network types 149

LAN topologies 150

LAN communication technologies 152

network communication devices 152
NIC 153
repeater 153
hub 153
switch 153
bridge 153
gateway 154
router 154
firewall 154

switched networks 155
high-speed WANs 157
multiple access 158
DSL 158
cable modems 159

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

tab le o f contents ix

wireless technologies 159
satellite technologies 159

one last thought 160

chapter summary 161
key terms 162
test yourself 163
practice exercises 163
digging deeper 166
discussion topics 166
Internet research 167

chapter 5: the Internet 168

in this chapter you will 169
the lighter side of the lab 170
why you need to know about . . . 171

what is the Internet? 172

the architecture of the Internet 172

protocols 173
TCP and IP 174
DHCP 177

routers 178

high-level protocols 180
SMTP 181
FTP 181
SSH 182
HTTP 182

URLs and DNS 183

port numbers 185

NAT 186

checking your configuration 187

HTML 188
creating a simple Web page 190
XML 194

using the Internet 195
search engines 195

one last thought 197

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

x table of contents

chapter summary 198
key terms 199
test yourself 199
practice exercises 200
digging deeper 203
discussion topics 203
Internet research 203

chapter 6: database fundamentals 204

in this chapter you will 205
the lighter side of the lab 206
why you need to know about . . . 207

database applications 207

brief history of database management systems 208

database management system fundamentals 211
database concepts 211

normalization 216
preparing for normalization: gathering columns 216
first normal form 218
second normal form 219
third normal form 222

the database design process 224
step 1: investigate and define 224
step 2: make a master column list 225
step 3: create the tables 225
step 4: work on relationships 226
step 5: analyze the design 228
step 6: reevaluate 229

Structured Query Language (SQL) 230
CREATE TABLE statement 231
INSERT INTO statement 233
SELECT statement 234
WHERE clause 235
ORDER BY clause 238

one last thought 240
chapter summary 241
key terms 241
test yourself 242
practice exercises 244

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

tab le o f contents xi

digging deeper 246
discussion topics 246
Internet research 247

chapter 7: numbering systems
and data representation 248

in this chapter you will 249
the lighter side of the lab 250
why you need to know about . . . 251

powers of numbers: a refresher 252

counting things 252
positional value 254
how many things does a number represent? 255

converting numbers between bases 257
converting to base 10 258
converting from base 10 258
binary and hexadecimal math 261

data representation in binary 262
representing whole numbers 263
representing fractional numbers 265
representing characters 265
representing images 267
representing sounds 268

one last thought 268

chapter summary 270
key terms 270
test yourself 271
practice exercises 272
digging deeper 274
discussion topics 275
Internet research 275

chapter 8: data structures 276

in this chapter you will 277
the lighter side of the lab 278
why you need to know about . . . 279

data structures 279

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

xii table of contents

arrays 280
how an array works 281
multidimensional arrays 285
uses of arrays 289

lists 290
linked lists 290
stacks 294
queues 297

trees 299
uses of binary trees 301
searching a binary tree 301

sorting algorithms 304
selection sort 304
bubble sort 306
other types of sorts 309

one last thought 311

chapter summary 312
key terms 312
test yourself 313
practice exercises 315
digging deeper 317
discussion topics 317
Internet research 317

chapter 9: operating systems 318

in this chapter you will 319
the lighter side of the lab 320
why you need to know about . . . 321

what is an operating system? 321
types of operating systems 327

functions of an operating system 327
providing a user interface 328
managing processes 330
managing resources 332
providing security 333

using an operating system 333
managing disk files 334

one last thought 343

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

tab le o f contents xiii

chapter summary 344
key terms 345
test yourself 345
practice exercises 346
digging deeper 349
discussion topics 349
Internet research 349

chapter 10: file structures 350

in this chapter you will 351
the lighter side of the lab 352
why you need to know about . . . 353

what does a file system do? 353

file systems and operating systems 356
FAT 356
NTFS 360
comparing file systems 361

file organization 363
binary or text 363
sequential or random access 364

hashing 366
why hash? 367
dealing with collisions 368
hashing and computing 369

one last thought 369

chapter summary 370
key terms 370
test yourself 371
practice exercises 371
digging deeper 372
discussion topics 372
Internet research 372

chapter 11: the human-computer interface 374

in this chapter you will 375
the lighter side of the lab 376
why you need to know about . . . 377

the evolving interface 378

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

xiv table of contents

user interface technologies 379

foundations of user interface design 382
human psychology in human-computer interaction 383
design criteria for a quality user interface 385
designing for the Web 389
the user-centric design process 394

human emotion and human-computer interfaces 397
personalization and customization 399

one last thought 400

selected references 400

chapter summary 401
key terms 402
test yourself 402
practice exercises 402
digging deeper 404
discussion topics 404
Internet research 405

chapter 12: problem solving and debugging 406

in this chapter you will 407
the lighter side of the lab 408
why you need to know about . . . 409

the mental game of problem solving 409

why are software problems so hard to solve? 411
problem-solving approaches 412

debugging 413
rule 1: I will own the problem 414
rule 2: I will remain calm and remember the mental
game of debugging 414
rule 3: I will use the scientific method and problem-solving
approaches 415
rule 4: I will read the manual 415
rule 5: I will make it fail 415
rule 6: I will look before I assume 416
rule 7: I will divide and conquer the problem 416
rule 8: I will isolate changes 418
rule 9: I will write down what I do 419
rule 10: I will check the fuel level 421

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

tab le o f contents xv

rule 11: I will get another perspective 421
rule 12: I will check that the problem is fixed 422
rule 13: I will ask three questions 422
the rules in action 423

one last thought 425

references 426

chapter summary 426
key terms 427
test yourself 427
practice exercises 427
digging deeper 428
discussion topics 429
Internet research 429

chapter 13: software engineering 430

in this chapter you will 431
the lighter side of the lab 432
why you need to know about . . . 433

what is software engineering? 434
software development life cycle 434

creating the design document 436
step 1: learn the current system and needs 437
step 2: create UML diagrams 438
step 3: create the data dictionary 443
step 4: design reports 444
step 5: structuring the application’s logical flow 446
step 6: start building the prototype 449
step 7: putting all the pieces together 450

avoiding the pitfalls 451
userphobia 452
too much work 452
scope creep 452

the project development team 453
project manager 453
database administrator 454
software developers (programmers) 455
client (end user) 455
tester 455
customer relations representative 456

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

xvi table of contents

generator of installation media 457
installer of the application 457

one last thought 457

chapter summary 458
key terms 458
test yourself 459
practice exercises 460
discussion topics 462
digging deeper 462
Internet research 463

chapter 14: programming I 464

in this chapter you will 465
the lighter side of the lab 466
why you need to know about . . . 467

what is a program? 468

I speak computer 469

low-level languages 474
assembly-language statements 474

high-level languages 478
structure of a program 479

syntax of a programming language 485
variables 485
operators 487
precedence and operators 491
control structures and program flow 492
ready, set, go! 494

object-oriented programming 495
how OOP works 497
inheritance 499
encapsulation 501
polymorphism 501

choosing a programming language 502

one last thought 502

chapter summary 503
key terms 503
test yourself 504

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

tab le o f contents xvii

practice exercises 505
digging deeper 506
discussion topics 507
Internet research 507

chapter 15: programming II 508

in this chapter you will 509
the lighter side of the lab 510
why you need to know about . . . 511

Java and C++ programming languages 511
learning to cook with Java and C++ 512

variables 513
variable naming conventions 513
variable types 513
Hungarian notation 518
variable content 518

Java and C++ control structures and program flow 520
invocation 520
top down (or sequence) 522
blocks of code 524
back to control structures 529
selection 530
repetition (looping) 543

one last thought 552

chapter summary 553
key terms 553
test yourself 554
practice exercises 554
digging deeper 557
discussion topics 557
Internet research 558

appendix A
answers to test yourself questions 559

appendix B
ASCII (American Standard Code for Information Interchange) table 594

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

xviii table of contents

appendix C
Java and C++ reserved words 597

glossary 601

index 627

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

pre face

The second edition of Connecting with Computer Science continues to have a fresh
approach to learning the essentials of computer science. The style encourages
students in Introduction to Computer Science (CS0) courses to actually read the
assigned material, and the content enables them to learn the foundational mater-
ial needed to handle the rigor of a computer science program. It’s an easy-to-read
yet comprehensive introductory book for computer science majors that also ap-
peals to nonmajors who want a broad-based introduction to the field. In other
words, it’s a computer science book that students can connect with. The second
edition continues to include the core knowledge outlined by the ACM/IEEE
Joint Task Force on Computing Curricula in a context suitable for beginning
students, without “dumbing down” the material or patronizing students.

As in the first edition, this edition maintains a conversational writing style, an
open design, and an optimal balance of text, figures, tables, and margin features.
It has been updated to reflect current and emerging technologies, and the chapter
order has been altered slightly because of student and faculty feedback to create a
better learning experience. Additionally, new chapters introduce students to
problem solving, designing human-computer interfaces, and C++ programming.

The informal writing style, along with numerous practical examples, will con-
tinue to draw students into reading and enjoying the material, so they will be
better able to learn and retain the necessary concepts. Connecting with Computer
Science, Second Edition, is suitable for students with varying levels of knowledge
and expertise and will help ensure that students moving on to a CS1 course have
a consistent foundation.

what’s new in the second edition
Connecting with Computer Science was first published in 2005—the same year
YouTube was founded. Since then, YouTube has undergone several major
changes, but there have been even more changes in the computing industry,
prompting the need for an updated edition of this book.

Connecting with Computer Science has been used successfully in many computing
education programs. Those using the book were solicited for ideas for improve-
ment that could be incorporated along with other revisions.

Our goal in the second edition is to provide a current, relevant book that’s written
and organized in a manner that encourages students to read, enjoy, and learn. We
believe we have accomplished this goal in the second edition.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

xx preface

The main changes in this edition are as follows:

• The material has been updated throughout to incorporate current technology
and ideas. Every page was checked and edited to make sure outdated material
was revised to reflect the current state of computing.

• Chapters have been reordered, based on student and faculty feedback, to give
students in a first computing course a better learning experience. This sequence
is designed to draw students in and lead them through the topics. The chapter
mapping after this list helps those familiar with the first edition correlate old
chapters with the new sequence.

• Two new chapters, “The Human-Computer Interface,” and “Problem Solving
and Debugging,” delve into topics that were discussed only briefly in the first
edition.

• The programming chapter was split into two chapters to better separate pro-
gram design and programming basics from exercises in programming. In
addition, coverage of C++ was added to the sections on Java programming so
that the book is valuable in programs emphasizing either language.

• More emphasis was placed on Linux to reflect its growing popularity in
computing.

• The chapters on emerging technologies and software tools for techies were
moved to the Web so that they can be updated more easily to stay on the fron-
tiers of computing.

• The appendix material was expanded to be more useful as a reference.

We believe this edition continues the tradition established in the first edition
and will give both faculty and students an enhanced experience in a first com-
puting course.

chapter mapping

2nd edition chapter 1st edition chapter topic

1 1 History and Social Implications
of Computing

2 13 Computing Security and Ethics

3 3 Computer Architecture

4 6 Networks

5 7 The Internet

6 8 Database Fundamentals

7 4 Numbering Systems and Data
Representations

8 9 Data Structures

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

pre face xxi

9 5 Operating Systems

10 10 File Structures

11 The Human-Computer Interface

12 Problem Solving and Debugging

13 12 Software Engineering

14 11 Programming I

15 Programming II

Web 2 Software Tools for Techies

Web 14 Emerging Technologies

approach
Our approach in this book is to present the breadth of the computer
science discipline in a way that’s accessible, understandable, and enjoyable.
The following sections outline specific elements of this approach.

draw students in at the beginning
of each chapter
Each chapter begins with a humorous vignette, “the lighter side of the lab,” by
CS student and journalist Spencer Hilton. These vignettes capture the students’
attention and provide a bridge to the chapter material. Many studies have
demonstrated that humor is an effective catalyst to learning. These vignettes
were written in a way that students can relate to.

explain why the material in the chapter
is important
Students are more likely to read and study the material in a chapter if they un-
derstand why it will be important to them in their studies. A short section at
the beginning of each chapter explains why students need to learn the material
in the chapter and how they will benefit from it.

keep the pages informative
and visually interesting
The chapters are filled with margin sidebars and definitions that break up
the text and add interest. Photos and conceptual diagrams are also used
throughout to illustrate and provide examples. We took care to not clutter
the text with excessive nontext material and maintain a good balance between

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

xxii preface

text and supporting material. Additionally, appropriate humorous material is
interspersed to further encourage students to keep reading.

give key term definitions in the margins
Key terms are defined in the margin at the point they’re first used so that
students don’t have to turn to the back of the chapter or book to find defini-
tions. Each chapter has a list at the end of key terms with page references. At
the end of the book, all the key terms and their definitions are compiled in a
glossary for easy reference.

include ample end-of-chapter review materials
At the end of each chapter are many types of review materials to solidify
students’ grasp of the material, including the following:

• test yourself questions: At the end of the chapter are 10 to 20 questions that
students can use to test their knowledge of the subject matter in the chapter.
Answers to these questions are in Appendix A.

• practice exercises: At the end of each chapter are also 10 to 20 multiple-
choice practice exercises. The answers for these questions aren’t given in the
book but are available with the instructor’s materials. They would also work
well as questions for weekly quizzes on the material to further encourage
students to read and study the chapter.

• digging deeper questions: Five questions at the end of each chapter are
designed to lead students (and the instructor) deeper into the subject
matter. These questions can be assigned as topics for research papers, oral
presentations, or projects to maintain the interest of more advanced students.
This section encourages students to use critical thinking and reasoning skills
rather than rote memorization.

• discussion topics: Each chapter includes five thought-provoking discussion
questions. They’re designed to be used in class and will encourage student par-
ticipation in and engagement with topics related to the chapter. Many of these
questions address ethical and societal issues, and others lead students into a
“Which is better?” discussion. The questions in this section allow students to
apply their understanding of the chapter’s material to society in general.

• Internet research: An effective method of enhancing learning is to conduct
research related to the material. This end-of-chapter section consists of five
questions that direct students to Internet research on topics related to the
chapter. The authors have researched the questions to ensure that Web materi-
als are available for each one. This section helps students develop essential
research skills and demonstrates the power of finding out information for
themselves—as well as the danger of accepting everything they find on the
Internet at face value.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

pre face xxiii

include a companion Web site full of exciting
extras and updated support materials
The chapters on emerging technologies and software tools have been moved online
so that they can be updated quickly and easily. They’re available for instructors at
www.cengage.com/coursetechnology. Students, please contact your instructor for
more information on online chapters and resources.

In addition, several resources to augment the material in the book, such as
tutorials, labs, and other learning materials, are now available on the companion
Web site for the book. Information on accessing this material is available at
www.cengage.com/computerscience/anderson/connecting2e.

organizat ion
This book is organized into 15 chapters, so it’s suitable for use in 15-week
semesters; however, it can be adaped for other schedules easily. The chapters are
modular and can be covered in any order that the instructor chooses.

chapter 1, “history and social implications of computing,” is a
short tour through the essentials of the history of computers and computing.
Key players in the computing field and their contributions are introduced, and
an overview of the social implications of computing is given. This chapter’s less
technical content eases students into the curriculum.

chapter 2, “computing security and ethics,” helps students grasp
the issues in computer and network security and the ethical use of computers.
Hacking, social engineering, privacy, and other topics are discussed to help
students develop positions and policies on security and ethical issues.

chapter 3, “computer architecture,” covers the basics of computer
architecture, focusing on the Von Neumann machine, and discusses memory,
CPU, I/O, and buses. This chapter also explains digital logic circuits and how
they’re used to build the CPU and other computer devices.

chapter 4, “networks,” familiarizes students with the OSI reference
model and the operation of LANs, WANs, and WLANs. Networking protocols
and standards are also explained, giving students a basis for further networking
courses.

chapter 5, “the Internet,” expands on knowledge gained in the
networking chapter by explaining TCP/IP and higher-level protocols, such as
DHCP, HTTP, and FTP. Concepts such as NAT, DNS, and IP addressing are
also covered. Examples of HTML coding are given, along with a basic

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

www.cengage.com/coursetechnology
www.cengage.com/computerscience/anderson/connecting2e
http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

xxiv preface

explanation of how Web pages are created. Finally, students are introduced to
using the Internet and search engines as a tool for research.

chapter 6, “database fundamentals,” introduces database
development and concepts and proceeds into database design, including the
normalization process. This chapter also covers the basics of SQL and explains
some basic SQL commands.

chapter 7, “numbering systems and data representations,”
is a key chapter designed to give students a strong foundation in numbering
systems and conversion between number bases, with emphasis on binary, hex,
and decimal conversions. Students are also introduced to forms of data represen-
tation, including signed and unsigned integers, floating-point numbers,
characters, and sound and video files.

chapter 8, “data structures,” discusses the importance of data
structures in computing. Stacks, queues, linked lists, binary trees, and other
structures are explained with examples and diagrams. Students are also taught
the basics of sorting and using pointers.

chapter 9, “operating systems,” explains the fundamentals of
operating systems. This chapter also includes tables showing how to perform
tasks in Windows and Linux to prepare students for using operating systems
in later courses.

chapter 10, “file structures,” gives insight into different methods of
storing information on mass storage devices. This chapter also explains the
basics of file systems, including FAT and NTFS. Students are introduced to
the differences between sequential and random record storage and the use of
hashing and indexing to retrieve stored records.

chapter 11, “the human-computer interface,” is a tour through
developing the parts of computer systems that people interact with: the user
interface. This chapter reviews the psychological principles involved in the
human-computer interface and explains the process of analysis and design of
user interfaces. It’s placed before the programming chapters as a reminder that
people use the programs you write.

chapter 12, “problem solving and debugging,” provides a
strong foundation in the processes of problem solving and debugging as
preparation for the programming chapters. This chapter gives an overview of
problem-solving techniques and describes useful rules for ensuring success in
debugging. You can return to this chapter often for guidelines when you begin
writing programs.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

pre face xxv

chapter 13, “software engineering,” shows how software
engineering procedures are used to develop computer applications. The main
software development models are discussed, and students are introduced to
design documents, flowcharts, and UML diagrams. This chapter also describes
the different players in a software development team and explains their roles.

chapter 14, “programming I,” is an introduction to the concepts of
computer programming. It gives an overview of different types of programming
languages, explains developing algorithms and pseudocode as part of program
design, and introduces variables, operators, and control structures. This chapter
also covers the basics of object-oriented programming.

chapter 15, “programming II,” delves into variables and data types and
explains standard control structures with code examples in both Java and C++
that show correct coding techniques.

In addition, there are three appendixes (appendix A, “answers to test yourself
questions,” appendix B, “ASCII table,” and appendix C, “Java and and C++
reserved words”), a glossary, and a comprehensive index.

instructor’s materials
This book includes the following teaching tools to support instructors in the
classroom:

Electronic Instructor’s Manual. The Instructor’s Manual that
accompanies this book includes additional material to assist instructors in class
preparation, including suggestions for lecture topics.

Solutions. Solutions to end-of-chapter practice exercises are included.
(Solutions to the test yourself questions are included in Appendix A of this
book.)

ExamView®. This book is accompanied by ExamView, a powerful testing
software package that allows instructors to create and administer printed,
computer (LAN-based), and Internet exams. ExamView includes hundreds of
questions that correspond to the topics covered in this book, enabling students
to generate detailed study guides that include page references for further review.
The computer-based and Internet testing components allow students to take
exams at their computers and save instructors time because each exam is graded
automatically.

PowerPoint Presentations. This book comes with Microsoft PowerPoint
slides for each chapter. They are included as a teaching aid for classroom
presentations and can be made available to students on the network for chapter

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

xxvi preface

review or be printed for classroom distribution. Instructors can add their own
slides for additional topics they introduce to the class.

Distance Learning Content. Course Technology is proud to present
online test banks in WebCT and Blackboard to provide the most complete
and dynamic learning experience possible. Instructors are encouraged to make
the most of the course, both online and offline. For more information on how
to access the online test bank, please contact your local Cengage
representative.

acknowledgments
This second edition continues to be a joint effort of three authors and many
other talented people. All three authors would like to thank the following people:

Amy Jollymore, the acquisitions editor, was a strong supporter of the first edi-
tion and gave us the encouragement and support to get started on the second
edition. She made things happen.

Alyssa Pratt, the senior product manager, has been a motivating factor from the
beginning of the first edition and continued to be a very competent taskmaster
in the second edition. Without her help and support, neither edition would
have become a reality.

Lisa Lord, the development editor, was instrumental in motivating us to make
this edition the best book possible, as she edited and cleaned up our revisions to
the first edition. She had a positive attitude throughout the process, even when
we whined, complained, and kicked our feet in tantrums. Her editing skills
have greatly improved the delivery of the content and kept the relaxed writing
style as one that’s enjoyable, entertaining, and informative.

Deb Kaufmann, the development editor of the first edition, should continue to
be acknowledged for helping us transform our different writing styles into the
consistent style that has been carried through into this edition.

Matthew Hutchinson, the content project manager, did a great job of shepherd-
ing the chapters through production and keeping us informed about the process.

Karen Annett, the copyeditor, polished the prose of the new chapters, and the
proofreading provided by Foxxe Editorial Services helped ensure the consistency
of terminology and the accuracy of details.

Spencer Hilton added a dimension to the book that kept us enthused about the
book’s topics. Thanks to Spencer, we got a chance to chuckle at least once dur-
ing the writing of each chapter. (It’s too bad readers of this book didn’t get an
opportunity to laugh at “the lighter side of the lab” forewords that were rejected
because they were too funny!)

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

pre face xxvii

We would also like to thank the reviewers for their candid and constructive
feedback:

Proposal reviewers:

Jerry Ross: Lane Community College

Mark Hutchenreuther: Cal Poly State University

Aaron Stevens: Boston University

Marie desJardins: University of Maryland, Baltimore County

William Duncan: Louisiana State University

Khaled Mansour: Washtenaw Community College

Johnette Moody: Arkansas Tech University

John Zamora: Modesto Junior College

Chapter reviewers:

Mark Hart: Indiana University–Purdue University Fort Wayne

Jerry Ross: Lane Community College

Rajiv Bagai: Wichita State University

Brian Kell: Wake Forest University

Because this book is a collaboration of three authors who each had the support
of family, friends, and associates, each would like to acknowledge some special
people separately.

Greg Anderson: I would like to thank my wife, Gina, for again giving in and
consenting to me writing another book. She supports me in all my wild or painful
endeavors. Thanks also to my great children: Kelsi, Kaytlen, Marissa, and Miles. A
special thanks to Rob, Dave, and Spencer: You guys make writing fun! Rob, thanks
for taking the lead and encouraging me to keep moving forward. Last, a special
thanks to all the faculty and students who use this book. We wrote it because we
wanted education to be both fun and informative. I hope this book can help lay a
foundation for students to be successful in the exciting world of computers.
Remember: “Code unto others as you would have others code unto you.”

David Ferro: I want to thank my students for their suggestions and help dur-
ing the writing of the first edition. Many became instrumental in its
creation—proving that undergraduates, research, and interesting and useful
projects can coexist fruitfully. Three students who went above and beyond are
Matt Werney, John Linford, and Adam Christensen. I also want to thank my
coauthors. The working relationship we established couldn’t have been stronger
or more enjoyable. Even on the darkest days, with deadlines looming, one or all
of us could bring some sense of humor to the proceedings. Finally, I want to

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

xxviii preface

thank two very special people who gave me more support than anyone: my wife
and daughter, Marjukka and Stella. I am indebted to you both.

Rob Hilton: Thanks to Alyssa and Amy for their support of this book and for
encouraging us to go forward with the second edition. I’m grateful that Greg and
Dave were willing to jump on board again, in spite of other heavy demands on
their time, and I’m especially grateful for their continuing friendship. I also appre-
ciate the CS students and faculty at Weber State University who gave us valuable
feedback on suggested improvements to the first edition. Most of all, I’m grateful
for a strongly supportive family: my wife, Renae, and my sons, Brent, Spencer,
Joel, and Michael. Special thanks to my daughter Jenn for her willingness to share
her time and professional expertise in helping me work through a project like this.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

This page intentionally left blank

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

his tory and soc ia l impl ica t ions
o f comput ing

c h a p t e r1

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

i n t h i s c h a p t e r y o u w i l l :

Learn why today almost everyone is a computer operator•

Learn about the predecessors of modern computer hardware and software•

Learn that sometimes good ideas flop and bad ones survive•

Meet some interesting figures—some famous, some infamous, some wealthy, and some obscure•

See the historical and social implications of computing•

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

4 chapter one

My first memory of computers dates back to 1984. I was 6 years old, wandering through my house, looking for
my parents to ask them how to spell “sword” so that I could kill the troll in Zork.

You probably don’t remember Zork, but it was the hottest computer game around at the time. It was back in
the days of no mouse, no joystick, no sound, and no graphics: just blinking green text on a solid black screen.
 Messages appeared on the screen, such as “You are in a room with a door.” If the player typed “open door,”

the message “The door is open” was displayed. The player might then type “go north.” Screen message:
“You are now in a room with a big, scary, ax-wielding troll.” This is where the user should type “kill troll with

sword,” which is why I was frantically searching for my parents. There I was, trapped in a room with a troll, and
the idiots who invented English decided to put a silent “w” in “sword.”

This brings me to my point: Computers have come a long way since then. Not only do we have computers, but
we have “super” computers. In a year or two, we’ll probably have “super-duper” computers. To illustrate my

point, the Pentium IV is capable of completing roughly 500,000,000 tasks per second! (That’s approximately the
same number of tasks my professors are capable of assigning per second.)

We’re all aware of where this technology is headed because we’ve seen movies such as The Matrix and The
Terminator—computers are eventually going to become smarter than humans and take over the world. (We

could stop it from happening by destroying all the computers right now, while we’re still stronger, but then how
would anyone play World of Warcraft?)

It might already be too late. Not long ago, Vladimir Kramnik, the undisputed world champion of chess, was
 challenged to a rematch by Deep Fritz, the world’s most powerful chess computer. The two first met back

in 2002, and the eight-match game ended in a draw. Frans Morsch, the creator of Fritz, said, “We’ve learned a
lot from this, and there is much we can do to increase Fritz’s playing strength.” Did they ever! In the rematch

of human versus computer, Kramnik was defeated by Deep Fritz, 2-4, in a six-game match.

I smell trouble. My next foreword will be handwritten because I’ll be destroying my computer promptly, right
after a game of Zork.

the lighter side of the lab
 by spencer

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

 h is tory and soc ia l impl ica t ions o f comput ing 5

Today, the computer has become so much more than its origins promised. With the advent
of the Internet, the computer has become a communication device. With a video screen and
a mouse, it has become a tool for artists, architects, and designers. With growing storage ca-
pacity and the growth of information in a digital format, the computer has become a device
for archiving information of all kinds. By connecting the computer to sound and video at
both the production and receiving ends, it becomes an entertainment device—potentially
 replacing your CD player, DVD player, television, stereo, and radio. Put four wheels on it
and add a steering wheel, and the computer turns into your Honda Civic. Add some wings
and a couple of jet engines, and it’s a Boeing 777. You can find computers in everything
from the coffeemaker on your kitchen counter that starts brewing at 6 a.m. to a North Face
jacket that monitors your body temperature.

So why look at the history of computing? Associations such as the Association for Comput-
ing Machinery (ACM) and the Institute of Electrical and Electronics Engineers (IEEE) have
long recognized the importance of students understanding the social, legal, and ethical issues
embedded in technology development. With the ubiquity of software-driven devices today,
this understanding becomes even more critical. A person listening to her iPod and flying
in a 777 demands that the songs play dependably and the plane operate safely. As someone
who potentially creates these devices, you need to be able to ask and answer important ques-
tions concerning their implications. In addition, joining the world of computer development
doesn’t require just acquiring technical expertise; it requires understanding its professional and
cultural contexts. This chapter explores where the discipline has been, is, and is going. With
the following stories, the messages are “Listen carefully” and then “Welcome to the club!”

why you need to know about...

t h e h i s t o r y o f c o m p u t i n g

ancient history
The most logical place to start when talking about the origins of computer
 science is ancient Assyria. Don’t worry: You won’t stay in Assyria forever.

At its core, the computer is basically doing math. Applied mathematics—
numbers and their manipulation—allows you to play an MP3 file of the

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

6 chapter one

Ketchup song, display an F22 Raptor screen saver, and calculate last year’s taxes.
Applied mathematics brings you back to the Assyrians. The Assyrians invented
tablets with the solutions to square roots, multiplication, and trigonometry right
there on the tablet—easily accessible. With the proper training, you could solve
your mathematical problems easily by using these tablets.

Why did the Assyrians need to solve mathematical problems? Because math was—
and still is—a handy tool for solving personal and societal problems. With the
advent of civilization, humanity began to discard its nomadic ways and invent
the concepts you now take for granted. Concepts such as property and ownership
spurred the need for measuring that property—whether it was land or food sup-
plies. When people settled and no longer ranged laterally, they built vertically. The
Egyptian pyramids and the Greek Parthenon demanded more complex math than
the construction of tents and teepees. Later, navigation across both land and water
also demanded more complex mathematics.

You can thank the Greeks for some of the ideas of logic that you use in com-
puter science. You can thank the Persians for refining or inventing algorithms,
algebra, and the concept of zero. These civilizations borrowed and improved
many of the ideas of previous ones. Other civilizations (in China and Central
and South America) also borrowed these mathematical concepts or, in many
cases, invented them independently.

Pascal and Leibniz start the wheel rolling
For a long time, paper, wood, stone, papyrus tables, and increasingly complex
abacuses were the “computers” through which mathematical solutions emerged.
In Western society, where most of the rest of this story continues, you can proba-
bly credit the 1622 invention of the slide rule as the beginning of solving complex
mathematical problems by using mechanical devices with moving parts. In 1642,
Blaise Pascal designed a mechanical calculator with gears and levers that performed
addition and subtraction. Gottfried Leibniz built on Pascal’s work in 1694 by cre-
ating the Leibniz Wheel, which added multiplication and division to the mechani-
cal calculator’s capabilities. The number and size of tables to solve the numerous
problems society required had become unmanageable. Devices such as Pascal’s
and Leibniz’s allowed a user to “key in” a problem’s parameters and get a solution.
Unfortunately, cost and complexity kept these devices from becoming widespread.

Joseph Jacquard
In 1801, a major invention allowed not only keying in the parameters of a prob-
lem, but also storing parameters and using them whenever needed. This inven-
tion freed users from having to enter parameters more than once. Interestingly,
this invention addressed a problem that had nothing to do with solving issues in
land speculation or navigation and is seldom noted in the history of mathemati-
cal development. The invention, in fact, created fabric.

abacus – A counting device
with sliding beads, used
from ancient times to the
present; useful mainly for
addition and subtraction

slide rule – A device that
can perform complicated
math by using sliding
guides on a rulerlike
device; popular with en-
gineers until the advent
of the cheap electronic
calculator

someone had to invent
the zero?

It isn’t that the ancients couldn’t
grasp the idea of “nothing.”
The use of the zero has to do

with a number’s position giving
it value. Before this, numbering
systems didn’t work with place
to the same extent it’s used to-
day. For example, in the Roman

 numbering system, CXII is 112
because C is 100, X is 10, and II
is 2. Around AD 600, the Hindus
created a numbering system us-

ing the numbers 1 through 9,
their value increasing by a power

of 10 for each place to the left.
Evidence suggests the Arabs

 borrowed this concept and trans-
ferred it to Europe as early as

the 10th century AD. The Hindus
and the Persians also used the

concept of zero as a placeholder.
With the zero placeholder, the

Roman number CI, for example,
would translate correctly as 101.

The new numbering system made
complex math possible.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

 h is tory and soc ia l impl ica t ions o f comput ing 7

1

This invention has been called the Jacquard loom (see Figure 1-1). The
 Frenchman Joseph Jacquard (1752–1834) invented a device attached to a loom,
where a series of pins selected what threads would get woven into a fabric. If
a pin was down, that thread was selected; if the pin was up, the thread wasn’t
used. Different patterns could be produced by changing the orientation of the
sets of pins. The orientation of the pins was determined by a set of reusable
cards. It worked similarly to a player piano (also an invention of the 19th cen-
tury), where a paper roll with a series of holes and air blowing through those
holes determined which notes played. Both the Jacquard loom and the player pi-
ano had a “stored program” and could be “programmed” by using the interface,
a series of holes in wooden cards or paper rolls. To this style of programming, as
you’ll see, IBM owes its great success.

Charles Babbage
Before the story gets ahead of itself, you need to visit England’s Charles
 Babbage. Babbage continued the work of Pascal and Leibniz by creating a
pro totype Difference Engine in 1823, a mechanical device that did addition,

Figure 1-1, The Jacquard loom, using a string of
punched cards that feed into the machine

Courtesy of IBM Archive

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

8 chapter one

 subtraction, multiplication, and division of six-digit numbers. To the dismay of
the British government, which had subsidized his work, Babbage abandoned his
quest to improve it. Instead, he focused on an Analytical Engine that had many
characteristics of modern computers. Unfortunately, he was never able to build
it because of lack of funds. Babbage died fairly poor and obscure, but by the
middle of the 20th century, he was recognized as the father of the modern com-
puter, and the British government even issued a commemorative postage stamp
with his likeness.

Despite his failures, Babbage managed to design a machine that captured the
key working elements of the modern electronic computer (an invention that
was still more than a century away). First, he envisioned that more than human
hand power would drive the machine, although steam, not electricity, would
power the thousands of gears, wheels, shafts, and levers of his device. More
 important, his machine had the four critical components of a modern computer:

An input device (borrowing the idea of punch cards)•
Memory (a place where numbers could be stored while they were worked on)•
A central processing device (that decides what calculations to do)•
An output device (dials that showed the output values, in this case)•

This programmable device—despite never having been built—also introduced
another critical figure in computing: Ada Lovelace Byron. Ada was a patron of
Babbage and the daughter of the poet Lord Byron. She was also a mathemati-
cian. Through a series of letters with Babbage, she described many instructions
for the Analytical Engine. The concept of the program loop has been attributed
to her, and she has been called the first programmer. In the early 1980s the
U.S. Department of Defense named its Ada programming language after her.
 Although research in the late 1990s showed that many of the concepts came from
Babbage himself, her contributions to programming are still widely recognized.

In 1991, the Science Museum of London actually constructed a working, his-
torically accurate Difference Engine from Babbage’s designs, attempting to use
only materials and techniques that would have been available at the time. It was
thought that Babbage failed largely because of the difficulty in manufacturing
the multiple complex and precise parts, but the success of the Science Museum
team indicates that the main cause of Babbage’s failure was that he simply
couldn’t secure adequate funding—not the last time you’ll hear that story.

Herman Hollerith
One person who did find adequate funding to develop a “computing” machine
was American Herman Hollerith, although he never intended to create a me-
chanical adding machine.

The Constitution of the United States states that an accounting of its people
must occur every 10 years. Hollerith was working for the U.S. Census Bureau

program loop – The
 capability of a program
to “loop back” and
repeat commands

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

 h is tory and soc ia l impl ica t ions o f comput ing 9

1

during the 1890 census when he realized that with the counting methods of the
day, they wouldn’t finish before the next census 10 years away. Hollerith solved
this problem by introducing electromechanical counting equipment, using
punch cards as input (see Figure 1-2). Hollerith created a company around this
technology, and this company eventually became the International Business
 Machines (IBM) Corporation.

Strangely enough, IBM didn’t build the first electronic computer. Hollerith, and
later IBM, sold single-purpose machines that solved routine tabulation problems.
It was a huge industry in the United States and included companies such as
 Burroughs, Remington Rand, and National Cash Register (NCR). The machines
these companies sold weren’t modeled on Babbage’s multipurpose engine.

IBM finally did invest in the development of a multipurpose machine in 1937:
the Mark I. Howard Aiken led the Mark I project at Harvard. Only after starting
did he become aware of the work of Charles Babbage, who he later claimed as his
inspiration. The machine was completed in 1944. It was a single 50-foot-long
drive shaft powered by a 5-horsepower electric motor synchronizing hundreds
of electromechanical relays. It was said to sound like a large room full of people
knitting. Despite the massive press coverage it received, by the time of its intro-
duction, a critical technological invention had already made it obsolete. The tech-
nology that made electronic computing possible was familiar to most Americans
and was sitting in their living room radios: the vacuum tube.

Figure 1-2, The Hollerith census counting machine

Courtesy of IBM Archive

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

10 chapter one

progression of computer electronics
Developments in computing, although ongoing since the middle of the
19th century, were mostly the product of weak or poorly funded efforts. By
the 1880s, American Charles Sanders Peirce, extending the work of Charles
Boole, realized that electric switches could emulate the true/false conditions
of Boolean algebra, also known as Boolean logic. A complex arrangement of
switches could model a complex Boolean expression, with on as “true” and off
as “false.” Benjamin Burack built a small logic machine that used this concept
in 1936 (it was even portable) with electric relay switches. The Mark I team also
adopted the approach of using a series of electric switches.

John Atanasoff of Iowa State College realized that the switches could be re-
placed with electronics and be much faster and less power hungry. He, along
with Clifford Berry, designed and built a small limited- function prototype of
the Atanasoff-Berry Computer (ABC) with vacuum tubes in the late 1930s.
 Although proving the usefulness of vacuum tubes for computers, with only
$7000 in grant money, Atanasoff and Berry couldn’t realize the full potential of
this design, nor did they get much credit for their innovation until years later.

A momentous occasion spurred the development of the first modern electronic
computer: the entry of the United States into World War II.

wartime research drives
technological innovation
During World War II, the U.S. military had a huge problem: The pace of weap-
ons development was so fast that often the men in the field were the first to
truly test and learn to use the weapons. This rapid development was a particu-
lar problem with gun trajectory tables, where field-testing often led to missed
targets and, worse, friendly-fire incidents. The U.S. Navy Board of Ordnance
became involved in the Mark I project at Harvard to attempt to correct this
deficiency. In 1943, the U.S. Army sponsored a different group at the Moore
School of Engineering at the University of Pennsylvania. This team, led by John
Mauchly and J. Presper Eckert, created the Electronic Numerical Integrator and
 Computer (ENIAC)—a machine that could run 1000 times as fast as the Mark
I. As it turns out, both machines were completed too late in the war to help
with the military’s purpose of creating trajectory tables.

ENIAC and EDVAC
Although it was a landmark, by no stretch of the imagination could you argue
that the ENIAC was portable. It was loud, even without thousands of clatter-
ing switches. It was a 30-ton collection of machines with banks of switches
and switchboard-operator-style connections that filled a huge basement room
(see Figure 1-3). A group of technicians ran around replacing the more than

Boolean algebra or Bool-
ean logic – A logical sys-
tem developed by George
Boole that uses truth
 tables to indicate true/
false output based on all
possible true/false inputs;
the computer owes a lot to
this concept because at its
most basic level, the com-
puter is manipulating 1s
and 0s—in other words, true
or false

vacuum tube – A signal
amplifier that preceded
the transistor. Like a tran-
sistor, it can be integrated
into a circuit, but it takes
more power, is larger, and
burns out more quickly

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

 h is tory and soc ia l impl ica t ions o f comput ing 11

1

18,000 vacuum tubes that continually burned out. Another team of women
programmers meticulously flipped the more than 6000 switches that entered the
many machine instructions needed to perform a simple arithmetic operation.

Figure 1-3, The ENIAC and some of its programmers

Courtesy of IBM Archive

However, ENIAC was a functioning and useful computer that could perform
both arithmetic and logical operations. It could use symbols for variables and
operations and, therefore, wasn’t limited to a single purpose.

The architecture of the ENIAC was a model for all subsequent machines except
for one critical problem: It could not modify the program’s contents. In fact,
its memory could hold only 20 10-digit numbers at one time and had to be
programmed externally. In 1944, a number of engineers and scientists, includ-
ing Mauchly and Eckert, created the Electronic Discrete Variable Automatic
Computer (EDVAC). This machine, which truly is the model for current
computers, became recognized as the Von Neumann machine, named after John
Von Neumann, a mathematician who was critical to its success. Its operation
was governed by a program loaded into memory. The program could even
modify itself during operation and could be written to perform many differ-
ent functions. Programs were entered just as data was. In fact, the programs,
whether calculating logarithms or bell curves, were just more data. In addition,
programs could be stored for repeated use, which became known as the stored

program concept.

World War II spawned a few other secret computing machines. More than
20 years after the war’s end, it was publicly revealed that the British had also
built a computer—10 of them in fact, collectively named Colossus. Its designers

Von Neumann machine –
A computer architecture
developed by John Von
Neumann and others in
the 1940s that allows for
input, output, processing,
and memory; it also in-
cludes the stored program
concept

stored program concept –
The idea that a computer
can be operated by a
program loaded into the
machine’s memory; also
implies that programs can
be stored somewhere and
repeatedly loaded into
memory, and the program
itself, just like other data,
can be modified

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

12 chapter one

and builders returned to their prewar jobs, sworn to secrecy. All but two of those
British machines were destroyed after the war, with the remaining two destroyed
sometime during the 1960s.

The Colossus played a critical role in winning the war for the Allies by help-
ing crack the German U-boat Enigma code. (Figure 1-4 shows the German
Enigma encoding machine.) It turns out the Germans had been developing a
computer as well—the Z1 developed by Conrad Zuse—so the time was right.
Technology and need came together to spur the development of the electronic
computer.

Figure 1-4, The Enigma machine was used to encode
 German military intelligence in World War II

Courtesy of NSA

the computer era begins:
the f i rst generation
The 1950s are generally considered the first-generation years for the develop-
ment of both computer hardware and software. Vacuum tubes worked as
memory for the machine. Data was written to a magnetic drum and, typically,
paper tape and data cards handled input. As the decade wore on, the computer
industry borrowed magnetic tape from the recording industry to use as a cost-
effective storage medium. The line printer also made its first appearance, and for

hardware – The physical
 device on which software
runs

software – The instructions
that operate the hardware

John Von Neumann

During World War II, Von Ne-
umann, a professor at Princeton,

worked with J. Robert Oppen-
heimer on the atomic bomb. It

was there, faced with the com-
plexities of nuclear fission, that

he became interested in comput-
ing machines. In 1944 he joined
the team working on the ENIAC.

With his influence, the team
was supported in working on

the EDVAC. The origin of its key
feature—the stored program—

has been disputed ever since.
There is evidence that Eckert had

written about the concept months
before Von Neumann knew of the

ENIAC, although Von Neumann
got most of the credit after the

EDVAC was completed in 1952.
Von Neumann also owes a debt

to Britain’s Alan Turing, who cre-
ated the Turing machine—a logi-

cal model that emulated the
techniques of computing, later

put into practice through the
hardware of the ENIAC and

 EDVAC. Regardless of this dis-
pute, Von Neumann is recognized

for his many contributions,
and modern computers are still

sometimes called Von Neumann
machines.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

 h is tory and soc ia l impl ica t ions o f comput ing 13

1

the next 30 years and more, programmers read their output on wide, perforated
green-barred printouts.

In the ’50s, hardware and software personnel parted ways, and software devel-
opment became more specialized. Computer machine instructions were, and
still are, written in what’s called binary code or machine code—instructions
that use only 0s and 1s to mimic the on/off logic of the computer. An instruc-
tion for a machine to add a 1 to another number might be written like this:
1100000000110000001000000001. Now imagine needing thousands of lines
of this code to do anything useful!

Writing programs in binary is a long, tedious, and error-prone process. To
remedy this problem, a programming language was developed called assembly

language. An assembly instruction version of the preceding binary code might
look something like this: “add x, y.” It might still be somewhat cryptic, but
it’s easier to manage than straight binary. It also meant you had engineers and
programmers who worked in binary and others who worked in assembly to cre-
ate applications. Programmers soon split into “system engineers” (those who
programmed the system) and “application engineers” (those who programmed
applications— accounting programs, for example—that ran on the system).

You learn more about assembly language and other programming
 languages in Chapter 14, “Programming I.”

During the 1950s, a major shift began in almost all disciplines of science, engi-
neering, and business. Before this time, making scaled-down mechanical models
of devices or systems—dams, airplanes, cars, elec trical grids, or whatever—was
the most widely used method of creating new technology. In the 1950s and
1960s, this analog model of development began to be replaced with digital
electronic mathematical models. Before this, using mathematical calculations to
model systems, although possible, was often far too complex and slow without a
computer or many people doing calculations. In fact, the term “computer” orig-
inally described people who “computed.” In some cases, as in British insurance
companies, tens of thousands of people did hand calculations, later augmented
with electromechanical calculators. The 1950s and 1960s changed all that. For
its scientific and business needs, Western society went from mostly analog mod-
els and human computers to the electronic computer. Suddenly, a single ma-
chine could create software models of natural phenomena and technology and
do the work of thousands of boring and repetitive business calculations.

UNIVAC
Mauchly and Eckert went on to build the first commercially viable com-
puter, the UNIVAC (see Figure 1-5). First they formed a division of the
old Remington Typewriter Company, then Remington Rand (later Sperry
 UNIVAC and then Unisys). Their first customer was the U.S. Census Bureau.
The name UNIVAC became as synonymous with the computer in the 1950s as

binary code or machine
code – The numeric lan-
guage of the computer
based on the binary num-
ber system of 1s and 0s

assembly language –
A human-readable lan-
guage used to represent
numeric computer instruc-
tions (binary code)

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

14 chapter one

Kleenex became for paper tissues or Xerox for paper copies. Between 1951 and
1954, the company installed 19 UNIVACs, including at U.S. Steel and Pacific
Mutual Life Insurance. Ironically, Howard Aiken, builder of the Mark I, felt
there was a need for only five or six computers like the EDVAC in the United
States and recommended that the U.S. Bureau of Standards not support Eckert
and Mauchly’s proposal to make commercial computers.

Figure 1-5, Grace Murray Hopper and the UNIVAC

Courtesy of IBM Archive

Grace Murray Hopper
and the “bug”

Grace Murray Hopper made many
contributions to programming.
As part of the Mark I project at

Harvard, she coined the term
“bug” (referring to a problem

in hardware or software) when
she found an actual bug—

a moth—in one of the Mark I’s
electromechanical relays and
taped it to the logbook. She

called the process of finding and
solving these problems “debug-

ging,” and she spent much of the
next 40 years doing it. She went
on to work on the UNIVAC with
Eckert and Mauchly. There she

developed a compiler—a totally
new concept—for a higher-level

programming language. Later she
created an even more powerful
language called COBOL, one of
the most widely used business

programming languages.

The most celebrated use of the UNIVAC came during the 1952 presidential
election. CBS News decided to include the machine’s calculation of election
 results in its U.S. presidential election broadcast. Anchor Walter Cronkite
learned that with a computer, it was definitely “garbage in—garbage out”!
By 8:30 p.m. the night of the election, the UNIVAC calculated 100 to 1 odds
in favor of Eisenhower. No one could believe the results, and so CBS delayed
 reporting an Eisenhower win. Mauchly and Max Woodbury, another mathema-
tician from the University of Pennsylvania, reentered the data (incorrectly, as
it turns out), and CBS reported at 9 p.m. that UNIVAC gave Eisenhower 8 to
7 odds over Stevenson. The final electoral vote of 438 for Eisenhower and 93
for Stevenson proved the original data was closer to correct. In the end, CBS
was first to call the race, although not as soon or by the degree it could have.
CBS hadn’t trusted the computer’s calculations. By the end of the night, it was
convinced of the computer’s usefulness, and four years later (and ever since), all
the major U.S. television networks used computers in their election coverage.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

 h is tory and soc ia l impl ica t ions o f comput ing 15

1

IBM (Big Blue)
By 1955, Remington Rand’s UNIVAC no longer dominated the computer
marketplace. International Business Machines (IBM) took advantage of its
longstanding ties to business to capture the hearts and minds of international
businessmen. IBM had more than twice as many orders as Remington Rand
that year. A saying developed: “You can’t go wrong by buying IBM.” Its sales-
men’s button-down shirts and blue suits became a familiar sight to anyone in
the computer industry, and IBM became known as “Big Blue.” It also became
known as “Snow White” (as in “Snow White and the Seven Dwarfs”) because
by the 1960s, IBM controlled more than 70% of the market in computers.
(Sperry Rand, with its UNIVAC, along with Control Data, Honeywell, Philco,
Burroughs, RCA, General Electric, and NCR, were the “dwarfs.”) This arrange-
ment lasted quite a long time, until the microcomputer (PC) arrived on the
scene in the 1980s. More about that later.

Although it’s generally thought that IBM won the mainframe battle with superior
salesmanship, a skill that founder Thomas Watson prided himself on, Remington
Rand had many consumer products unrelated to office equipment and didn’t have
the focused vision of IBM in its drive to become the computer services company.
This focus eventually led to superior products from IBM, starting with the 701 and
the smaller 650 calculating machine in the mid-1950s. IBM’s position grew even
stronger with the introduction of the System/360 (see Figure 1-6) in the 1960s.
It was a scalable system, allowing companies to continue to add components as

mainframe – A large,
 expensive computer, often
serving many terminals
and used by large organ-
izations; all first- generation
computers were
 mainframes

Figure 1-6, IBM 360 mainframe computers were the size of refrigerators and required a full
staff to manage them

Courtesy of IBM Archive

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

16 chapter one

their businesses and computing needs increased. IBM usually leased its systems to
the customer. Often IBM could recapture its investment in manufacturing systems
within a couple of years. Meanwhile, most systems stayed in place for 10 to 15
years or even longer. IBM made a lot of money during this period.

transistors in the second generation
The late 1950s and the first half of the 1960s might be considered the second-
generation years. In software, higher-level languages, such as FORTRAN,
COBOL, and LISP, were developed. Assembly language, although easier to use
than machine code, still had a one-to-one correspondence with machine code.
Each line of a high-level language could be far more powerful and might cor-
respond to many lines of binary machine code. In one of these high-level lan-
guages, you might be able to write something like “FOR A = 1 TO 20 PRINT
A,” which would take numerous lines of assembly code.

Hardware took a major leap forward as well. The transistor replaced the vacuum
tube. It was far smaller, cooler (meaning cooler in temperature), and cheaper to
produce and lasted longer. A form of random access memory (RAM) also be-
came available with the use of magnetic cores. With tape and drum, the mag-
netic read head could be positioned over the information you wanted. Now
information could be available instantaneously. The first magnetic disks, similar
to ones in use today, also became available. Information that wasn’t resident in
memory could be accessed more quickly and efficiently.

circuit boards in the third generation
With the third generation, in the second half of the 1960s, transistors were
replaced with integrated circuits (IC) on chips on circuit boards. ICs are minia-
turized transistors in solid silicon. They’re called semiconductors because they
have electronic conducting and nonconducting channels etched onto their
surface. Cost and size were decreasing as speed and reliability took a leap in
magnitude. Keyboards and screens were also introduced, giving users a much
easier way to communicate with the computer. Software saw the first operating

system (OS), a program for managing all the computer’s jobs.

Operating systems had a number of advantages. First, the operating system could
take care of using all resources of the machine—printing or writing to files,
for example, so that each separate program didn’t have to perform these tasks.
 Second, the OS enabled the machine to have multiple users or complete multiple
tasks. Up to this point, the machine did one job at a time for a single user.

Imagine what it was like in the days before operating systems: You carried your
stack of IBM cards (see Figure 1-7) over to the computer center in a shoebox.
You stepped gingerly over your officemate, who was picking up his stack of
cards that had fallen in the parking lot, and made your way down the long hall,

transistor – A signal ampli-
fier much smaller than a
vacuum tube used to rep-
resent a 1 (on) or a 0 (off),
which are the rudiments
of computer calculation;
often used as part of an
integrated circuit (IC)

integrated circuit (IC) – A
collection of transistors on
a single piece of hardware
(called a “chip”) that re-
duces the circuit’s size and
physical complexity

chip – A piece of encased
silicon, usually somewhere
between the size of your
fingernail and the palm of
your hand, that holds ICs

operating system (OS) –
Software that allows appli-
cations to access hardware
resources, such as printers
or hard drives, and pro-
vides tools for managing
and administering system
 resources and security

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

 h is tory and soc ia l impl ica t ions o f comput ing 17

1

 handing your stack to the computer operator. Yes! You were “first in,” which
meant you would be “first out.” Unfortunately, you were first only this morn-
ing; there were at least five stacks of cards ahead of you from the previous day.
Fortunately, you had brought the requisite coffee and donuts, and somehow your
stack ended up at the head of the line. The operator put the stack of cards in the
card reader, and after about 1000 “thip-thip-thips” as the cards went through
the reader, the program was input into the computer. If there was a problem in
your code, you had to go back and fix the card containing the problem, put the
card back in the right place in the deck, and go through the process again. You
might have picked up some more donuts while you were at it because you knew
it was going to be a long night.

t ime-sharing
Time-sharing solved the vicious “donut and card stack” cycle. Now a num-
ber of users could sit at terminals—screens or teletype-like consoles that
used long paper rolls instead of punch cards to input instructions—and it
looked like you had the computer to yourself. Of course, many times the
system was very slow, even if you were doing something simple. This slow-
down usually meant a lot of other people were “sharing” your time or a few
people were running some resource-intensive processes. It shouldn’t be any
surprise that people got excited about owning their own computer a few
years later.

During this period, the computer was beginning to be used by a broader popu-
lation as a general-purpose machine, and many application programs were
 written—programs geared toward an end user rather than the programmer.
Some programmers began to focus on writing code at the OS level, working
on compilers and other tools that application programmers then used to create

time-sharing – A comput-
er’s capability to share its
computing time with many
users at the same time

Figure 1-7, A very short stack of IBM punched cards

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

18 chapter one

statistical or accounting programs, which were used by end users who generally
knew little about programming and just wanted to use the application for a par-
ticular task. Now get out your silky shirt, disco shoes, and the suit with the wide
lapels because you’re heading into the ’70s.

l iv ing in the ‘70s with the
fourth generation
In computing, the period from the early 1970s to today is known as the fourth
generation of hardware and software and is characterized by the continuing
repackaging of circuits into smaller and smaller spaces. First came Large-Scale
Integration (LSI) and then Very Large-Scale Integration (VLSI). Chips used
in the ’60s contained around 1000 circuits, LSI chips contained up to 15,000,
and VLSI chips contained 100,000 to 1 million circuits. The number of circuits
essentially doubled every 1.5 years. This process of fitting an ever increasing
number of transistors and circuits on smaller and smaller chips is called minia-
turization and is one of the most important trends in computer hardware.

The ’70s saw the growth of minicomputer companies, such as Digital
 Equipment Corporation (DEC) with its PDP and VAX machines and Data
General and its Nova. Minicomputers put a lot of power in much less physical
space. One of these new computers could fit into the corner of a room, and soft-
ware programs blossomed in this new environment.

The UNIX operating system was created by Ken Thompson and Dennis
Ritchie in 1973 as an offshoot of a joint effort by AT&T, GE, and MIT. It
was originally created on a DEC PDP-7 and written in B and later C (com-
puter languages also invented by Thompson and Ritchie). Because of market
limitations resulting from AT&T’s monopoly status, AT&T couldn’t sell
UNIX, so it distributed the software free to educational institutions. The real
revolution of the ’70s wasn’t the minicomputer, however. By the end of the
1970s, “ordinary” people were buying software game packages at the local
Radio Shack and taking them home to play on something sitting on their desk
called a “microcomputer.” This development changed the computer industry
a great deal. A large percentage of computing no longer occurs via large com-
panies leasing hardware with free software. Starting with microcomputers,
both computers and software might be commodities that could be bought and
sold separately.

the personal computer revolut ion
So how, in less than 10 years, did the world go from expensive, complicated
 machines (even minicomputers required a lot of room and expertise to oper-
ate) to the small plastic boxes that sat on desks at home entertaining kids (of

minicomputer – Mid-sized
computer introduced in
the mid to late ’60s; it typi-
cally cost tens of thousands
of dollars versus hundreds
of thousands of dollars for
a mainframe

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

 h is tory and soc ia l impl ica t ions o f comput ing 19

1

all ages)? The culprits range from engineers forcing a hardware vision on their
business managers, to software developers in it for the challenge, to electron-
ics hobbyists realizing a dream, to software experts thumbing their noses at
the establishment. In a few words, the time for a revolution was right. All the
necessary hardware and software elements were at hand or being developed, and
many different social, economic, and personal forces came together to support
it. All that was needed was the will. Technically, almost everything needed was
available right off the shelf.

David Ahl, formerly of Digital Equipment Corporation (DEC), noted “We

[Digital] could have come out with a personal computer in January 1975. If

we had taken that prototype, most of which was proven stuff, the PDP-8A

could have been developed and put in production in that seven- or eight-

month period.”

n o t e

Intel
One necessary element for the development of the PC came from a mid-sized
company called Intel. In 1969, Intel had been creating semiconductors for elec-
tronic calculators, among other things, but had no intention of creating a com-
puter. However, in contributing to the chip design of a calculator for a contract
with the Busicom Company, Ted Hoth proposed putting more functionality on
a single chip, essentially creating a central processing unit (CPU). That chip was
named the 4004 for the number of transistors onboard. It was the precursor to
the Intel 8008, then 8080, then 8086, then the 80286, 80386, 80486, Pentium,
Pentium II, and Pentium 4 chips, and so on to today.

Intel, however, wasn’t focused on trying to create a whole computer, never mind
an industry. Even those in the company with vision mandated that the company
wouldn’t get into end-user products (sold directly to the customer). When the
programmer who created a little operating system for the Intel microprocessor
asked if he could sell the combined chip and OS himself, Intel management told
him he could do whatever he liked. That programmer was Gary Kildall, and
you’ll hear about him again.

More than just the miniaturization of computing happened in the ’70s and ’80s.
The whole computer marketplace changed. For the first time, software could be
purchased as a commodity separate from computer hardware. The story of that
development involves electronics hobbyists and a competition in an electronics
magazine.

central processing unit
(CPU) – The central control-
ling device inside a com-
puter that makes decisions
at a very low level, such
as what math functions or
computer resources are to
be used and when

microprocessor – A CPU
on a single chip used in
 microcomputers

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

20 chapter one

the Altair 8800
Hobbyists depended on magazines such as Popular Electronics and Radio
 Electronics to learn about the latest advances in electronics. In addition, Popular
Electronics, edited by Les Solomon, not only reported the latest advances, but
also spurred their development. The hobbyist community was small enough that
many knew each other, even if indirectly through publication in the magazine.
In 1973, Solomon sought out the best contributors, asking for a story on “the
first desktop computer kit.” He received a number of designs but didn’t think
they were worthy of publication. A promising design by André Thi Truong
actually did get created and was sold in France that year but never made it to the
pages of the magazine.

It wasn’t until the January 1975 issue that Solomon published an article by Ed
Roberts on the Altair 8800 (named after a planet in a Star Trek episode), a kit
based on the Intel 8080. In 1974, Roberts faced the demise of his Albuquerque,
New Mexico, MITS calculator company, with competition from big players
such as Texas Instruments and Hewlett Packard. He decided to bet the farm
and take up Solomon’s challenge—a bold decision given that, as far as anyone
knew, there was no market for the device beyond a few electronics hobbyists.

The results surprised almost everyone. Within three months of the Popular
Electronics article, Roberts had 4000 orders for the Altair, at $397 each.
 Unfortunately, Roberts was a long way from fulfilling these orders. Parts were
difficult to come by and they weren’t always reliable. Not only that, but the
machine was completely disassembled and had no screen, keyboard, card reader,
tape reader, disk drive, printer, or software. When it was complete, you had a
box with a front panel that had switches and lights for each binary bit. Data and
program entry and the results were much like those of the original ENIAC, only
in a much smaller package (see Figure 1-8).

Figure 1-8, The MITS Altair 8800—assembled

Courtesy of Microsoft Archives

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

 h is tory and soc ia l impl ica t ions o f comput ing 21

1

Nevertheless, the orders kept pouring in. Electronics hobbyists were hungry for a
relatively portable machine that they could control and didn’t have to wait in line
to use. In addition, Roberts’s machine had the goods—the capacity for input, stor-
age, processing, and output—or at least the promise of the goods. Knowing that all
the peripherals would have to be created later, Roberts created a machine with an
open architecture—a critical part of the microcomputer world, even today. The
machine had what would eventually be called a motherboard with expansion slots
so that circuit boards for a computer screen or disk drive could be added. Many
hobbyists moved quickly to fill in the missing elements themselves.

enter Bill Gates, Paul Allen, and Microsoft
A couple of people who moved to fill the void were Paul Allen and Bill Gates.
Gates and Allen were buddies living in Washington State. They were, essen-
tially, technology hobbyists. While in high school, they created a computer-like
device called a Traf-O-Data. To gain experience with computers, they worked
for the automotive supplier TRW and other companies as programmers, mostly
free for the fun of it. Gates was in college and Allen was working for Honeywell
when Roberts’s Popular Electronics article came out.

They called Ed Roberts, and the results of that call changed the world of hard-
ware and software. They told Roberts they had software, a BASIC programming
language, already working—a claim not quite corresponding to reality. BASIC
was an easy-to-use language that had been invented in the 1970s. Nevertheless,
six weeks later, Gates and Allen (see Figure 1-9) demonstrated a rudimentary

open architecture –
Computer hardware that
is accessible for modifica-
tion and sometimes even
documented

Courtesy of Microsoft Archives

Figure 1-9, Paul Allen and Bill Gates in 1981

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

22 chapter one

BASIC interpreter. It would be a huge leap over the machine code program-
ming that the Altair required. Gates and Allen sold the BASIC software of their
newly formed Micro-Soft company, and Allen got the job of MITS Software
Director—which meant the newly formed corporate division of MITS now had
one person in it. Soon after, Bill Gates left Harvard to join the fray. By 1981,
Microsoft was on its way to becoming a multibillion-dollar company.

the microcomputer begins to evolve
After it was shown that a microcomputer could be created and be profitable, a
number of people got into the act, also using Altair’s techniques. Because the
Altair bus (the mechanism through which the computer communicated with
its components) wasn’t patented, hobbyists borrowed it and renamed it the
S100 bus, establishing a standard that any hardware/software company could
use. A company called IMSAI started getting market share. Two companies,
Southwest Technical Products and Sphere, began building computers based on
the more powerful Motorola 6800 chip. Another company was building the z80
processor. Also on the horizon, Tandy Corporation, owner of Radio Shack, had
a machine it was working on.

In general, MITS had its hand in so many efforts to correct its startup flaws and
compete at many levels that it was a victim of its own success. Problems con-
tinued to plague most of the hardware components. At one point, the BASIC
software had proved so much more popular than a flawed 4K memory board
that MITS linked the prices to protect its hardware income. Buy the board
and BASIC would cost around $150. Otherwise, you had to fork out $500 for
BASIC, which in those days was a tidy sum of money. Hobbyists countered by
pirating the software and going to a third party for the board—possible because
the bus was now a standard. The battle against the competition proved equally
troublesome. For example, MITS countered the Motorola chip by also building
a 6800 Altair, but its software and hardware were totally incompatible with the
8080 version. For distribution, MITS started to insist that the growing number
of computer stores carry MITS products exclusively, an anathema to the hobbyist
culture, and stores balked at the idea.

By the end of 1977, MITS was sold to Pertec Corporation, the beginning of the
end for the Altair. More than 50 hardware companies had introduced compet-
ing models, including the PET from Commodore and another from a company
named after a fruit, Apple Computer.

an Apple a day…
Apple Computer had its origins in Sunnyvale, California’s Homestead High,
where Steve Jobs and Steve Wozniak met and shared a love of electronics and
practical jokes. (Creating a bomblike ticking inside a friend’s locker was one
Wozniak “Woz” trick.) They also shared a dream—to own a computer. In truth,

microcomputer – A
 desktop-sized computer
with a microprocessor CPU
designed to be used by
one person at a time

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

 h is tory and soc ia l impl ica t ions o f comput ing 23

1

Homestead High probably had several students with that dream because many
were the progeny of parents in the area’s electronics industry, but it was a dif-
ficult dream to realize. Their first commercial product was a game idea from
Nolan Bushnell at Atari: Breakout. Jobs and Woz (then at college and working
at Hewlett-Packard, respectively) finished the game in four days. In 1975 Woz
began working on his high school dream and successfully created a computer.
It was a hobbyist’s ideal, a simple design housed in a wooden box, but nowhere
near being a commercial product, nor was it ever intended to be. Jobs, however,
convinced Woz the machine had a commercial future and dubbed it the Apple I.
Their prankster spirits still alive, they began the company on April Fool’s Day,
1976, and priced the machine at $666.

Apple might have remained a hobbyist machine, but Jobs could inspire people
with his drive and enthusiasm. In 1976 they secured nearly $300,000 in funding.
In 1977, Apple released the Apple II, based on the Motorola 6502 processor, and
made a profit by year’s end, doubling production every few months. The Apple
II was compact, reliable, and “talked up” in the industry. It was also adopted
by many schools and became many students’ first experience with computers—
making a lasting impression. What really pushed it toward broad acceptance was
the ease with which programmers could write applications for it.

To a large extent, microcomputers had so far been playthings for hobbyists. The
most popular programs running on these machines were games. Games such
as MicroChess, Adventure, and Breakout put the machines in people’s homes
and introduced kids to computing. The microcomputer wasn’t recognized as
a business tool, however, until Dan Bricklin and Bob Frankston, working in
 Frankston’s Boston attic office, created VisiCalc for the Apple II.

VisiCalc was the first spreadsheet program in which columns and rows that went
far beyond the screen’s boundaries could have data values or equations. In its
release year of 1979, it sold 500 copies a month. The program was so flexible that
customers used it for things it hadn’t been intended for, such as word processing,
and it was powerful enough to become a tool not just for home users, but also for
small businesses. It drove the sales of Apple IIs to such an extent that it created a
new category of software: the killer app (short for killer application).

In 1983 another killer app called Lotus 1-2-3, based on the same spreadsheet
principle as VisiCalc, pushed a different company’s hardware. It had a huge
marketing blitz behind it, had no ties to Apple, and seemed legitimate to the
 inhabitants of Wall Street. More important, however, the company that made
the computer fairly screamed legitimacy among corporate executive types.

IBM offers the PC
When IBM realized that the Apple II had moved beyond the hobby and toy
arena, it took a long view of the future and realized that the microcomputer

killer app – A software
 program that becomes
so popular that it drives
the popularity of the hard-
ware it runs on

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

24 chapter one

might play a significant part in the traditional computer marketplace. IBM
 decided to enter the battle, intending to dominate the microcomputer market
to the same extent it dominated the mainframe marketplace. Of course, to dom-
inate the market, it needed to build the machine, and fast.

To get to market quickly, IBM approached the problem differently than it had for
other hardware. Instead of building its own chip for the new machine, IBM used
a chip that was right off the shelf—the Intel 8088—similar to those used in other
microcomputers. Learning from the success of the Altair and recognizing that it
needed the broad talents of the micro world to build peripherals and software for its
personal computer (PC), IBM did a few other things that never would have
occurred in the mainframe world. The IBM PC used a nonproprietary CPU, had
approachable documentation, and used an open architecture similar to the
Altair’s. Recognizing the change in the market landscape, IBM also sold the machine
through retail outlets instead of through its established commercial sales force.

MS-DOS
Searching for applications for its PC, IBM contacted Microsoft and arranged
a meeting with Gates and his new business manager, Steve Ballmer. Gates
and Ballmer put off a meeting with Atari (another fledgling home computer
 development company) and signed a confidentiality agreement so that both
 Microsoft and IBM would be protected in future development.

IBM also needed an operating system, and Gates sent the IBM team across town
to meet with Gary Kildall at Digital Research Incorporated (DRI). Kildall, who
wrote the operating system for the Intel 4004, had also written CP/M, an oper-
ating system for the IMSAI and other Altair-like computers that became quite
popular. Before Kildall’s CP/M, the closest thing to an operating system on the
microcomputer had been Microsoft BASIC. CP/M was much more powerful
and could work with any application designed for the machines. However, IBM
hesitated at the $10 per copy cost of CP/M. Talking again with Gates, IBM
became convinced it might be better off with a new operating system because
CP/M was an 8-bit OS, and the 8088 was a 16-bit CPU. So despite Microsoft
not actually owning an operating system at the time, IBM chose Microsoft to
develop its PC operating system.

personal computer
(PC) – Originally an IBM
microcomputer; now
generally refers to any
micro computer

A myth in the world of microcomputers persists that instead of meeting

with IBM, Gary Kildall decided to go flying. The truth is that he had gone

flying earlier that day for business. He did, in fact, meet with IBM.

n o t e

Now all Microsoft had to do was create the operating system. Microsoft de-
veloped Microsoft Disk Operating System (MS-DOS), which IBM called PC-
DOS, to run on the Intel 8088. It accomplished this by reworking a program

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

 h is tory and soc ia l impl ica t ions o f comput ing 25

1

called SCP-DOS that imitated CP/M. Kildall, getting an early version of the
program and discerning how similar it was to his, threatened to sue. Instead,
he reached an agreement with IBM. IBM would offer his operating system as
well as the Microsoft version. Unfortunately, when the product came out, IBM
offered PC-DOS at $40 and CP/M-86 at $240. Which one would you have
bought?

the Apple Macintosh raises the bar
With the IBM PC and DOS, Apple faced serious competition for the first time.
Jobs, however, already had a response. As an operating system, DOS adequately
controlled the machine’s operations, but few would call the user interface easy to
learn. Users had to type commands (many of them cryptic) to get the machine
to do anything. Jobs had a completely different idea for a user interface.

In late 1979, Steve Jobs had visited Xerox Palo Alto Research Center (PARC).
Since the 1960s, its scientists and engineers had been at the cutting edge of
computing science. He saw a machine called the Alto that had graphics, menus,
icons, windows, and a mouse. He also saw a technique for linking documents
called hypertext and an Ethernet network that linked machines on engineers’
desks. Many of Xerox’s experiments implemented the ideas of Douglas Engelbart
of Stanford Research Institute (SRI), a visionary inventor who also created the
mouse. Unfortunately for Xerox, it had not successfully brought any of these
 products to market. The cost of one Alto—almost 2000 were built and installed—
was about as much as a minicomputer. It’s also possible that Xerox didn’t want to
commit wholeheartedly to ideas that might threaten its core business of making
paper copies. Jobs had no such worries and aimed to put something on everyone’s
desk—paper or no paper.

Steve Jobs has said of his Apple I, “We didn’t do three years of research and
come up with this concept. What we did was follow our own instincts and con-
struct a computer that was what we wanted.” The same could be said of Jobs’s
next foray into computer development, and the effort again changed the indus-
try. After several years and at least one commercial false start, a small “skunk
works” team pushed by Jobs built a computer and small screen combination in
a tan box, together with keyboard and mouse: the Apple Macintosh. The oper-
ating system didn’t look anything like DOS. The user moved an arrow on the
screen with a mouse and clicked pictures (called icons) to get things done. To
delete a file, for instance, the user dragged the file to a little icon of a trash can.
The Macintosh had the first mass-produced graphical user interface (GUI).

The Macintosh’s public unveiling was as dramatic a departure as the operating
system itself. During the 1984 Super Bowl broadcast, a commercial showed
gray-clothed and ashen-skinned people trudging, zombie-like, into a large,
bleak room. In the front of the room, a huge television displayed a talking head
of Big Brother droning on. An athletic and colorfully clothed woman chased by

graphical user interface
(GUI) – An interface to
the computer that uses
graphical instead of text
commands; the term has
come to mean windows,
menus, and a mouse

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

26 chapter one

security forces ran into the room. She swung a sledgehammer into the televi-
sion, which exploded. A message then came on the screen: “On January 24th,
1984, Apple Computer will introduce Macintosh. And you’ll see why 1984
won’t be like 1984.” The commercial referred to George Orwell’s apocalyptic
visionary novel 1984, in which Big Brother is an omnipresent authoritarian
power that tries to force everyone to do its bidding. It wasn’t hard to guess who
Apple was likening to Big Brother; it was probably Apple’s old nemesis, Big
Blue (IBM).

In reality, the Macintosh, or “Mac” as it was affectionately called, was stymied
by hardware limitations and an initial lack of software, although it did sell well
and changed the competitive landscape. However, in terms of competition
for Apple, IBM didn’t end up playing the role of Big Brother for long. In the
early 1990s, that role went to the combination of Microsoft and Intel and has
 remained that way.

other PCs (and one ser ious OS
competitor) begin to emerge
In the early 1980s, Gates had persuasively argued that IBM should follow the
direction of open architecture it began in hardware by supporting any operating
system as well. Successful third-party programs, such as VisiCalc, drove hard-
ware sales and helped make the case. Gates also managed to convince IBM that
Microsoft should be free to sell its operating system to other hardware manufac-
turers. With that one decision, IBM likely created the future of the PC world, in
which IBM would become a minority player. Because of its open architecture,
third parties could essentially clone the IBM machine’s hardware, and any hard-
ware whose workings weren’t covered by IBM’s documentation was “reverse-
engineered” (reinvented to work exactly the same way). IBM’s share of the PC
market slowly declined in the mid-1980s through 1990s. Competing machines
from Compaq, Dell, Gateway, Toshiba, and others, including hundreds of small
shops, were first called “clones” but eventually co-opted the names “personal
computer” and “PC.”

In this same time frame, Microsoft rose to dominance. Every clone had the
 Microsoft operating system onboard. It turns out people needed a consistent
user interface and operating system on which all the third-party software could
run. Microsoft began to compete against Apple as well (despite writing applica-
tion software for Apple machines). Microsoft worked to provide an OS that
would incorporate the Mac’s GUI features. In 1988, Microsoft released the
first commercially viable version of its Windows operating system. It also intro-
duced the first serious competition for the Mac GUI in 1991 with Windows
3.1, despite the fact it wasn’t really a new operating system but a program that
ran on top of DOS. IBM also developed a competing operating system called

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

 h is tory and soc ia l impl ica t ions o f comput ing 27

1

OS/2—actually written by Microsoft—but with few applications or users, it
went nowhere.

In the 1990s, Microsoft took advantage of its position as almost the sole sup-
plier of operating systems to PCs. Application software companies began to lose
 market share. In 1990, Lotus 1-2-3 was the best-selling software package and
WordPerfect was the best-selling word processor. Lotus had a gross revenue
that wasn’t much smaller than Microsoft’s. (Only three years earlier, Lotus had
been the bigger company.) By 2000, Lotus 1-2-3 and WordPerfect were blips
on the software screen, replaced by Microsoft Excel and Word. Some flavor of
Windows is now on more than 90% of the world’s personal computers.

the latest generation (f i f th)
From 1990 to today is generally labeled the fifth generation of hardware and
software. In hardware, this period includes parallel computing (or parallel
architectures), where a number of CPUs can be applied to the same task
simultaneously.

One approach is the single instruction, multiple data (SIMD) stream, in which
a single command can operate on multiple sets of data simultaneously. Another
approach is the multiple instruction, multiple data (MIMD) stream (MIMD),
in which different parts of a program or different programs might be worked on
simultaneously. A number of computers used to control Web pages, databases,
and networks have two to four parallel processors in the same machine and use
these techniques. They are small enough and affordable enough that you can
buy them and put them on your desk. Larger and more expensive machines,
such as the Cray supercomputer, can be used for complex modeling and scien-
tific research. These supercomputers are at the extreme edge of computer pro-
cessing power. A third approach for parallel processing uses another signature
aspect of the fifth generation of computing: the network and its most spectacu-
lar realization, the Internet.

the Internet
You can safely date the origins of the Internet back to a memo in 1962 by
J. C. R. Licklider, in which he proposed that different machines needed to com-
municate despite their different operating instructions. Licklider ran the Infor-
mation Processing Techniques Office (IPTO) of the Advanced Research Projects
Agency (ARPA; occasionally called the Defense Advanced Research Projects
Agency, or DARPA) of the U.S. Department of Defense. Four years later,
Bob Taylor, who had inherited the position from Licklider, looked at the three
terminals in his office that connected him to three different machines in three
different parts of the country and decided to resurrect Licklider’s idea—to create
more office space, if nothing else—and got Pentagon funding of $1 million.

parallel computing – The
use of multiple computers
or CPUs to process a single
task simultaneously

supercomputer – The
fastest and usually most
expensive computer avail-
able; often used in sci-
entific and engineering
research

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

28 chapter one

Taylor argued that a communication system might help in three major ways:

Research institutions working with the IPTO could share resources.•
Computers the government was purchasing could be better utilized because •
incompatibility would not be a problem.
The system could be created so that it was robust: If one line went down, the •
system could rechannel through another line.

This last point led to characterizing the devel opment of the Internet as a prod-
uct of the Cold War. This characterization isn’t far fetched because ARPA itself
was created by Eisenhower as a direct response to the possible threat posed by
the Russian launch of Sputnik. Some have written that ARPANET was created
so that it could survive a limited nuclear war or sabotage by rechanneling com-
munication dynamically.

In fact, Paul Baran of the Rand Corporation had been working on this concept
since 1960 with the U.S. telephone system, and the British had begun work
along similar lines as well. Baran had ideas of a distributed network, where each
computer on the network decided independently how to channel to the next
computer. In addition, information could be divided into blocks that were reas-
sembled at their destination, with each block possibly following a different path.
The ARPANET project did end up adopting these concepts (now called packets
and packet switching), although arguably for reasons that had more to do with
system unreliability than with any enemy threat.

Several months after the 1969 Apollo moon landing, ARPANET was born,
consisting of four computers at four locations: UCLA, UC at Santa Barbara,
Stanford Research Institute, and University of Utah. The first message was the
first three letters of “LOGIN” just before the system crashed. After that startup
hiccup, however, the system expanded fairly rapidly. ARPA managed the feat of
linking different systems by having a computer (an Interface Message Processor,
or IMP) linked to the telephone or telegraph line and each mainframe having its
own IMP. In addition, as long as you knew the communication protocols, you
could build your own IMP. Professors and graduate students essentially built
the beginnings of the Internet as part of their research or in their spare time.

You learn more about the Internet in Chapter 5, “The Internet.”

By the mid-1970s, scientists the world over were communicating by con-
necting their local networks via the protocols created for ARPANET. By the
mid-1980s, the loose collection of networks was called “the Internet” (short
for “internetwork”), and by the early ’90s, thousands of research institutions,
U.S. government organizations, such as the National Science Foundation,
and corporations, such as AT&T and GE, made up the Internet. Agreed-on
 networking standards and international cooperation made the network a world-
wide phenomenon. Another interesting development was that by the second
year of operation, over two-thirds of the traffic on the network consisted of

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

 h is tory and soc ia l impl ica t ions o f comput ing 29

1

personal notes, similar to today’s e-mail. It seems that despite the initial goal of
sharing computer resources, the Internet was used mainly for communication.

LANs and WANs and other ANs
The Internet is a network of networks. It usually connects and works with local
area networks (LANs) and wide area networks (WANs, which can be made up
of LANs). A WAN might be the network on your campus, and a LAN connects
the machines in your computer science building. They are usually controlled by
a network technology called Ethernet and are physically linked by Ethernet cable.
As fiber optics and wireless technologies have improved, they have become critical
in adding computers to networks and have given rise to the terms wireless LAN
(WLAN) and metropolitan area network (MAN) or urban area network (UAN).

When you share files with someone in the next room, use a central printer, or
use a program on a different machine in your building, you probably are not
 using the Internet; you’re most likely using a LAN, maybe even a WLAN. If
the Internet is the “superhighway” of information, you might call LANs and
WANs the small-town roads and freeways of information. A number of compet-
ing architectures for LANs and WANs arose in the 1970s, but by the late ’70s,
 Ethernet was on its way to becoming the most popular standard for controlling
network traffic. A company called Novell became a dominant player in net-
works in 1989 with its NetWare file server software.

You learn more about LANs, WANs, Ethernet, and networking standards in
Chapter 4, “Networks.”

super software and the Web
Paralleling the development of multiprocessors, networks, and the Internet,
software also made great changes in the fifth generation. Programmers began to
adopt modular approaches more widely, such as object-oriented programming
(OOP), which facilitated larger and more complex software products that could
be delivered more quickly and reliably.

You learn more about OOP in Chapter 13, “Software Engineering.”

Another development was computer-aided software engineering (CASE) tools—
tools that make software development easier and faster. Although the promise of
software programs writing other software programs has yet to reach the point of
replacing the programmer, a number of inroads toward automatic code generation
have occurred. Today, object-oriented graphical programs, such as Visio and Ra-
tional Rose, can generate some code. In addition, word-processing programs, such
as Word and WordPerfect, and Web page development environments, such as
Macromedia Dreamweaver, can create Web pages almost automatically—which
brings you to probably the most monumental software development of the 1990s
and beyond: the World Wide Web (WWW).

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

30 chapter one

You’ve seen how the Internet developed over the course of 40 years, but it didn’t
really begin to develop into the powerful communication and economic system
it is today until someone wrote the killer app. Tim Berners-Lee (see Figure 1-10),
working at the Conseil Européen pour la Recherche Nucléaire (CERN), a labo-
ratory for particle physics in France, created two software elements that would
lead to making the Internet more accessible to the general public and commercial
interests: the Web page and the browser. These two elements, combined with
network access through the Internet, became known as the World Wide Web
(WWW). Before the WWW, computer gurus handled communication between
machines. Communicating required knowing the cryptic language of machine
protocols and didn’t attract the casual user. The application of hypermedia (and
hypertext) to the Internet and a program to read that media (called a browser)
radically changed the equation.

Hypertext had its origins in a 1945 proposal by U.S. President Roosevelt’s sci-
ence advisor, Vannevar Bush. Bush imagined a machine that could store infor-
mation and allow users to link text and illustrations, thus creating “information
trails.” A computer visionary in the 1960s, Ted Nelson, coined the word “hy-
pertext” and spent years conceptualizing how it would work with the computer
technology of his day.

The invention of the World Wide Web has been called a side effect of high-
energy physics. A 1990 proposal by Berners-Lee to link and manage numerous
documents includes the ideas of browsing links of documents kept on a server.

hypermedia – Different
sorts of information (text,
sound, pictures, video) that
are linked in such a way
that a user can move and
see content easily from
one link to another

hypertext – Hypermedia
that is specifically text

browser – A program that
accesses and displays files
and other information or
hypermedia available on a
network or on the Internet

Donna Coveny/Courtesy of the World Wide Web Consortium (W3C)

Figure 1-10, Tim Berners-Lee, inventor of the World
Wide Web

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

 h is tory and soc ia l impl ica t ions o f comput ing 31

1

In 1991 a prototype was created on a NeXT computer. (NeXT is a Steve Jobs
company started after he left Apple.) In the next few years, using the Berners-
Lee protocols, a number of simple browsers were created, including one that had
the most impact beyond the walls of academia: Mosaic. Written for the Mac
and Windows systems by Marc Andreessen and released free of charge in 1993,
Mosaic had an intuitive graphical interface. Now the cat was out of the bag.
 Although general consumers didn’t know it at the time, an easy-to-use browser
interface was just what they had been waiting for. The proof: In six years, be-
tween 1992 and 1998, the number of Web sites went from 50 to approximately
2.5 million. Andreessen went on to found Netscape and developed Mosaic
into the Netscape browser, which dominated the marketplace in the 1990s and
pushed Microsoft to develop its own browser.

Table 1-1 is an overview of generations in the development of computing. All
date ranges are approximate.

Table 1-1, Generations

generation characteristics

1. late 1940s to 1950s Electronic computing•

Introduction of binary code and Von Neumann •
architecture

Vacuum tubes used in hardware•

Punched cards for storing programs and data•

Increased viability of mathematical/computer •
models of real life

2. late 1950s to mid-1960s Transistors used in hardware•

Rotating drum storage•

Magnetic core memory•

Higher-level languages, such as FORTRAN and •
COBOL

3. second half of 1960s Integrated circuits—transistors on “chips” on •
printed circuit boards used in hardware

Rotating disk storage widely used•

Introduction of operating systems for job •
management

Time-sharing•

(continued)

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

32 chapter one

the Microsoft era and more
By the mid-1990s, Microsoft was feeling the pressure from Netscape: Netscape
had one of the most successful public stock offerings in history, and its browser
was dominating the Web. Netscape was also operating system independent—
meaning it didn’t require a particular operating system to run. Microsoft re-
acted by restructuring its products to be Internet compliant and developing
the Internet Explorer (IE) browser that it first gave away and then integrated
into its Windows 98 OS. This integration of IE with the dominant operating
system was the turning point in what came to be known as the “browser wars.”
In 1996, Internet Explorer’s market share went from 7% to 29%— assisted by
 Microsoft becoming the promoted browser for AOL in exchange for an AOL
icon appearing on every Windows desktop (competing with Microsoft’s own
MSN service). IE never stopped gaining users after that. In 1998, Netscape took
a different tack, going open source, and released the source code for its browser.

In an antitrust suit filed against Microsoft in 1998, the U.S. government
claimed that Microsoft’s near monopoly in operating systems created an unfair
advantage in competing against Netscape. Microsoft claimed that Internet Ex-
plorer was an integral part of the operating system and could not be separated

open source – Software
with source code that’s
 accessible—and potentially
even documented—for
modification

generation characteristics

4. 1970s to 1980s Microprocessors—the computer on a “chip”•

Minicomputers and microcomputers (PDP, Altair, •
IBM PC, Apple)

Connections through the Internet•

The graphical user interface (GUI)•

Computers and software programs as •
commodities

5. 1990s to today Parallel processing•

Networks•

World Wide Web•

Embedded computing•

Software engineering concepts, such as object-•
oriented programming, widely used

Cloud computing•

Table 1-1, Generations (continued)

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

 h is tory and soc ia l impl ica t ions o f comput ing 33

1

from the rest of the code easily. The 1998 sale of Netscape to AOL also mud-
died the legal waters.

The government case went even farther back than the browser wars. It claimed
that Microsoft’s control over computer manufacturers in matters such as
what third-party program icons could appear on the desktop was monopolistic.
Microsoft’s alleged practice—going back to the original releases of DOS—of
not releasing critical operating system information to third-party software
vendors, such as Lotus and WordPerfect (to the advantage of Microsoft’s own
 application software), was also claimed to be monopolistic. In the end, however,
Microsoft came out of the suit fairly well. Various parties settled separately, and
although a threat of breakup seemed possible, in 2001 under the Bush adminis-
tration in the White House, most of the antitrust suit was dropped or lessened.

Today, one of the biggest threats to Microsoft in the personal computer market is
the rise of Linux, a UNIX-based program written by Linus Torvalds while a stu-
dent at the University of Helsinki. It’s available, including source code, essentially
free. Many hobbyists have embraced Linux as their choice of operating system be-
cause of the low cost, available source code, and reputed reliability. Although not
originally written with this intention, it has been selected, and not without cost,
by many corporations, large and small, as a viable operating system for servers, for
these very reasons. Corporate information technology experts cite eliminating
dependence on a single vendor—Microsoft, in this case—as appealing.

The threat of Linux hangs over Microsoft, but how it has played out might sur-
prise some. In 2001 Microsoft released Windows XP, following Windows 2000,
which was built on the NT platform released in 1993. Windows 98 was the last
version based on DOS, which many users held on to, as it supported a number of
applications that NT did not. Microsoft partially became a victim of its own suc-
cess. It had many users with many needs to satisfy. When Windows Vista was an-
nounced as a replacement for Windows XP, it originally seemed to be a paradigm
shift: It would be far more secure and look far different. However, after its release
in 2006, it garnered much criticism. Users complained that the digital rights
management was onerous and the operating system required too much in the
way of resources. Microsoft claims that its projected figure of 200 million users
by January 2009 has been on target, but the perception developed that many end
users were reluctant to upgrade to Vista. Its successor, in 2009, is Windows 7.

Operating systems on personal computers, however, are only part of the story in
computing. Although it’s true that a Microsoft operating system runs on more
than 90% of Intel-based computers (or Intel clones), only 10% of the software
running on all the computing devices in the world comes from Microsoft—far
from a monopoly. This fact puts the world of computing in perspective. For
each personal computer, there are numerous mainframes, networked machines,
handheld devices, and embedded computers, all requiring software. Where does
this software come from? From large companies such as CA, Inc., Oracle, and

embedded computers –
Computers embedded into
other devices: a phone,
car, or thermometer, for
 example

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

34 chapter one

Germany’s SAG; small local firms and startups; and the hundreds of thousands
of programmers worldwide.

In addition, one refrain heard in the 1990s (with little to back it up at the time)
was “The Internet is the new operating system.” This claim was one reason
Microsoft pursued the browser with such vigor when it finally did. Today,
however, this statement is more obviously true with the advent of “cloud com-
puting,” in which applications are not only available online, but the systems
powering them are distributed internationally in numerous huge server farms.
In a related development, many institutions have gone to a model that might
remind you of the time-sharing used with third-generation machines. In this
model, called “thin clients,” machines have little storage but some local process-
ing power and use networked applications and data.

what about the future?
A quick look at the future shows tantalizing possibilities in computer
 development—and the social implications of that development. You’ve prob-
ably already noticed the first signs of these possibilities.

For more information on cutting-edge technologies and trends, see the
online chapter “Emerging Technologies.”

Parallel computing, for example, can create massive computing power. In 2003,
Virginia Tech created the third fastest machine in the world by writing special-
ized software linking a collection of networked Macintosh computers. Many
organizations have followed suit and built their own parallel supercomputer.
Parallel processing can work on the Internet as well. For example, you can sign
up for a scientific research project where, via the Web, you loan out some of your
machine’s processing power. Your machine can join hundreds, thousands, or even
more machines working on a single scientific problem. With millions of machines
on the Internet, imagine parallel computing as a model for problem solving.

With wireless networking, you can surf the Web without plugging into the wall.
Soon, using wireless technologies such as Bluetooth in addition to embedded
computing (sometimes called ubiquitous computing), all the appliances in your
home might be “talking.” The water heater might hear from the furnace that it’s
on vacation mode and adjust itself automatically. Who knows? Maybe your lost
sock can tell you where it is! Medical equipment can be miniaturized and even
implanted in your body, communicating to doctors via the Web.

What has been termed “open-source software” continues to be influential in the
computer field. You might be reading this book while taking a course that uses
Moodle or Sakai course management software. More than 30% of colleges and
universities in the United States use this software, and the percentage is growing.
The software is “free,” but what that really means is that instead of purchasing
the software and getting support from a single vendor, the organization decides

ubiquitous computing –
The possibility of com-
puters being embedded
into almost everything
and potentially able to
communicate

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

 h is tory and soc ia l impl ica t ions o f comput ing 35

1

whether to maintain the software itself or purchase support from competing
support companies. It also means the organization joins a community of other
organizations and people—potentially paying employees to help write the
 software—who discuss, build, document, and test additions and modifications to
the software and, therefore, benefit from influencing the technology’s direction.
A program such as Sakai is actually slightly different from most open-source sys-
tems. It’s sometimes called “directed source” because organizations come together
to commit to designing and building an open-source system. This approach
began recently with Kuali, a university administration system that might one
day be the system you use to register for classes, get financial aid, and view your
transcript. Open source sounds positive, especially given the high quality of pro-
grams, such as Linux, that benefit from numerous eyes viewing the code. How-
ever, it depends on the community of practitioners remaining together and not
creating code bases that differ overly much (which is called “forking”). It remains
to be seen what open-source development will mean for the computer industry.

Everything is going digital, it seems. Will books, film, and photographs eventu-
ally disappear? Will music lovers no longer own CDs but download what they
want, when they want, from the Web? What of privacy? As increasing amounts
of in formation about people are stored on computers, does everyone need to
choose between invasion of their privacy and physical and fiscal security?

In addition, what powers all these devices? Today, more organizations are real-
izing the cost benefits of “going green.” Even with continual cost reductions
in memory and processing, coding in efficient ways—similar to the ways of
early programmers—could become more important again. It’s estimated that
more than 5% of the electrical power consumed in the United States runs all
the computers within its borders. Efficient hardware and software could have
considerable economic and environmental benefits. System security and coding
for robustness are increasingly important, too. With more objects controlled
through software, ensuring that software has been tested fully and run through
a broad series of virtual scenarios is critical. In any of these eventualities, you, as
a computer professional, will have an important role to play.

What does the future have in store for you if you join the many characters
(named and unnamed) in the stories you’ve just read? What exactly can you
do in the computer field? The ACM labels four paths for computer science.
The first two, devising new ways to use computers and developing effective ways
to solve computing problems, tend to require a computer science degree. The
second two, designing and implementing software and planning and managing
infrastructure, also use computer science graduates but draw on graduates of
newer programs in software engineering, information technology, and systems
management. Outside computer science lies a fifth path: computer engineering,
in which you design computer hardware. Typically, it requires a degree in elec-
trical engineering.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

36 chapter one

Fields requiring computer professionals include medical imaging, mobile de-
vices, gaming and simulations, Web applications, and online entertainment. As
a computer scientist, you might devise a better search algorithm, create a more
lifelike artificial intelligence for a game, or design a database for storing movies
and music online. As a software engineer or computer scientist, you might build
an online application for viewing movies or write the code for a new plane’s avi-
ation system. As a computer engineer, you might design a faster chip to render
games or medical graphics faster. As an information technology specialist, you
might keep multiple and complex networks running or devise a system for pro-
viding online search results for movies and music. Information system specialists
typically work more closely with customers to ensure, for example, that doctors
have the right information at the right time.

The direction you choose is up to you, but know this: Job growth in computing,
despite the economy’s ups and downs, has been averaging from 30% to more
than 50% for decades and is expected to continue in this direction. The jobs are
often fulfilling, influential, and lucrative. For example, a 2006 CNN/Money poll
listed software engineering as the best job for salary and future opportunities.

one last thought
Underlying all the developments in computer hardware and software that you’ve
seen in this chapter is a larger context: Societal and personal needs, wants, and
desires shape the development of any technology, including computers and the
programs that run them. Further, these developments have implications for the
societies where they’re implemented.

Perhaps there was market demand for the product because it fulfilled a physical
and commercial requirement. For example, chip designers competed to cram
more circuits in a smaller area so that hardware designers would choose their
chips. Hardware designers then created smaller, faster, and less expensive com-
puters that appealed to a broader market, increasing hardware sales. Perhaps
the impetus behind an innovation was the drive to discover a solution to a
problem—as with Babbage and his Analytical Engine—or the desire to create
something new—as with Woz and the Apple I. Perhaps it was the need for
control exhibited by many early hobbyists, who promoted getting away from
centralized mainframes and owning their own machines. Perhaps it served a
social or political need, such as winning a war. Perhaps it met an ideal of what a
computer should look like—as with Engelbart and his mouse—or was an effort
to stay ahead of possible competition, like Bill Gates and his drive to succeed.
In any event, needs, from the highest level to the most personal, play a complex
role in creating computer hardware or a computer program.

These developments have had their impact on society. The miniaturization of
electronics changed the way people entertain themselves, with movies and music

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

 h is tory and soc ia l impl ica t ions o f comput ing 37

1

delivered directly to people wherever they are—in trains, planes, and automo-
biles. It even changed the way people communicate with each other. In the
past, people roamed the grocery store with only a paper list, not a cell phone so
that they could ask someone at home to look in the refrigerator to see whether
they need butter. Some researchers now argue that this lickety-split culture is
rewiring our brains. Computerized business practices, such as those initiated by
IBM, made banking and airline transactions faster but also created customer
demand for even more speed. Personal computers gave people access to comput-
ing power but also created a mountain of waste, as customers upgraded every
few years. Monopolistic practices created almost universal platforms from which
customers could work but limited innovative approaches. The rise of software as
a commodity drove legal practices that created more intellectual property rights
but might also have limited software innovations. The Macintosh version of
Douglas Engelbart’s interface made computers easier to use but in a one-size-
fits-all way. Because the interface was more intuitive, young children found their
way to the computer screen instead of outside, where some running around
might have helped prevent the rise in the national rate of obesity. All these de-
velopments had their consequences, intended or otherwise.

Although an arm’s-length view of history might suggest that technological devel-
opment occurs in a seamlessly purposeful evolutionary direction, a closer look,
as this chapter has shown, reveals the truth as being more complex. Perhaps
the best idea wins, but it depends on your definition of “best.” As a computer
scientist, only part of your job is to program or design. You need to be aware of
the complex mix of requirements and historical forces affecting you. You should
also be aware of the implications of what you create. That’s how you will suc-
ceed: by avoiding the mistakes of the past and emulating the triumphs. You will
share and appreciate a common heritage with those around you, and you’ll be
able to tell a good story or two. Have fun!

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

38 chapter one

Understanding the evolution of computers and computer science helps you •
understand the broader context of the many different tasks you’ll undertake
throughout your education and career.
Computers are unique tools, in that they can do different jobs depending on •
what software is running on them.
Today you can find computers everywhere from your desktop to your •
countertop.
At its core, every computer performs symbolic and mathematical •
manipulation.
The history of mathematical tools can be traced as far back as the Assyrians •
and their clay mathematical tables.
The punch card, a major development in the history of computing, owes its •
development to Jacquard’s loom.
Charles Babbage is considered the father of modern computing because of his •
development of the Analytical Engine; Ada Lovelace Byron is considered the
first programmer.
Herman Hollerith, later playing a part in what would become IBM, solved the •
U.S. Census problem of 1890 by use of a mechanical counting tool.
The ENIAC, attributed mainly to John Mauchly, J. Presper Eckert, and John •
Von Neumann, has been called the first electronic computer; it used vacuum
tubes, had thousands of switches, and weighed tons.
Mauchly and Eckert went on to build the first commercial computer, the •
UNIVAC.
IBM dominated the mainframe marketplace in the late ’50s, ’60s, and ’70s.•
Transistors, and then integrated circuits, shrank the size of the computer, •
leading first to the minicomputer in the mid-1960s and then to the micro-
computer in the late ’70s.
UNIX and BASIC were invented in the early 1970s.•
Hobbyists created the first microcomputers; the Altair was considered to be •
the very first.
Big business officially entered the microcomputer scene with the introduction •
of the IBM PC.
In the 1980s, with the microcomputer, companies began selling software di-•
rectly to end users; before the microcomputer, software usually came with the
machine.
Apple Computer introduced the small business community to inexpensive •
computing with the Apple II and VisiCalc, the first “killer app.”
Apple’s Macintosh introduced the first graphical user interface to most of the •
world but was built on the work of Douglas Engelbart.

c h a p t e r s u m m a r y

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

 h is tory and soc ia l impl ica t ions o f comput ing 39

1

IBM lost market share in the late ’80s and ’90s because it had created an open •
system and had an agreement in which Microsoft could sell its operating sys-
tem independent of IBM.
The Internet began with ARPANET, built by the U.S. Department of •
 Defense in the 1960s as a way to share computing resources, but the parties
involved soon realized that it was more useful as a communication device.
The World Wide Web and the browser, especially Mosaic, permitted a •
broader audience to use the Internet; consequently, the use of the Internet via
the Web exploded.
Wireless networks, ubiquitous and embedded computing, and parallel com-•
puting all promise to change the world you live in.
Societal and personal needs, wants, and desires shape the development of any •
technology, including computers and the programs that run them, and in turn
these developments shape society and its people.

k e y t e r m s

abacus (6)

assembly language (13)

binary code or machine code (13)

Boolean logic (Boolean algebra) (10)

browser (30)

central processing unit (CPU) (19)

chip (16)

embedded computers (33)

graphical user interface (GUI) (25)

hardware (12)

hypermedia (30)

hypertext (30)

integrated circuit (IC) (16)

killer app (23)

mainframe (15)

microcomputer (22)

microprocessor (19)

minicomputer (18)

open architecture (21)

open source (32)

operating system (OS) (16)

parallel computing (27)

personal computer (PC) (24)

program loop (8)

slide rule (6)

software (12)

stored program concept (11)

supercomputer (27)

time-sharing (17)

transistor (16)

ubiquitous computing (34)

vacuum tubes (10)

Von Neumann machine (11)

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

40 chapter one

 1. Name two needs of society that led to the development of more complex
mathematics.

 2. What was the first mechanical device used for calculation?

 3. How would you compare the early electronic computer to the player piano?

 4. What technology did Herman Hollerith borrow from the Jacquard loom?

 5. Who has been called the first programmer?

 6. Name an important concept attributed to the person named in Question 5.

 7. What innovation does the ENIAC appear to borrow from the Atanasoff-
Berry Computer?

 8. Name at least one computer other than ENIAC that was developed inde-
pendently and simultaneously during World War II.

 9. What reason is given for the invention of assembly language?

 10. What color can you attribute to IBM of the 1950s, and what significance
did it have for IBM’s eventual dominance of the marketplace?

 11. Name two important developments of the second generation of hardware.

 12. What long-term memory storage device that computers have today did
second-generation computers often lack?

 13. In what language was the first UNIX operating system written? What did
Thompson and Ritchie have to create for the second version of UNIX?

 14. On what kind of computer was the first UNIX operating system written?

 15. Before the Altair, Ed Roberts created what?

 16. What software did the Altair microcomputer get that later helped make Bill
Gates rich?

 17. Name the two people responsible for the first Apple computer. Name the
“killer app” responsible for the Apple II’s success.

 18. What challenge to the IBM PC did Apple launch in 1984? What response
did Microsoft launch against Apple a few years later?

 19. One of the ideas used in the development of ARPANET—splitting in-
formation into blocks and reassembling them at their destination—came
from the Rand Corporation. The initial concept began in relation to what
system?

 20. To whom, writing in the 1940s, have the origins of hypertext been attributed?

t e s t y o u r s e l f

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

 h is tory and soc ia l impl ica t ions o f comput ing 41

1

p r a c t i c e e x e r c i s e s

 1. In 1642 Pascal created a mechanical device with gears and levers. This
 device was capable of what kind of calculation?

a. Addition
b. Addition and subtraction
c. Addition, subtraction, and multiplication
d. Addition, subtraction, multiplication, and division

 2. Leibniz built on Pascal’s work by creating the Leibniz Wheel. This device
was capable of what kind of calculations in addition to the ones Pascal’s
could do?

a. Subtraction
b. Addition and multiplication
c. Subtraction and multiplication
d. Multiplication and division

 3. The Jacquard loom is important in the history of computing for what
 innovation?

a. It worked like a player piano.
b. Reusable cards with holes held information.
c. It used gears and wheels for calculation.
d. Paper rolls with holes held information.

 4. IBM has some of its origins in what 1890 event?

a. The U.S. census
b. The first Jacquard loom in the United States
c. Ada Lovelace’s first program loop
d. The introduction of electricity to the United States

 5. Name the four important elements of Babbage’s Engine that are compo-
nents of today’s computer.

a. The stored program technique, an input device, an output device, and
memory

b. Mechanical calculation equipment, human-powered mechanisms,
punched cards, and an output device

c. An input device, memory, a central processing unit, an output device
d. An input device, the stored program technique, a central processing unit,

and an output device

 6. What logical elements did Charles Sanders Peirce realize electrical switches
could emulate in 1880?

a. Epistemological calculus
b. Ontological algebra
c. Boolean algebra
d. Metaphysical algebra

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

42 chapter one

 7. The U.S. military used the ENIAC computer for its intended purpose dur-
ing World War II.

a. True
b. False

 8. What important concept is attributed to John Von Neumann?

a. The large memory concept
b. The stored program concept
c. The discrete variable automation concept
d. The virtual memory concept

 9. What company controlled 70% or more of the computer marketplace in
the ’60s and ’70s?

a. Sperry-Univac
b. International Business Machines
c. Hollerith Machines
d. Microsoft

 10. What features of transistors made them superior for computers, compared
with vacuum tubes?

a. They were more expensive than tubes but lasted longer and were cooler
in temperature.

b. They didn’t last as long as tubes but were less expensive.
c. They were cheaper and smaller than tubes.
d. They were cheaper, smaller, and cooler than tubes and lasted longer.

 11. What important pastry helped move your job up in the queue in second-
generation software, and what third-generation software development made
that pastry unnecessary?

a. Donuts and integrated circuits
b. Bear claws and multitasking
c. Donuts and time-sharing
d. Donuts and virtual memory

 12. In hardware, the next step up from the transistor was the transmitter.

a. True
b. False

 13. What magazines can you thank for the first microcomputer?

a. Science and Wall Street Journal
b. Popular Electronics and Radio Electronics
c. Popular Electronics and Star Trek Monthly
d. New Mexico Entrepreneur and Radio Electronics

 14. What important concept did the Altair use, which was borrowed by its
competition, including the IBM personal computer?

a. The computer came in kit form.
b. The computer’s price was $666.
c. The machine had an open architecture.
d. The machine could be used without plugging it into a wall outlet.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

 h is tory and soc ia l impl ica t ions o f comput ing 43

1

 15. The Apple computer became very popular. What was its largest market, and
what software made it interesting to that market?

a. The education market and the educational game Shape Up
b. The games market and the game The Big Race
c. The business market and the program Lotus 1-2-3
d. The business market and the program VisiCalc

 16. In 1990, what software company dominated the software market, and what
major product did it sell?

a. Lotus and Lotus 1-2-3
b. Bricklin and VisiCalc
c. Apple and the Apple Operating System
d. Microsoft and Word

 17. Today, Microsoft considers its major competition in operating systems to
be what system?

a. Control Data Corporation OS
b. Sega Games operating system
c. Linux operating system
d. Mac OS X

 18. ARPA was created in response to what major event in world history?

a. World War II
b. The McCarthy hearings of the 1950s
c. The launch of Sputnik
d. The inability of computers to communicate with one another

 19. Name the three most likely critical large-scale developments of the fifth
generation of software development from this list of options:

a. Parallel computing, networking, and the multiple-data-stream approach
b. The graphical user interface, networking, and computer-aided software

engineering (CASE) tools
c. Networking, the graphical user interface, and packet switching
d. ARPANET, the Internet, and CASE tools

 20. Marc Andreessen released what application that made browsers widespread?

a. Netscape
b. Mosaic
c. Explorer
d. Hypertext

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

44 chapter one

d i s c u s s i o n t o p i c s

 1. What values are there in having embedded computers talk to one another?
What dangers?

 2. Imagine that Microsoft didn’t get to keep the rights to its software when it
moved back to Seattle. What would the software world probably look like
today?

 3. Programming is now carried on 24 hours a day by having development teams
stationed around the globe (United States, Ireland, India, and so on). Are
these developments a threat or a benefit to programmers in the United States?

 4. The beginning of this chapter mentioned that almost everyone is a com-
puter user. What do you think would classify you as a computer scientist?
What would likely have classified you as a computer scientist in 1945?

 5. Several schools in the United States and Western Europe have become
concerned over the low numbers of women and minorities learning com-
puter science. Recently, Carnegie Mellon focused on attracting women and
minorities. How can society benefit by attracting more of these members of
society to computer science? What would it mean for engineering culture,
product design, management, or end users?

d i g g i n g d e e p e r

 1. How has the idea of open-source development changed the software industry?

 2. How did the microcomputer revolution change how software was distrib-
uted? Who is partly responsible for this change?

 3. After selling MITS, Ed Roberts went on to get his medical degree and
became a doctor. Why did his computer quickly lose dominance in the
microcomputer industry and his company eventually fold? What would you
have done differently?

4. What critical agreement and what hardware decisions might have allowed
Microsoft to monopolize the microcomputer world, as IBM slowly lost
market share?

 5. Has Microsoft been unfairly labeled a monopoly? Would the demise of
Linux change your opinion?

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

 h is tory and soc ia l impl ica t ions o f comput ing 45

1

I n t e r n e t r e s e a r c h

 1. What hardware and software system runs the New York Stock Exchange?
NASDAQ?

 2. In the world of the Internet, what is an RFP? Who uses them, and for how
long have they been used?

 3. What are the five fastest, or most powerful, computers in the world? Who
created them, who operates them, and what purposes are they used for?

 4. What legal arrangement protects open-source software? How has this
 arrangement helped or hindered development?

 5. What is the Whole Earth Catalog, and why was it important in the develop-
ment of the graphical user interface?

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

comput ing secur i ty and e th ics

2
c h a p t e r

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

i n t h i s c h a p t e r y o u w i l l :

• Learn about the origins of computer hacking

• Learn about some of the motivations for hackers and crackers

• Learn about technologies that system intruders use

• Learn about malicious code

• Learn what social engineering is and how it works

• Learn how security experts categorize types of system attacks

• Learn about physical and technical safeguards

• Learn how to create a good password

• Learn about antivirus software

• Learn about encryption

• Learn about preventive system setup, including firewalls and routers

• Learn about laws to protect intellectual property and prosecute cracking

• Learn about ethical behavior in computing

• Learn about privacy in computing and ways to ensure it

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Have you ever noticed that the only “cool” computer people in movies are computer hackers? It’s not often
you see a scene with dramatic music playing in the background while Larry from down the hall sits in his

cubicle and configures his router.

Sometimes I wish that I were a computer hacker. I don’t want to break into government files or the
university database. (Not even a hacker could make my grades look good.) I just want to be able to get into

my computer the day after I change my password.

We’ve all heard that changing your password frequently is important to make your computer more secure.
The only problem with this advice is that my brain seems to contain only “virtual memory” these days. As soon

as I “shut down” at night, the password information disappears from my brain.

Trying to guess your password is almost like a game. “Okay, so I was thinking about my aunt when
I created this password. She has a dog named Fluffy. She got Fluffy in May. My password must be

fluffymay!” BUZZ! “mayfluffy?” BUZZ! “05fluffy?” BUZZ! “fluffy05?” BUZZ! “$%*&!” BUZZ! “Where’s Chloe
from 24 when I need her?!”

I’ve finally resorted to writing my usernames and passwords on yellow sticky notes that I paste all over
my monitor. So now I’m completely secure—as long as someone isn’t sitting at my computer.

(Professional hackers would have a hard time getting into my computer from around the globe, but a
kindergartner sitting at my desk shouldn’t have any problem.)

Yellow sticky notes are an essential tool for any computer person. My computer often resembles a big yellow
piñata. Besides holding my username and password information, the yellow sticky notes on my monitor also

contain appointments, to-do lists, important phone numbers and dates, dates’ phone numbers, reminders to pay
bills, and the names of the Jonas Brothers (just in case).

One thing I could do to improve my personal security is to clean my desk. I’m currently on the annual cleaning
schedule. At this very moment, I face the risk of paper avalanche in my office. I’m considering buying one of

those cannons that ski resorts use to prevent avalanches. I’d better check to see if one’s available on eBay. Now,
what was my password . . .?

48 chapter two

the lighter side of the lab
by spencer

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

comput ing secur i ty and e th ics 49

why you need to know about...

c o m p u t i n g s e c u r i t y a n d e t h i c s

Clifford Stoll, a systems manager at Lawrence Berkeley National Laboratory in California,

was tracking a 75-cent accounting error. His search for the source of that error led to a year

of investigation and eventually to a programmer in West Germany who turned out to be

part of a spy ring that sold computer secrets to the Soviet Union’s KGB in return for money

and drugs. Stoll’s 1989 book about his experience, The Cuckoo’s Egg, was a bestseller.

When it comes to computer security and ethics, it’s tempting to think in such dramatic images:

The clean-cut genius nerd catches the lone wolf, evil scientist hacker. This characterization isn’t

totally inaccurate, as it turns out. However, creating computer security and frustrating would-be

intruders is a much broader, more complex, and more mundane undertaking than Hollywood’s

typical portrayal. It involves more than computer detectives and lurking intruders. Good com-

puter security is primarily a matter of prevention—including preventing and recovering from ac-

cidental and natural events. Computer security must not exist in a vacuum but must link to

good security practices and professional ethical standards for computing. Good computer secu-

rity, then, is as much about locking doors, storing backups, and following protocol as it is about

writing smarter software to catch the bad guys.

Computer security is important because it affects everyone and everyone can affect it. You have

probably already been subjected to a virus or worm attack and perhaps played unwittingly into

propagating the infection to other computers. You have probably also had the unpleasant experi-

ence of losing important files (usually right before you have to hand them in to your professor).

Being aware of threats and how to prevent or counteract them, as well as being conscious of the

possible effects of your actions as a computer scientist, is becoming increasingly important.

Business computers are better protected than home computers, mainly because corporations

make a conscious effort to secure them; many home users just want to use their computers

and not worry about other details. Some users are simply uninformed or don’t care about

security and think downloading a game, video, or song is more important than worrying

about the file’s authenticity or a possible security threat. The goal of this chapter is to help

you become more aware of the risks involved with security issues so that you can become

more security minded. You can minimize the level of risk by learning how to identify risks

and install software to take precautions.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

50 chapter two

hacker – A technically profi-
cient person who breaks
into a computer system;
originally denoted good
intent, but general usage
today is similar to “cracker”

cracker – An unwelcome
system intruder with
malicious intent

phreaking – Subverting the
phone system to get free
service

undirected (untargeted)
hacker – A cracker moti-
vated by the challenge of
breaking into a system

directed (targeted) hacker –
Generally, a cracker moti-
vated by greed and/or
politics

the intruder
The term hacker (or cracker) is often used to refer to an intruder who breaks
into a computer system with malicious intent. The term originated in the 1960s,
and it meant an insider who was to able to manipulate a system for the good of
the system. At that time, programming was a difficult and esoteric art practiced
by very few people. The best programmers were called hackers as a sign of
respect, and a good program that took advantage of the system as best it could
was called a “hack.” Over time, however, the connotation of “hacker” in the eyes
of the general public has become more negative and synonymous with “cracker,”
although the computer security industry still differentiates between a hacker
(technically proficient person) and a cracker (unwelcome system intruder).

Around the same time, some people began illegally manipulating the AT&T
phone system, mimicking certain tones to get free long-distance calls. A fellow
who called himself Cap’n Crunch discovered that a whistle that came in boxes
of this cereal could be used to subvert the phone system. The practice was
called phreaking, and those who did it became known as phreaks.

Some phreaks were becoming more interested in computers as the microcom-
puter revolution took hold. In fact, some of these characters went legit and
became beneficiaries of the revolution. Cap’n Crunch, whose real name is John
Draper, helped write some of the most important applications for Microsoft.
Unfortunately, a number of characters applied their technical proficiency to
computers in a negative way. By breaking into mainframes and creating viruses,
they changed the word “hacker” from meaning a technically savvy insider help-
ing to make the system better to a potentially dangerous outsider. The labels
“cracker” or just plain “criminal” are also used.

These hackers are now the semi-romantic figures from movies, books, and maga-
zines who wear the “black hat” and threaten the world or the “white hat” and
promise to save the world. Remember the movie War Games? Matthew Broderick
was a computer “geek” immersed in computer games and dialed random numbers
in the hope he could break into a company’s system to play games. He ended up
breaking into the Pentagon’s defense system and almost started World War III. But
who are these hackers in reality? Many intruders are fairly innocent computer users
who stumble into a security hole and cause problems. Intentional intruders are
generally divided into two classes: those motivated primarily by the challenge of
breaking into a system, called undirected (or untargeted) hackers, and those moti-
vated by greed or malicious intent, called directed (or targeted) hackers. In this
book, “cracker,” “malicious hacker,” “directed hacker,” and “undirected hacker” are
used to indicate an unwanted system intruder.

Generally, the cracker profile is a male between 16 and 35 years old considered
by many to be a loner. The person also tends to be intelligent as well as techni-
cally savvy. Novice crackers who know how to use only existing tools earn the

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

script kiddie – An amateur
hacker who simply uses the
hacking tools developed by
others

hacktivism – Cracking into a
system as a political act;
one political notion is that
cracking itself is useful for
society

Hacker’s Manifesto –
A document, written
anonymously, that justi-
fies cracking into systems
as an ethical exercise

2

comput ing secur i ty and e th ics 51

moniker script kiddie. Crackers intent on remaining anonymous while they
steal or damage (directed hackers) are usually the most proficient.

For undirected hackers, one of the biggest motivators for cracking is bragging
rights. Often these undirected hackers comb the Internet looking for vulnerable
systems that haven’t yet been cracked. After they’ve cracked a system, they boast
about it on Internet Relay Chat (IRC), on message boards, or in magazines
such as 2600: The Hacker Quarterly. Many crackers close the security hole that
they’ve taken advantage of after they’ve gained entry so that no other cracker
can follow. Their justification might be to have sole control of the system.
Another justification is hacktivism. Many crackers believe they’re doing society
a favor by discovering these security holes before “real criminals” do. A docu-
ment on the Internet called the Hacker’s Manifesto justifies cracker activity for
this very reason.

Greed tends to motivate directed hackers, who unfortunately are usually more
proficient and do not advertise their exploits. This type of hacker looks for infor-
mation that can be sold or used to blackmail the organization that owns it.
Hackers of this type tend to target corporations that have assets of monetary value.
Smart young Russian hackers, for instance, are becoming a global threat by extort-
ing money from banks and betting firms. The Russian police have said this
particular racket is just the tip of the iceberg, and no one is safe from these attacks.

Malicious hackers—interested in vandalizing or terrorism—can be both directed
and undirected. Undirected hackers tend to write viruses and worms, without
knowing where they will end up. They’re content with the random violence of
the act. These intrusions can damage systems at many levels. Some attacks are
fairly benign, but others can cause billions of dollars of damage. Directed hack-
ers usually direct their efforts at organizations or individuals where there’s some
perceived wrong. For example, a directed hacker might vandalize a company’s
Web site because he or she was fired or was dissatisfied with the company’s
product. Directed hackers might also be interested in making political state-
ments. Usually, directed hackers intend to damage, not gain quiet access.

Whether directed or undirected, malicious, greedy, or benign, hired by a com-
peting corporation or the Mob, or part of a terrorist organization, hackers are
an increasingly expensive and dangerous aspect of computing. In monetary
terms, illegal hacking becomes more expensive each year, and there seems to be
no end in sight. So how do unwanted visitors hack into systems?

how do they get in?
The sad truth is that most intrusions could have been avoided with good sys-
tem configuration, proper programming techniques, and adherence to security
policies: Directed hackers can quickly take advantage of these failures to follow
sound security practices. Even more quick to take advantage of systems are

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

52 chapter two

malicious software programs, commonly known as viruses. It takes milliseconds
for a virus (or worm) to invade an unprotected system over a network. Finally,
crackers take advantage of the innocent human tendency to be helpful. By
starting a friendly dialogue and then asking for help, often they can get answers
that help them guess passwords, for example, and use them to break into a
system. This nontechnical approach—called social engineering—is often one
of the most effective tools for intruders.

holes in the system
One major benefit to crackers is the open nature of the Internet. The point of
the Internet when it was created was to allow sharing information and
computer resources. The same could be said of the World Wide Web and net-
works. Unfortunately, this openness benefited malicious intent. For example,
in UNIX, the Network File System (NFS) allows a user on one machine to
mount (or see) a drive on another machine as though it were local (called cross-
mounting). In the early days of computers, all a cracker had to do was mount
someone else’s drive by using the appropriate user ID number. Even more dan-
gerous was that the root file system (where passwords and configuration files are
stored) was open for reading and writing. Protecting user IDs and system files
was something system administrators had to learn quickly. Users also became
vulnerable to this type of intrusion when they began using remote terminal ac-
cess or pcAnywhere-type programs to share Windows drives with remote users.
A naive user could open his or her entire system to the world easily without
knowing or intending it.

Crackers have taken considerable advantage of backdoors left by programmers
and administrators for their own convenience. The UNIX rlogin (remote login)
command allows an administrator to log in to one system and then log in to
other machines remotely without having a password. This command benefits
system managers in maintaining machines. Unfortunately, it can also benefit a
cracker because a configuration error could allow anyone to have the same kind
of access. Early versions of the UNIX e-mail program Sendmail had a backdoor
in which a three-letter command could gain you access to system-level control
(called “root” on UNIX systems), where you could delete, modify, and replace
protected operating system programs.

Sloppy programming plays a major role in creating holes crackers can exploit.
For example, many online shopping sites have kept information about the pur-
chase a customer is making right in the URL string displayed in the address
bar. If the site doesn’t verify the item’s price in the cart at purchase and a
cracker modifies the price, the cracker potentially walks away with some cheap
merchandise. Buffer overflows are another vulnerability of many systems. They
are fairly easy to fix (but even easier to not allow in the first place) but are wide-
spread in computer programs. A buffer overflow happens when a program tries

backdoors – Shortcuts into
programs created by system
designers to facilitate sys-
tem maintenance but used
and abused by crackers

buffer overflow – A pro-
gram tries to place more
information into a memory
location than that location
can handle

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

2

comput ing secur i ty and e th ics 53

to place more information into a location in memory than that location can
handle. For example, if you try to put an 8-byte integer into a 1-byte character
variable, it causes an overflow. A cracker aims for an overflow that overloads
memory all the way to a section of memory critical to the machine’s operation.
The most critical memory sections in a computer are in the instruction stack.
A cracker’s goal is to stuff an address of a program he or she wants run onto
the stack, which gives the cracker control of the machine.

viruses, worms, and other nasty things
Crackers can create malicious code to do their work for them. This code is
designed to breach your system security and threaten your digital information.
Malicious code comes in a few major forms: the virus, the worm, and the
Trojan program.

A virus is a program that, when executed, can infect the machine directly or
actively search for programs to infect and embed itself into these programs.
When these programs run, they activate the virus program, which infects the
machine. Sometimes the virus is silent—or at least silent for a while. Usually,
the virus affects the host machine. It can do anything from playing a little tune
and then eliminating itself to destroying files on the hard drive. Some other
evidence that you have a virus might be the following:

• Programs don’t run properly. Files don’t open correctly.
• Disk space or memory becomes far less than it should be.
• Existing files or icons disappear.
• The machine runs very slowly.
• Unknown programs, files, or processes appear.

Viruses can also target particular files, such as system files, and become difficult
to remove. Technically, viruses, unlike worms, require assistance in moving be-
tween machines; a common way to move is by users sharing files. The first
viruses seem almost quaint now. They appeared in the early 1980s and were
spread by users swapping floppy disks. Booting from an infected disk was a
common means of infection. With the widespread adoption of e-mail, however,
viruses can spread like wildfire. Beware of attachments: They can host a virus
that runs when the attachment is opened. Figure 2-1 shows a typical virus
warning from a system administrator.

A worm is a program that actively reproduces itself across a network. This code
is a type of bot (short for robot) because of its capability to work on its own.
Worms seek out vulnerable systems, invade them, and continue to seek more
systems. They’re far more active than a virus, which requires humans to move it
between machines. The first catastrophic worm event was the Great Worm or
Morris Worm of 1988, written by graduate student Robert T. Morris. It was a
“benign” worm—he intended it to do no damage—yet it brought down more
than 10% of the Internet.

malicious code – Code
designed to breach system
security and threaten
digital information; often
called a virus, although
technically a virus is only
one kind of
malicious code

virus – An uninvited guest
program with the potential
to damage files and the
operating system; this term
is sometimes used generi-
cally to denote a virus,
worm, or Trojan program

worm – A type of bot that
can roam a network look-
ing for vulnerable systems
and replicate itself on those
systems; the new copies
look for still more vulnera-
ble systems

bot – A software program
that can roam the Internet
autonomously; bots can be
quite benign and useful,
such as those used by
Google and other search
engines to find Web pages
to list in search results

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

54 chapter two

A Trojan program disguises itself as something innocent, such as a game or,
the worst possible example, an antivirus program. After it’s on a host system,
it can lie dormant and then do obvious damage or clandestine system analysis,
potentially compromising the system by finding backdoors, and so on.

the human factor: social engineering
For crackers intent on breaking into a particular system, the best approach
turns out to be not exploiting technical holes, but social engineering. “Social
engineer” is a contemporary term for something that has been around for a
long time. You might better recognize the labels “con artist,” “grifter,” or “flim-
flam man.” Social engineers use their understanding of human behavior to get
important information from trusting “marks.”

The ability to lie persuasively is the most effective tool in the social engineer’s
arsenal. After learning an employee’s name, the social engineer might pose as
that employee, call the human resources department, get just a little more in-
formation, and then call computer support looking for a password, for example.
Posing as an insider, the social engineer strings together bits of information,
gaining more information from a variety of sources. Many support personnel
just doing their jobs have unwittingly given away passwords to a caller posing as
an authorized user. After all, it’s the job of technical support staff to be helpful.

Figure 2-1, A typical virus e-mail warning

Trojan program – A pro-
gram that poses as an
innocent program; some ac-
tion or the passage of time
triggers the program to do
its dirty work

social engineering – Social
interaction that preys on
human gullibility, sympathy,
or fear to take advantage of
the target, for example, to
steal money, information, or
other valuables—basically,
a con

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

2

comput ing secur i ty and e th ics 55

Social engineers can also find information just by hanging out in the right
places: the smokers’ circle that forms around 10 a.m. outside or a favorite coffee
shop down the block. If they can’t get the kind of information they want over
the phone or in person, there’s always dumpster diving—essentially sifting
through trash and suffering through a few rotten banana peels to find informa-
tion about companies and employees. Even things as seemingly innocent as the
corporate phone book can be used by a social engineer to pick out the right
people and use the right corporate lingo to dupe people into revealing more
than they should. For this reason, shredders are used more often, and corporate
dumpsters are locked. Home users should consider doing the same.

Generally, social engineers try to maintain a low profile and not show their
faces if possible. Something as simple as browsing the company Web site—
which the company wants casual users to do—is a good way to gather
information. Some companies have also combined what should be an internal
intranet with their public Web site. In that case, details about employees,
corporate events, and other information might be available to outsiders.

A social engineer might also use traditional cracker techniques to augment the
attack. Installing a fake login text box on a user’s computer that captures the
person’s name and password is one technique. Another is sending out a spam
e-mail for a chance to win money that requires a username and password.
Many people use the same username and password as they do in other pro-
grams. As another example, you might be familiar with the e-mail from a
wealthy foreigner who needs help moving millions of dollars from his home-
land and promises a reward for your assistance, if you just supply your bank
account information. Remember that if it sounds too good to be true, run
away (said in a Monty Python King Arthur voice)!

One notorious social engineer was Kevin Mitnick. At one point in the 1990s,
he was on the FBI’s 10 most wanted list. He was subsequently caught, tried,
and sent to jail. Since then, in an effort to turn over a new leaf, he has revealed
many of his techniques for the benefit of the security community.

types of attacks
As you’ve seen, crackers use a variety of techniques (both directed and undi-
rected) to gain entry to or compromise a system. There are too many attacks to
list, and the number continues to grow daily. However, security managers
divide these attacks into four main categories:

• Access
• Modification
• Denial of service
• Repudiation

dumpster diving – Picking
through people’s trash to
find things of value;
although often innocent, it
has been used by thieves to
glean potentially damaging
information

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

56 chapter two

Access attacks include snooping, eavesdropping, and interception. Snooping
can be anything from looking around a person’s desk with the hope of finding
something interesting to browsing through a person’s files. Eavesdropping is
putting a bug in an office, wiretapping, or tapping into a network to listen to
communication across that medium by using a sniffer. Interception is a more
invasive form of eavesdropping, in which the attacker determines whether
the information is sent on to its intended receiver. An access attack can occur on
backup tapes and CDs, hard drives, servers, and file cabinets as well as on a net-
work. USB flash drives have become a new source of threat because they are
small and easily hidden, hold a lot of information, and can be plugged into most
machines easily. Usually, permissions protection can prevent casual snooping,
although crackers try to get around this protection or give themselves that
permission level. This kind of attack is mostly used in espionage.

Modification attacks alter information illicitly. This attack can occur on the
devices where the information resides or when the information is in transit. In
this attack, information is deleted, modified, or created. It turns out that
electronic information is much easier to modify (especially undetected) than
information stored on paper. Electronic information, however, can be replicated
easily. As long as system administrators know what has been modified during
an attack, they should be able to restore the information.

Denial-of-service (DoS) attacks prevent legitimate users from using resources.
The attack can make information, applications, systems, and communications
unavailable. This attack is usually pure vandalism. In the physical realm, a
cracker could burn the records that users require or cut the communications
cable that users need for communication. Computers can be destroyed or even
stolen. Digitally, one way to deny communications is to overwhelm a system or
network with information: inundating an address with e-mail messages, for
example.

Repudiation attacks seek to create a false impression that an event didn’t occur
when it actually did or did occur when it really did not. Forging someone’s
signature on a document is an obvious physical example of repudiation.
Electronically, an e-mail, for example, can be sent to someone as though it
came from someone else. A repudiation attack in the electronic world is much
easier than in the physical world because of the potential for eliminating or
destroying evidence. Destroying a paper document with a signature requires
that someone with malicious intent gain physical access to it.

managing security : the threat matr ix
To manage security in a cost-effective manner, people involved in system admin-
istration and security need to manage risk. Managed risk is the basis of security.
Risk is essentially the relationship between vulnerability and a threat. In risk

sniffer – A software pro-
gram, such as Wireshark,
that allows the user to lis-
ten in on network traffic

modification attacks –
Attacks on a system that
alter information illicitly

denial-of-service (DoS)
attacks – Attacks that
prevent legitimate users
from using the system or
accessing information

repudiation attacks –
Attacks on a system that
injure the information’s
reliability; for example, a
repudiation attack might
remove evidence that an
event (such as a bank trans-
action) actually did occur

risk – The relationship be-
tween vulnerability and
threat; total risk also in-
cludes the potential effect
of existing countermeasures

access attacks – Attacks on
a system that can include
snooping, eavesdropping,
and interception; more
commonly known as spying
or illicitly gaining access to
protected information

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

2

comput ing secur i ty and e th ics 57

assessment, vulnerability is characterized by the sensitivity of the information
potentially threatened and the skill level an attacker needs to threaten that
information. A threat is characterized by three things: targets that might be
attacked, agents (attackers), and events (types of actions that are a threat). After
identifying risks, measuring total risk includes evaluating countermeasures.

For example, information on when a bank is open is usually widely available—on
the bank’s Web site or posted on the door of the bank. It’s important for cus-
tomers to know the hours of operation, and this service to customers outweighs
the possible risk of an agent (a bank robber) creating an event (a bank robbery)
against the money in the bank (target). The amount of money a robber typically
takes in a holdup is very small compared to the bank’s assets, which lowers the
vulnerability. In addition, countermeasures, such as cameras, possible witnesses,
proximity of police, silent alarms, and so on, lower the total risk.

vulnerabilit ies
Vulnerabilities in a network or computer system might include Internet con-
nections, hard or soft connections to partner organizations, open ports, physical
access to the facilities, phone modem access, and more. Evaluating a system’s
vulnerabilities is essential.

threat: agents
Who is potentially attacking? You have already learned about crackers and their
motivations. Other possible threat agents include employees, ex-employees, com-
mercial rivals, terrorists, criminals, partners, customers, visitors, natural disasters,
and the general public. When you examine these agents, look at their access ca-
pability (whether physical or electronic) to information, their knowledge (for
example, the agent knows user ID numbers, passwords, names and addresses, file
locations, security procedures, and so on), and their possible motivation (such as
the challenge of the attack, greed, or some kind of malicious intent).

threat: targets and events
In systems security, targets are broken down into these four main areas:

• Confidentiality
• Integrity
• Availability
• Accountability

Confidentiality means that only those authorized to see or modify a certain
level of information can do so. For most organizations, information is classified as
public, proprietary (available internally to the company), and restricted (available
to only some employees). The government has many levels of confidentiality.
Encryption is often used for information that has a high level of confidentiality.

vulnerability – The sensitiv-
ity of information combined
with the skill level the
attacker needs to threaten
that information

threat – The likely agent of
a possible attack, the event
that would occur as a result
of an attack, and the target
of the attack

confidentiality – Ensuring
that only those authorized
to access information can
do so

encryption – Transforming
original data (plaintext)
into coded or encrypted
data (ciphertext) so that
only authorized parties can
interpret it

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

58 chapter two

Designs for complex weapon systems, employee medical records, your bank
account information—all are targets. An event in this target area is an access
attack—in other words, viewing the confidential information.

Integrity ensures that the information is correct. Mechanisms must exist to
ensure that information—whether physical files, electronic files, or electronic
information—has integrity. Digital signatures on files and encryption for data
transmissions are some approaches for ensuring integrity. A typical target is a trans-
action record for a bank account. An example of an event is removing the record
by using a repudiation attack or altering the record in a modification attack.

Availability involves making systems where information is stored accessible and
useful to those who should use them. Backup electronic and paper copies, the
capability for failover (other systems taking over if one fails), the reconstruction of
information after an intrusion, and disaster recovery plans are techniques that
create availability in the face of an attack. A denial-of-service attack that prevents
users from accessing their e-mail is an example of a successful attack on availability.

Accountability works with confidentiality, availability, and integrity to ensure
that those who are authorized (and no others) for access to information have
that access. This target area is where identification and authentication (I&A)
come in. Accountability is usually not attacked solely. Usually, it’s a means to
attacking one of the other security targets. However, a secret attack on account-
ability could be used for a future attack against availability, integrity, and
confidentiality. For example, a cracker might break into a system and leave a
backdoor to return to later. If the cracker eliminates all traces of entering the
system, accountability has been compromised.

measuring total risk
After vulnerabilities, threats, and existing countermeasures are identified and
evaluated, the organization can measure risk and determine what needs adjust-
ment. Unfortunately, risk is sometimes difficult to measure. Money is one way
to measure risk. The cost of lost productivity, security consultants, and em-
ployee overtime to fix the problem, plus replacing stolen equipment—these
things add up. Less easily calculated is the time the event might take to fix if a
key system is down, physical resources that need to be used, the damage to the
organization’s reputation, or the cost of lost business during the crisis. Although
risk assessors can look at other cases for a clue to these costs, many of them
can’t be calculated until an event actually occurs.

managing security : countermeasures
Start getting paranoid! As should be obvious by now, there are many avenues for
intrusions and system break-ins: from the trash barrel to the corporate firewall to
the hard drive on your laptop. The first few parts of this section—clean living,

integrity – Assurance that
information is what you
think it is and hasn’t been
modified

availability – Accessibility of
information and services on
a normal basis

accountability – Making
sure a system is as secure as
feasible and a record of
activities exists for recon-
structing a break-in

identification – A technique
for knowing who someone
is; for example, a Social
Security number can be
identification

authentication – A tech-
nique for verifying that
someone is who he or she
claims to be; a password is
one type of authentication

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

2

comput ing secur i ty and e th ics 59

passwords, antivirus software, and encryption—are useful for users as well as
system administrators. The second half—system setup—concerns system
administrators but might also benefit home or business users.

clean living (or only the paranoid survive)
Here are some pointers on keeping computer systems secure:

• Have a security policy —None of the other advice in this list will do any good
if you or your employees don’t follow it. Have a written policy and follow it.
In addition, have regularly scheduled information and “rah-rah” sessions tying
the importance of employees’ work to the importance of securing informa-
tion about them and their work. Some companies even hire consultants to
pose as social engineers and crackers to test the policy.

• Have physical safeguards —Do you lock your house when you leave? Well,
maybe you don’t. Maybe you figure you don’t have anything worth stealing, or
an unlocked door will convince potential thieves that someone is actually
home. You do have something worth stealing, however, even if you think
you’re the poorest person on the planet: your identity. Records with personal
information (bank accounts, Social Security numbers, tax returns, documents
related to work, and so on) should be secured or shredded. Don’t throw
valuable information into the trash. In addition, secure your trash. Your
corporate dumpster should be in a visible, secure location and be locked. Your
corporation should have a policy that doesn’t allow visitors to roam at will
without badges or escorts. Computers, even laptops, can be locked to desks
(see Figure 2-2). Computers can have removable hard drives that can be
locked in a secure location. The premises can be guarded with security guards
and cameras. Employees who have quit or been terminated should be escorted
off the premises, have their passwords deleted, and turn in their badges.

Figure 2-2, A computer lock as a physical safeguard

Courtesy of Kensington Technology Group

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

60 chapter two

• Use passwords to protect everything —Use passwords to protect entry to your com-
puter at startup, entry to your e-mail, entry to your router, entry to software
with personal information, entry to your personal digital assistant (PDA), and
entry to your phone. Set your password-protected screen saver to engage after a
few minutes of inactivity. (See the next section on creating a strong password.)

• Destroy old copies of sensitive material —Use a shredder for paper and office
storage media. Incinerate the material for added protection. Overwrite
magnetic disks with specialized overwrite software to eliminate any electronic
trace data. Another approach is to use a degausser, which creates a magnetic
field so powerful that it realigns all the magnetic information on a disk. Some
people argue that these techniques are still not enough and recommend
completely destroying old hard drives.

• Back up everything of value —This measure includes copies kept off site or
in a bombproof lockbox. Many people and corporations have begun to use
online backup services that provide convenience and the assurance that some-
one else is doing it properly. A typical approach is to have full backups of all
systems in at least a couple of locations and then have a number of genera-
tions (going back the last three dates modified, for example) of backups for
important files. Software developers use programs such as SourceSafe and the
UNIX archive program for this task.

• Protect against system failure —Use a power surge suppressor. A surge in electricity
from a lightning strike or electrical fluctuations typical in brownouts can damage
and even destroy electronic equipment. Some experts recommend replacing surge
suppressors every couple of years. Systems also benefit from an uninterruptible
power supply (UPS). This device is essentially what your laptop has built in—a
battery backup in case the power goes out. A personal UPS gives you enough
juice for your computer to work for a few hours without electricity. Servers that
need to be up can benefit from an industrial power backup—perhaps a diesel
generator that keeps running as long as the supply of fuel lasts. Figure 2-3 shows
two physical means to secure your system: a surge suppressor and a UPS.

Figure 2-3, Two technologies that help back up your system: a surge suppressor and a UPS

Courtesy of Tripp Lite APC by Schneider Electric

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

2

comput ing secur i ty and e th ics 61

• Create an acceptable use policy for your company —An acceptable use policy

(AUP) defines who can use company computers and networks, when, and
how. If your employees can’t or shouldn’t use company resources for personal
activities or use is limited to certain times, state that in the policy. If you
allow employees, vendors, or partners to connect to the network from out-
side, address this possible vulnerability as well. One requirement you might
stipulate for off-site users is to allow connections only through callback num-
bers. This way, users can connect to a system only after it calls them back at
an established number. Another approach is to have a virtual private network

(VPN), a sophisticated setup in which a private connection is established
within a larger network, such as the Internet. The private network connection
“tunnels” through the larger network, taking advantage of the larger network’s
reach and management facilities, but is accessible only to authorized users.

• Protect against viruses —Install antivirus software and configure it to scan any
downloaded files and programs as well as incoming and outgoing e-mail
automatically. Even so, be careful with e-mail. You should open letters,
especially attachments, only from trusted sources. Mail-filtering programs,
such as MailFrontier Matador and SpamKiller, can be configured to discover
fraudulent e-mail messages. Have your antivirus program automatically and
regularly check for and download new virus definitions. Don’t start a com-
puter with a floppy in the A drive unless it’s a secure disk. Scan any disk
before using it—even ones in packaged software can be infected. Have your
operating system and other applications automatically and regularly check for
and download security update patches. Create backups of your important
files. If you don’t need file sharing, make sure it’s turned off in your operating
system. Look into antispam, antispyware, and anticookie programs (detailed
later in the “Privacy” section). Install intruder detection software that can
analyze network traffic and assess vulnerabilities. It also watches for suspicious
activity and any unauthorized access.

• Have a disaster recovery plan (DRP) —Whether you experience a naturally
occurring or human-caused disaster, a disaster recovery plan (DRP) is designed to
minimize any disruption a disaster might create. Depending on your situation, a
disaster could be anything from the death of the CEO to a major earthquake.
DRPs include documentation that creates a chain of command with a checklist
of alternative recovery processes, depending on the crisis. Disaster recovery sup-
port teams should be formed and brainstorm about responding to disasters,
examining who and what might be affected and how to react.

Some key resources that need to be addressed in a DRP are as follows:

• Data storage and recovery
• Centralized and distributed systems recovery
• End-user recovery
• Network backup
• Internal and external data and voice communication restoration

acceptable use policy
(AUP) – An organizational
policy that defines who can
use company computers
and networks, when, and
how

callback – A method that
allows users to connect only
by having the network
initiate a call to a specified
number

virtual private network
(VPN) – A private network
connection that “tunnels”
through a larger, public
network and is restricted to
authorized users

disaster recovery plan
(DRP) – A written plan for
responding to natural or
other disasters, intended to
minimize downtime and
damage to systems and
data

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

62 chapter two

• Emergency management and decision making
• Customer services restoration

Recovery operations might require off-site storage or operations with or without
immediate “go live” capabilities, alternative communication technologies or tech-
niques between recovery team members, and end-user communication parameters.
After a DRP has been completed, it should be tested, performing dry runs of
various scenarios, and it should be retested on a regular basis.

passwords
Easily guessed passwords are a serious problem for system security. Common and
simple passwords that can be guessed include a carriage return (that is, pressing
Enter), a person’s name, an account name, a birth date, a family member’s birth
date or name, or even the word “password” possibly repeated and spelled front-
ward or backward. Do you use anything like that? Then you are vulnerable.

Better passwords are longer and more obscure. Short passwords allow crackers
to simply run through all possible combinations of letters and numbers. Take
an extreme example. Using only capital letters, how many possibilities are there
in a single-character password? Twenty-six. Expand that to an eight-character
password, however, and there are more than 200 million possible combinations
(see Table 2-1).

Table 2-1, Password protection using combinations of the letters A through Z

human computer
avg. time to avg. time to
discovery (max discovery (max
time/2) time/2)

number of possible tries
characters combinations tries per second:
(A through Z) per second: 1 1 million

1 26 13 seconds .000013 seconds

2 26 3 26 5 676 6 minutes .000338 seconds

8 26 raised to 8 5 6640 years 58 hours
208,827,064,576

10 26 raised to 10 5 4.5 million years 4.5 years
1.4 3 10 raised to 14

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

2

comput ing secur i ty and e th ics 63

A good password should be long (at least eight characters), have no real words
in it, and include as many different characters as possible. Maybe a password
such as “io\pw83 mcx?$” would be a good choice. Unfortunately, passwords
this complicated are often written down and taped up in plain view, which
negates the purpose of having a password. One mnemonic for remembering
a password is to come up with an easily remembered phrase and use its
acronym as a password. Say you take the last sentence of the opening for the
original Star Trek: “To boldly go where no man has gone before.” You get
“TBGW0MHGB” (replacing the “no” with a zero just to confuse things a bit).
Not a bad password. Of course, if you have Star Trek posters on your walls,
wear Spock ears, and wander around spouting off about “the prime directive”
all the time, a proficient social engineer might still figure it out.

Although people can make significant changes to protect themselves and
their companies, corporate cultures can include many subtle and dangerous
security weaknesses. Proficient crackers become aware of corporate cultures
and find these weaknesses. For example, when Clifford Stoll, mentioned in
the introduction, was tracking a cracker in 1987, he became aware that
many system administrators thought their VAX minicomputers were
secure—and they were certainly capable of being secure. However, the
machines had been shipped with an easy access service account—an account
named FIELD with the password Service. The cracker had become aware of
the account and password—which hadn’t been kept a secret—and took
advantage of system administrators neglecting to change the account
password after installing the machine.

Many major institutions also confuse what’s essentially public identification
information (but often perceived as private because it’s less readily accessible),
such as a Social Security number or birth date, with a password. What identifi-
cation questions were you asked the last time you called your credit card
company? Name, birth date, last four digits of your Social Security number,
possibly? This practice confuses identification (who the person is) with authen-
tication (proof that the person is who he or she claims to be). Because of the
problems with passwords, many secure locations are moving to a combination
of three authentication techniques:

• Something you know—such as a password
• Something you have—such as an ID badge
• Something you are (often called biometrics)—such as a fingerprint, retinal

scan, or DNA sample

Figure 2-4 shows these three authentication techniques. Combining them
over the phone or through the Web, however, can be difficult and expensive.

biometrics – Biological
identification, such as fin-
gerprints, voice dynamics, or
retinal scans; considered
more secure than password
authentication

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

antivirus sof tware
Installing antivirus software is one of the smartest things you can do to protect
your machine, your software, your data, and your sanity—especially on college
networks, which are notoriously open and vulnerable to attack. These networks
are also where a lot of script kiddies can be found. Popular antivirus software is
produced by companies such as eSafe, eTrust, F-Secure, McAfee, Norton, RAV,
and AVG.

Antivirus software uses numerous techniques. One technique searches for a
match with what’s called a virus signature (or virus definition) of known
viruses—bits of code unique to a virus. Usually, you can select where to look
for the signature match—in the boot sector, all hard drives, certain folders or
directories, memory, and so on. This technique is an efficient way of searching
for and potentially eliminating a virus. The drawback is that the program must
have the signature in its database. Antivirus vendors are continually watching
their honeypots (programs or systems set up to deliberately lure and then track
intruders) and have their ears to the ground, hoping to catch the newest viruses
and put out a signature. The idea is that you need to update your signature
database regularly by downloading the latest signatures before a virus infects
your system. Most antivirus programs offer a service that updates virus defini-
tions automatically on a set schedule.

Two other techniques attempt to get around the possible signature match lag by
predicting how a virus will behave and then signaling possible anomalies. One

Figure 2-4, Three potentially combined authentication methods, from left to right: what you know, what you have, what you are

virus signature (or virus
definition) – Bits of code
that uniquely identify a
particular virus

honeypot – A trap (pro-
gram or system) laid by a
system administrator to
catch and track intruders

save your system and
your sanity

· Choose a difficult password.
· Install antivirus software.

· Configure automatic download
of antivirus software and oper-

ating system updates.

Thinkstock/Getty Images UPEK, Inc.

64 chapter two

antivirus software – A
program designed to detect
and block computer viruses

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

double safe

Even if you think your system
is adequately protected from

intrusion, it’s essential to back
up your system and data files

regularly.

encryption key – A string of
bits used in an encryption
algorithm to encrypt or
decrypt data; the longer
the key, the more secure
the encryption

2

comput ing secur i ty and e th ics 65

uses a set of heuristics (rules) to detect a possible virus. The other uses a checksum

on known clean and likely target files and checks for anomalies between the files.
The downsides of both techniques are that they aren’t as sure as signature match-
ing and are more likely to give false positives—labeling clean files as infected.
One final approach that antivirus software can take is to alert you to activity that
might be malicious. Usually, you can select the level of alarm you get: anything
from probable virus events, such as writing to the boot sector in your hard drive or
formatting your hard drive (alarm set to “nonchalant” level), to writing anything at
all to your hard drive (alarm set to “really paranoid” level).

Antivirus software has options for scanning and dealing with viruses. For in-
stance, the software can be operating in continuous mode, in which it’s always
scanning the hard drives and system. It can also work in on-demand mode, in
which the user tells the software to scan. Most antivirus software can repair in-
fected files. Some viruses are particularly nasty, however, and create files that
can’t be repaired. They do this by not just attaching to a file, but by essentially
copying over (deleting) the good code. In this case, the antivirus software might
quarantine the file—labeling it and removing it to a separate location on the
hard drive. If the file is important to the operating system, quarantining could be
a problem, but most antivirus software allows you to create a recovery disk that
contains critical OS programs. In a worst-case scenario, you might have to refor-
mat your hard drive. That’s when a backup of the drive becomes important.

Antivirus software continues to add features. If your software supports it, acti-
vate the feature to scan macro scripts, incoming and outgoing e-mail messages,
files when opened, compressed files, ActiveX controls, Java applets, and poten-
tial Trojan programs.

using encryption to secure transmissions
and data
The content of information sent over the Internet could be seen by every com-
puter through which it passes. Your e-mail is like a postcard that anyone can read.
Not only that, many different machines owned by many different entities handle
your postcard along its way, so sensitive e-mail and Web content need to be
secured in some way. One way to ensure that your transmissions remain private is
to use encryption. Encryption uses a computer code called an encryption key to
scramble the transmission so that only a user or system with the matching decod-
ing key can read it. Encryption can be used for securing stored information as well.

When you install a Web browser, you usually have a choice of installing a pro-
tection level of 40-bit or 128-bit encryption. The number of bits refers to the
encryption key’s size. The more bits, the longer the key, and the more secure
the encryption. If you’re going to be doing any online banking or shopping,
you likely need 128-bit encryption.

heuristics – In virus detec-
tion, a set of rules
predicting how a virus
might act; for example,
anticipating that the virus
will affect certain critical
system files

checksum – A mathematical
means to check the content
of a file or value (such as a
credit card number) to en-
sure that it has not been
tampered with or re-created
illicitly

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

66 chapter two

digital certificate – The digi-
tal equivalent of an ID card;
used with encryption and
issued by a third-party certi-
fication authority

n o t e E-mail can be encrypted with programs such as Email Protector and

Pretty Good Privacy (PGP); both are shareware programs available online.

Web pages use a secure encryption system, such as Secure HTTP (S-HTTP),
Secure Electronics Transactions Specification (SET), or Secure Sockets Layer
(SSL). Typically, financial institutions use S-HTTP or SET because they are
more secure. Their complexity makes them potentially slower, however, and be-
cause S-HTTP comes in both 40- and 128-bit flavors, it’s also used in some
credit card transactions. Credit card transactions don’t have the same security
needs as online banking because the credit card owner is not ultimately respon-
sible for fraudulent activity on the card. Credit card companies assume this risk.
In addition, unless you specify otherwise, online retailers do not store your
credit card information. This information is passed on directly to credit
card–verifying organizations. In many cases, organizations choose SSL because
it’s easy to implement and fast, two advantages that can increase customer
satisfaction and, it’s hoped, sales.

S-HTTP and SSL both use a digital certificate, which is issued by a certifica-
tion authority (CA) to both the user’s browser and the vendor’s server. The
information in the certificate—including username and certificate number—is
encrypted and verified by the CA. VeriSign is one company that manages
digital certificates.

Encryption has been used to secure information for thousands of years—mostly
by spies, the military, and government officials. With the need for secure finan-
cial transactions over the Internet, everyone who makes a purchase over the
Web has become a user of cryptography, even if it happens in the background.
Encryption uses simple to sophisticated algorithms to encode (encrypt or
encipher) plaintext into ciphertext, and then the recipient uses a reverse algo-
rithm to decode (decrypt or decipher) the message back into plaintext. Julius
Caesar has been said to be the first to use a fixed-place substitution algorithm
(replacing a letter with another a fixed distance away in the alphabet). For
example, the letter A might become C, which is two letters later (see Table 2-2).
The letter B then becomes the letter D, and so on.

Table 2-2, Simple substitution encryption algorithm for the alphabet

plaintext ciphertext

A C

B D

C E

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

2

comput ing secur i ty and e th ics 67

Table 2-2, Simple substitution encryption algorithm for the alphabet (continued)

plaintext ciphertext

D F

.

X Z

Y A

Z B

Substitution combined with algorithms for transposition, compaction, and
expansion can make the original message hard to break—at least by hand.
Table 2-3 shows some of these techniques.

Table 2-3, The plaintext words “JULIUS CAESAR” converted to ciphertext by
substitution, transposition, and expansion

algorithm technique plaintext ciphertext

substitution Replace characters; JULIUS CAESAR LWNKWU#ECGUCT
example: replace
with letter two to
the right and make
a space a #

transposition Switch order of LWNKWU#ECGUCT TCUGCE#UWKNWL
characters;
example: put
in reverse

expansion Insert characters; TCUGCE#UWKNWL TCUGCE@#UWKNW@L
example: insert
@ after every
sixth character

Even with this new confusing string of characters—TCUGCE@#UWKNW@L—
a cryptanalyst using cryptanalysis (breaking a cipher) can probably decipher it.
One weakness in this example is that the space character never changes from the
substitution phase. Given enough to work with, a cryptanalyst sees the obvious
reuse of the character—or any of the characters, for that matter—and begins to
deduce their significance.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

68 chapter two

Encryption and cryptanalysis have become far more sophisticated with the
advent of computing and the Internet. Although there are a number of
encryption standards, three have become popular in the commercial world:
Data Encryption Standard (DES), RSA (named after the inventors Rivest,
Shamir, and Adelman), and Advanced Encryption Standard (AES). These
encryption standards are key-based standards. That is, they rely on an agreed-
on starting point for encryption and decryption. In the previous example of
substitution, the key might be something that indicates substitution of two
letters to the right. The key might be secret (also called symmetric encryption)
or public (asymmetric encryption). Secret keys work well between two people,
but the system begins to break down when more than two are involved. Even
with only two, distributing keys between people can be difficult because the
key must remain secret. For this reason, public keys are often used. Public key
systems actually use both a public key and a corresponding private key.
Figure 2-5 shows asymmetric encryption. As shown, public/private key
encryption can be likened to a process in which the sender sends the informa-
tion locked in a box that can be opened only with the sender’s public key.
The box from the sender is in turn locked in a box that can be opened only
by the receiver’s private key. Only the receiver can open this box with the
private key; even the sender can’t open this outer box.

Figure 2-5, Using a public and private key (asymmetric encryption)

lock can be opened
only by receiver’s private key

lock can be opened only
by public key, which both
sender and receiver have

protected
information

symmetric encryption –
Encryption using a private
key to both encrypt and
decrypt

asymmetric encryption –
Encryption using both a
public key and a private key

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

2

comput ing secur i ty and e th ics 69

securing systems with firewalls
A firewall is software or hardware that acts as a protective filter between an
internal computer system and an external network, such as the Internet. A
firewall functions to prevent all traffic into the system, except traffic that’s
explicitly allowed. At a minimum, it’s located between an Internet service
provider (ISP) and the rest of the system or between a router (which links to
the ISP and is often owned by the ISP) and the rest of the system. Internal fire-
walls can be set up as well. The outside world shouldn’t see the details of the
system behind the firewall. Some companies that offer firewall software include
McAfee, Symantec, and Sygate. Microsoft began including a firewall (Internet
Connection Firewall) in Windows XP. A firewall can also be part of hardware; it’s
often offered on routers, for example (which you learn about in the next section).

There are two main types of firewalls. One type is called a proxy firewall. It has
different software (proxies) that must deal with each type of packet as it comes in
(HTTP, FTP, and so on). For each packet that passes inspection, a new link is cre-
ated between the firewall and the internal network, and the packet is sent on its
way. With this type of firewall, internal IP addresses are different from IP addresses
made visible outside the network. Another type is the packet-filtering firewall that
inspects packets as they arrive and sends them directly to the required server
(again, HTTP, FTP, and so on). No proxies are involved and a new link is not nec-
essary; therefore, it’s faster. However, it’s probably less secure because internal and
external IP addresses are the same, so they’re visible to anyone outside the network.

A firewall also allows you to configure a single entry point to your network. You can
configure firewalls to allow traffic based on a number of criteria: the IP address of
the destination or originator, the identification of the user making a service request,
and more. What’s called the firewall’s “rule set” should be set to accommodate the
needs of high traffic for certain requests (for example, Simple Mail Transfer Protocol
for a system that has a mail server). You want the firewall to make the fastest reason-
able ruling on traffic that you label as high priority, without allowing easy entry of
undesirable traffic. A firewall also logs traffic so that an attack can be investigated.

protecting a system with routers
Another way to protect a network is with a router. Filtering software in a router
can be a front line of defense against certain service requests. The router’s job,
unlike the firewall’s, however, is to move packets as quickly as possible toward
their intended destination. With the rise of home networks, hybrid router
systems have been created especially for the home user that claim to perform
both routing and firewall functions adequately.

Placing a system on the Internet, especially one with numerous services that you
want to allow for internal and external users, requires some thought in terms of sys-
tem architecture. For example, you might want to allow people on the inside to surf
the Web, transfer files, access e-mail, and log on to external systems. Each of these

firewall – Software and/or
hardware that sits between
an external network and an
internal computer system;
monitors requests for entry
to the internal system and
allows entry only to desig-
nated or authorized
entrants

proxy firewall – A firewall
that establishes a new link
between each packet of
information and its destina-
tion; slower but more
secure than a packet-
filtering firewall

packet-filtering firewall –
A firewall that inspects
each packet and moves it
along an established link to
its destination; usually
faster but less secure than
a proxy firewall

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

70 chapter two

demilitarized zone (DMZ) –
A location outside the fire-
wall (or between firewalls)
that’s more vulnerable to
attack from outside

services has a unique port, an opening to the Internet, through which it travels. The
point is to close the ports that are not allowed, resulting in fewer points of entry to
secure. Table 2-4 shows some typical ports and their associated services.

Table 2-4, Some of the many ports available on a router and what they do

service port description

FTP 21, 22 File transfer

HTTP 80 Access the Web

SSH 22 Create a remote session

Telnet 23 Create a remote session

POP3 110 Access remote e-mail accounts

Keeping available ports to a minimum goes for services you want to offer to oth-
ers on the outside, too. High-risk services include Telnet and FTP (using SSH is
more secure for both services), Microsoft NetMeeting (Internet conferencing
software that opens a large number of ports at once), and Network File System
(NFS) or NetBIOS (services that allow file sharing).

For more information about Telnet, FTP, and SSH, see Chapter 4, “Networks,”
and Chapter 5, “The Internet.”

In addition to port selection, you can determine where to place servers on the
network and what services are offered outside the firewall. For example,
Domain Name System (DNS) is what allows you to type a URL in a browser
instead of an IP address. Networks often have an internal DNS server to resolve
internal names and rely on an external DNS server for external names. You
want to keep internal and external DNS names separate to prevent outsiders
from directly accessing machines behind the firewall. This means having a DNS
server outside the firewall (owned by you or your ISP).

Services outside the firewall? Weren’t you just advised to keep everything be-
hind the firewall? Well, everything you want to protect should be behind a
firewall, but there’s also the demilitarized zone.

the DMZ
The demilitarized zone (DMZ) separates services you want to offer internally
from those you want to offer externally. A Web service for your customers is a
good example of something you want to offer externally; so is an incoming
e-mail server. A database with all employees’ names, addresses, and salaries,
however, is not something you want to offer externally. Because systems in the

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

2

comput ing secur i ty and e th ics 71

DMZ are more vulnerable to attack, they need some protection. One source of
protection is filters on the router. Another is to allow each server to serve only
the service it’s intended to serve. (Say that five times fast.) In other words, you
don’t allow FTP, SMTP, or any other service on your Web server; you have dif-
ferent servers for those services. Another approach is yet another firewall on the
other side of the DMZ. Figure 2-6 shows a system configuration for a network
that includes a firewall, a DMZ, and a router.

Figure 2-6, System configuration of a network that includes a firewall, a DMZ, and a router

firewallrouter

the DMZ
internal
network

external
mail server

external
Web server

file server

client
machine

client
machine

database
server

ISP
connection

to ISP

Internet

protecting systems with machine addressing
Another critical area for security administration is machine addressing. The original
designers of TCP/IP defined an IP address as a 32-bit number in the format
xxx.xxx.xxx.xxx. This system was called IPv4. Because of the limited number of IP
addresses in the world, organizations from small to large usually had more
machines than IP addresses. One way this shortcoming is being handled is by in-
creasing the number of bits used for the IP address. (IPv6 will use 128 bits.)
Change is inevitable and consistent, so IPv7 is already being discussed. Another
way to handle the limited number of available IP addresses is through dynamically
allocating IP addresses (with Dynamic Host Configuration Protocol [DHCP], for
example). Organizations also use private class addressing. Nodes on the internal
network have a different address (up to 16 bits) from what’s seen outside the

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

intellectual property – An
idea or product based on
an idea that has commer-
cial value, such as literary or
artistic works, patents, busi-
ness methods, industrial
processes, and trade secrets

copyright – The legal right
granted to an author, a
composer, an artist, a pub-
lisher, a playwright, or a
distributor to exclusive sale,
publication, production, or
distribution of literary,
artistic, musical, or dramatic
works

72 chapter two

network. This conversion of internal to external IP addresses and vice versa is called
Network Address Translation (NAT). NAT is usually provided by the firewall.

putting it all together
To ensure that your computer systems are as secure as they can be, the
approaches to system security and countermeasures outlined in this chapter
should be considered part of a comprehensive security plan, not implemented in
a piecemeal fashion. An organization doesn’t just install a firewall and figure it’s
immunized. Neither should you. Your approach to security is a concerted effort
that includes firewalls and antivirus software. It also includes restricting physical
access to buildings and hardware by using locked doors, identification, and
authentication systems. It includes constant reminders of the dangers of letting
your guard down, and it means training employees to remain alert to possible
threats. It demands a security policy that’s continually audited and updated as
well as enforced. It demands that systems be updated and patched regularly to
fix security holes. Files and systems must have appropriate access controls. In
many ways, a successful security system can be quite boring (because “nothing
ever happens”), and you as an administrator might have to deal with people
(maybe even yourself) who don’t want to bother with all the “bureaucracy”
involved in creating and maintaining good security. In the end, however, that’s
what you want: a boring system where nothing ever happens.

computer cr ime
The preceding sections dealt with many approaches to securing the hardware,
software, and data on computer systems. If these approaches aren’t used or fail,
and an intrusion occurs, there are some legal safeguards and avenues for prose-
cuting and punishing computer intruders. The next sections discuss types of
computer crime and applicable legislation.

defining computer crime
In the IT world, computer crime most often relates to intellectual property

rather than physical theft (although physical theft can also be a problem,
addressed earlier in this chapter). Intellectual property can consist of a trade-
marked symbol, a patented design or process, a copyrighted program, digital
information, or programming and hardware trade secrets. For software and
hardware, protections generally fall into three categories:

• Copyright
• Patent
• Trade secrets

Copyright protects the expression of the idea, not the idea itself. In other words,
you can copyright Mickey Mouse and how he’s drawn, but you can’t copyright all

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

2

comput ing secur i ty and e th ics 73

drawings of mice. Copyright gives the author the exclusive right to make copies of
the work. Filing for a copyright is easy. Actually, if you put a copyright symbol on
your work, it’s essentially marked as copyrighted, although in a legal dispute you
have to prove origination. A copyright lasts the life of the human originator plus
another 70 years—which is a topic of debate in legal, political, and economic
circles. If an unauthorized copy is made of your copyrighted material, you can sue.
Your chances of successfully suing increase if an unauthorized copy is made and
sold. Copyrights are often used for software. Although there’s always the possibility
that someone will reverse-engineer the program, that kind of programming takes
considerable effort. The copyright at least protects against someone creating an ille-
gal duplicate. Copyrights (or patents) have not proved very successful for protecting
a user interface, however. Lotus Development, for example, tried unsuccessfully to
sue Borland and Microsoft because it felt these companies copied the “look and
feel” of the Lotus 1-2-3 spreadsheet in their products Quattro and Excel.

A patent protects inventions, the workings of a device, or a process. In the
United States, you file a design at the Patent Office for a fee. The design can be
a fairly rough sketch, but again, if the case ever goes to court, the design could
be torn apart as insufficient for proving unique origination. Filing for a patent
is a fairly expensive and complicated undertaking and requires a specialized
lawyer (or someone with a lot of time). Large corporations, with embedded
legal staffs, have become much better at filing for patents. The life of a U.S.
patent is 19 years. If the invention is copied, you can sue. Software typically is
not patented, although the U.S. Patent Office no longer discourages software
patents. (Before the mid-1980s, successful bids for software patents were rare.)
The problem lies in the typically fast software development and revision cycle
compared with the fairly slow patent process. In addition, a patent requires that
you show your design, which for software means showing the source code.
Most companies don’t want to reveal their source code, so they rely on
copyright law and trade secrets to protect their products.

Trade secrets are another form of intellectual property. Trade secrets are meth-
ods, formulas, or devices that give their companies a competitive advantage and
are kept from the public. One famous longstanding trade secret is the recipe for
Coca-Cola. For a long time, only three people in the organization—and, there-
fore, in the world—knew the recipe. There’s no time limit on trade secrets.
They last as long as they can be kept secret. If trade secrets are stolen, perpetra-
tors can be sued. Privacy laws protect the original owner in some cases.

prosecuting computer crime
The United States has a number of laws designed to protect intellectual property,
personal privacy, and computer systems from fraud and abuse. Many laws that
relate to securing intellectual property, for example, have a long history. The first
copyright protection in the United States was created in 1787 and signed into

trade secret – A method,
formula, device, or piece of
information that a com-
pany keeps secret and that
gives the company a com-
petitive advantage

reverse-engineer – To figure
out the design of a
program or device by taking
it apart and analyzing its
components; for example,
source code can be reverse-
engineered to determine a
design model

patent – A government
grant that gives the sole
right to make, use, and sell
an invention for a specified
period of time

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

74 chapter two

law in 1790. It predates the ratification of the Bill of Rights—before free speech,
freedom of the press, and the right to bear arms. The U.S. Patent Office was also
created in 1790 to protect the exclusive rights of inventors. Privacy is not written
into the Bill of Rights but has been the concern of several acts, such as the Fair
Credit Reporting Act (1970) and the Video Privacy Protection Act (1988).
Table 2-5 lists many of the important U.S. laws of the past 40 years that have
been used to prosecute intellectual property theft, computer system intrusion,
and invasion of personal privacy.

Table 2-5, Some important U.S. federal laws used to prosecute intellectual
property theft, computer system intrusion, and invasion of privacy

law (U.S. code) date purpose/notes

Interception Act 1968 Outlaws wiretapping; a computer
(18 U.S. Code 2511) network “sniffer” would fall under

this statute

Fair Credit Reporting 1970 Allows people to review their
Act (15 U.S. Code 1681) credit ratings and disallows

companies from releasing credit
information

Family Educational 1974 Protects students’ records from
Rights and Privacy Act parties other than the student and
(20 U.S. Code 1232) parents

Privacy Act (5 U.S. 1974 U.S. statute that stops federal agencies
Code 552) from using “bonus” information—

information collected while an agency
was investigating—for another
purpose

Electronic Funds 1978 Prohibits the use, sale, and supply
Transfer Act (15 U.S. of counterfeit (or obtained
Code 1693) without authorization) debit /

credit instruments

Computer Fraud and 1984 Makes intentional access to a
Abuse Act (18 U.S. computer without authorization
Code 1030) illegal

Credit Card Fraud Act (18 1984 Makes unauthorized access to 15 or
U.S. Code 1029) more credit card numbers illegal;

means that accessing a system
with 15 or more numbers on it, even
if the person does not use the cards,
is illegal

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

2

comput ing secur i ty and e th ics 75

Table 2-5, Some important U.S. federal laws used to prosecute intellectual
property theft, computer system intrusion, and invasion of privacy (continued)

law (U.S. code) date purpose/notes

Access to Electronic 1986 Further defines illegal access to
Information Act (18 electronic communication; also
U.S. Code 2701) protects access by authorized users

and includes the owner of the
information as an authorized user

Electronic 1986 Extends privacy protection beyond
Communications postal and phone communication
Privacy Act (18 U.S. to e-mail, cell phones, voicemail, and
Code 1367) other electronic communications

Video Privacy 1988 Prohibits retailers from selling or
Protection Act (18 giving away movie rental records
U.S. Code 2710)

Telephone Consumer 1991 Restricts telemarketing activities to
Protection Act (15 ensure privacy
U.S. Code 5701)

Computer Abuse 1994 An extension of the 1984 Computer
Amendments Fraud and Abuse Act that includes

transmission of malicious code, such
as viruses and worms

National Information 1996 Further nationalizes the law against
Infrastructure Protection stealing information electronically
Act and computer trespassing across

state lines; also extends to theft of
information related to national
defense

Economic Espionage Act 1996 Makes any theft of information or
(18 U.S. Code 793) trade secrets across international lines

a crime

No Electronic Theft 1997 Further refines copyright law to
(NET) Act disallow freely distributing

copyrighted material without
authorization

Digital Millennium 1998 Makes using anti-antipiracy
Copyright Act (DMCA) technology, as well as selling

anti-antipiracy technology, a crime

(continued)

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

76 chapter two

Table 2-5, Some important U.S. federal laws used to prosecute intellectual
property theft, computer system intrusion, and invasion of privacy (continued)

law (U.S. code) date purpose/notes

Provide Appropriate Tools 2001 Gives law enforcement agencies
Required to Intercept and broader rights to monitor the
Obstruct Terrorism electronic (and other) activities of
(PATRIOT) Act individuals; in addition, the Computer

Fraud and Abuse Act is further refined;
causing damage (even unintentionally)
to a computer system is punishable

It should be noted that these laws are always open to interpretation in the
courts. (In addition, the laws are constantly changing, and keeping abreast of
these changes is critical.) For example, at this writing, to prosecute computer
fraud and abuse, the damage must be shown to exceed $5000. In some cases in
the past, it has been proved that entering a system and viewing the information
there could not be construed as damage because the plaintiff could not prove the
damage exceeded the minimum amount of $5000. With credit card fraud, the
attacker has to be shown to be in possession of 15 or more counterfeit or ille-
gally acquired credit card numbers.

Many states have laws concerning computer crimes, but the laws differ widely.
Some specify no minimum damage requirements, and others do. Some states,
such as Minnesota, specifically target viruses. What constitutes accessing a
system—actual entry or merely an attempt—also differs from state to state.

When you start looking at laws in other countries, it gets even messier. First,
there’s the matter of jurisdiction. For the most part, one country has to give an-
other country permission to pursue a case. In most of the Western world, there
are established agreements for reciprocity and sharing of information, and that
aspect of investigation can go fairly smoothly. In many other cases, the U.S.
Federal Bureau of Investigation (FBI) has had to specifically ask for help from
countries that don’t have any computer crime laws—even if the country is an
ally. For countries openly hostile to the United States, getting this type of
assistance is nearly impossible.

Prosecuting a computer crime is also a complex matter. Can you prove there was
monetary damage? Can you gather enough evidence? That means you have to
show traces of the intrusion on your systems. The computers in your organiz-
ation become part of a criminal investigation, which means they must be
replicated entirely or not used for their normal purposes during the investigation
and prosecution. Of course, all this assumes you have actually discovered the
perpetrator—a difficult matter in its own right. Unfortunately, although the

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

2

comput ing secur i ty and e th ics 77

record is improving, many people have gotten away with major intrusions and
even when caught have been given no or light sentences.

I fought the law and the law won
So if computer crimes have been difficult to prosecute, you might as well
commit a few, eh? Not so fast! The Western world has come a long way in pros-
ecuting computer intrusions and other IT-related crimes since 1987 when
Clifford Stoll had difficulty convincing the FBI to pursue a cracker. Increasing
numbers of crackers are being caught and prosecuted. Since 1987, the laws
have changed to make prosecution and conviction even more likely. In addi-
tion, authorities are far more likely to pursue electronic and computer crime
than in the past.

For example, corporations are willing to pursue copyright violations more
aggressively. In 2003, the Recording Industry Association of America (RIAA)
began to target not just the Web sites, but also the end users who had down-
loaded copyrighted music from such Web sites as Napster and KaZaA. At the
same time, the music and movie industries have begun to give people incentives
for staying within legal boundaries. In 2003, Napster was reborn as a Web site
for legally downloading songs at a reasonable cost. Apple did the same with its
iTunes site. RealNetworks and the Starz Encore Group recently created a similar
movie download service.

End users who engage in software piracy are also liable. They can be prosecuted
and punished with up to five years in jail and fines of up to $250,000.
Corporations can be liable for software piracy as well. In an effort to avoid
prosecution, many organizations have been reviewing all machines periodically
to check for illegal copies of software. The software industry might also try to
thwart potential thieves by making the purchase of a copy of a software title a
thing of the past. Currently, when you buy software, you don’t actually own it.
You purchase the right to use a copy with certain conditions, specified in the
end-user license agreement (EULA, where you have to click “I accept” to con-
tinue). The EULA usually disallows using the software on more than one
machine, loaning or renting it out, or otherwise distributing it. With another
type of agreement, you purchase time on a program and connect to it through
a network. Microsoft Remote Desktop Services, a program that many organiza-
tions use, is headed in this direction, in which you link to a server that’s
running Microsoft Office or Visual Studio, for example. This setup makes steal-
ing software more difficult and protects organizations who want to be sure
they’re on the right side of the law.

paying the price

In May 2002, a U.S. court sen-
tenced the author of the Melissa

worm, David L. Smith, to 20
months in a federal prison. Two
years before, the Melissa worm

had caused an estimated $80 mil-
lion in damages and lost

business. After 9/11/2001, the U.S.
Attorney General’s office stated

that breaking into computer sys-
tems was a threat to the security
of the country, and it would look

for harsher penalties and
prompter sentencing for elec-

tronic break-ins.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

n o t e

78 chapter two

More information on software piracy can be found online at the Business

Software Alliance (BSA) Web site, www.bsa.org.

ethics in computing
Although ethics and law are intertwined, they are separate systems for defining
right and wrong behavior. Sometimes they even conflict. Nevertheless, despite
differences between them and differences in the way people view them, some
strong generalizations can be made about ethically and legally acceptable con-
duct concerning property, general welfare, health, and privacy in the world of
information technology. Just because an act you engage in is difficult to prose-
cute or is even legal does not make it ethical.

Ethics are the moral principles a person or group holds for judging right and
wrong behavior. People often confuse ethics with religious rules because most
religions attempt to instill some set of moral principles. However, ethics can be
amazingly similar across religions and even for those with no particular reli-
gious affiliation. The reason is simple: Ethical systems (along with laws) help
create a stable platform for living life comfortably with other people and, it’s
hoped, in a manner to benefit all. People generally make fairly rational deci-
sions, and most can see beyond their own noses enough to know what’s
rational and right.

Organizations of computer professionals have outlined ethical standards for
their members, often predating laws that now reflect these ethics. The
Institute of Electrical and Electronics Engineers (IEEE), Association for
Computing Machinery (ACM), Data Processing Management Association
(DPMA), Computer Ethics Institute, and other IT organizations created
codes of ethics that their members have sworn to uphold. Many companies
create codes of ethics, too. Figure 2-7 shows an excerpt from the ACM code
of ethics.

People approach ethical reasoning from different perspectives. These approaches
can be generalized along two continuums: orientation toward consequences
versus orientation toward rules and orientation toward the individual versus
orientation toward the universal. Most people don’t fit entirely within one
square, or at least not for all situations they might face. Nevertheless, these
approaches can help you understand a situation in terms of ethics no matter
what your ethical reasoning is.

ethics – Principles for judg-
ing right and wrong, held
by a person or group

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

www.bsa.org
http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

2

comput ing secur i ty and e th ics 79

Figure 2-7, An excerpt from the ACM Code of Ethics and Professional Conduct

These approaches can be generally described with the following terms:

• Egoism—Ethical principles based on possible consequences to an individual
• Deontology—Ethical principles based on individual duties and rights
• Utilitarianism—Ethical principles based on possible consequences to many or

all individuals
• Rule-deontology—Ethical principles based on what an individual considers to

be universal rules or duties

Many of the issues facing the information technology industry and those who
work in it can be analyzed in terms of the schema in Table 2-6, as shown in the
next few sections.

Table 2-6, People base their ethical decisions on different principles

oriented toward oriented toward rules
consequences

oriented Egoism Deontology
toward the The person bases his ethics The person bases her
individual on the possible good and bad ethics on a sense of duty.

consequences to himself. An Consequence is not

(continued)

1.1 Contribute to society and human well-being

1.2 Avoid harm to others

1.3 Be honest and trustworthy

1.4 Be fair and take action not to discriminate

1.5 Honor property rights including copyrights and patents

1.6 Give proper credit for intellectual property

1.7 Respect the privacy of others

1.8 Honor confidentiality

2.1 Strive to achieve the highest quality, effectiveness, and dignity in both process and products of professional work

2.2 Acquire and maintain professional competence

2.3 Know and respect existing laws pertaining to professional work

2.4 Accept and provide appropriate professional review

2.5 Give comprehensive and thorough evaluations of computer systems and their impacts, including analysis of possible

 risks

2.6 Honor contracts, agreements, and assigned responsibilities

2.7 Improve public understanding of computing and its consequences

2.8 Access computing and communication resources only when authorized to do so

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

80 chapter two

software piracy – Illegal
copying of software; a
problem in the United
States and Europe, but
rampant in the rest of
the world

Table 2-6, People base their ethical decisions on different principles (continued)

oriented toward oriented toward rules
consequences

example:A student might considered relevant.An
judge the possibility of getting example:An employee
caught cheating on a test as believes that telling
high and, therefore, not cheat. the truth is important, no

matter what the situation.
When she realizes her
team leader has misled her
manager as to the progress
of the program she’s
working on, she tells her
manager what her true progress
is, even though it puts her
own abilities in a worse light.

oriented Utilitarianism Rule-deontology
toward the The person bases her ethics The person bases
universal on the possible good and bad his ethics on what he

consequences to all people, considers universal rights or
including herself—and to the natural or inherent rules—
universe in general. This can rules that make people
include a sense of empathy— responsible to one another.
for example, what if I were the Consequences are not
victim of X? An example: A considered relevant. An
programmer realizes that an example: An employee
unintended consequence of believes in the right to
the emissions-checking program privacy. His boss asks for the
she is writing will allow names and addresses of
some polluting cars to pass. people in his neighborhood
She determines that many as possible customers for
people will feel the negative the company’s new product.
effects, so she takes the time He refuses.
to fix the code.

sof tware piracy
Software piracy is unethical from a number of perspectives. It’s illegal and violates
one or more rules in organizations’ rules of conduct. For an honest, rule-based
person, that’s enough reason to avoid piracy. If you believe the right to private
property is a natural right, then as a rule-deontologist, that should be enough for
you. In addition, software piracy is detrimental to everyone in a number of ways.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

2

n o t e

comput ing secur i ty and e th ics 81

As the software is spread illegally, it increases the likelihood of spreading viruses.
Because it lowers the revenue of the company producing the software, it increases
the cost of software for everyone. In terms of consequence, this would give any
good utilitarian pause. It decreases the resources that can be put toward improv-
ing the product or toward hiring people such as you or improving your salary.
Depending on the country, estimates of pirated software run from 60% to 80%
of all copies. That’s a lot of lost revenue for owners of stock in the software com-
pany. Even an egoist would find reasons to avoid software piracy—such as the
possibility of getting a virus, losing a job, or losing share value on stock holdings.

viruses and virus hoaxes
What about passing viruses along? Writing them isn’t the only unethical prac-
tice. You should also do what you can to stop their movement, such as running
updated antivirus software, regularly updating your system, and not opening
strange e-mail attachments. It’s not against the law if you don’t install antivirus
software, but not doing so is imprudent and unconscionable because of the
havoc viruses can wreak. A number of schools and corporations discipline any-
one found passing along a virus—intentionally or not. All the codes of ethics of
the IT organizations mentioned previously cover virus prevention in at least one
rule. You should do what you can to eliminate viruses and inform others you
communicate with if you get a virus. However, you should not pass along virus

hoaxes, which add to the overwhelming amount of information people already
get via junk e-mail and can cause unnecessary panic.

You can find information on virus myths and hoaxes on several Web sites, such

as snopes.com, vmyths.com, hoaxbusters.ciac.org, and internet-101.com.

weak passwords
Using weak passwords could also be considered unethical because they give
online vandals access to systems. In addition to harming computers, they might
take advantage of any other system weaknesses and cause further damage.

plagiarism
Many schools have an honor code that includes prosecuting not only the per-
son who cheats, but also anyone who allows the cheating, including “innocent”
bystanders. Therefore, if it’s discovered you knew about other people cheating,
you have also cheated. Cheating usually occurs because students feel under
pressure to perform, don’t understand that stealing intellectual property is a
crime, or don’t believe they will be caught. None of these reasons makes the be-
havior correct, however. Cheating also affects instructors because it forces them
to spend time dealing with the issue of cheating instead of instructing.

virus hoax – E-mail that con-
tains a phony virus warning;
started as a prank to upset
people or to get them to
delete legitimate system
files

some famous and
humorous virus hoaxes

· Clipper: scrambles all the
data on a hard drive, rendering

it useless.

· Lecture: deliberately formats the
hard drive, destroying all data,

and then scolds the user for not
catching it.

· SPA: examines programs on the
hard drive to determine whether
they are properly licensed. If the

virus detects illegally copied soft-
ware, it seizes the computer’s

modem, automatically dials
911, and asks for help.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

82 chapter two

Cheating might achieve a short-term goal of getting through a particular
assignment or test. In the long run, however, the student doesn’t learn the infor-
mation or skills developed by doing the assignment. Even if the student avoids
being caught and eventually finds a job, chances are he or she isn’t going to have
the skills to do the job properly and could wind up being fired. Plagiarism con-
tradicts many ethical standards and rules of conduct, such as Rule 2.1 of the
ACM code, which mentions striving to achieve the highest quality of work. The
more a person engages in plagiarism, the more likely he or she will be caught. If
you’re going to borrow the work of others who freely share, whether it’s text or a
program, cite where the work came from originally.

cracking
Cracking or hacking into computers is the same as trespassing on someone’s
land. Would many of the crackers trespassing on computer systems be as bold
in the physical world? Unlikely. The physical world contains more deterrents,
including the possibility of bodily harm, but that’s rarely the case in the virtual
world. In dollar terms, however, the damage someone can cause by trespassing
can be even more serious than in the real world. A cracker could wipe out your
bank account, run up your credit cards, steal your identity, and ruin your credit
rating, or a cracker could wipe out important files and kill your career. Even if a
cracker didn’t intend it, he or she might cause damage. Many writers of worms
have been as surprised and impressed as their victims at how effectively the
worms have moved across the Internet. Many program and system crackers jus-
tify their actions in terms of social Darwinism (“survival of the fittest”). They
argue that stupidity should be punished and society is better off for their ac-
tions. Yet how many privately contact an organization and tell them of a flaw,
giving the organization time to fix it?

Mistakes made while programming complex systems aren’t necessarily a mat-
ter of stupidity. Programming is still more art than engineering. There are
millions of programs running everything from the stock exchange to the
charger on your electric toothbrush. The chances that some programmers are
better than others are high, but many programs still need writing, and many
systems still need administration. The best and brightest can’t do everything.
If you consider yourself one of the budding best and brightest, and you want
to go counterculture, think about joining the open-source movement. The
evidence from Linux and other open-source programs suggests that having
many great minds around the world working on a large software program
makes for better—and definitely more robust and secure—software.

health issues
Rule 1.2 of the ACM code specifies avoiding harm to others. Rule number
1 for both the IEEE and the Computer Ethics Institute concerns not using

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

2

comput ing secur i ty and e th ics 83

a computer to harm others. Computers have been instrumental in many
injuries—large and slight—to health and the environment. A repetitive strain
injury (RSI), such as carpal tunnel syndrome and tendonitis, is common for
people using keyboards and mice. The U.S. Occupational Safety and Health
Administration (OSHA) has issued guidelines addressing these problems. As a
software or hardware designer concerned with user interfaces, you should be
aware of the ergonomics of how an interface is used. In addition, proper
disposal of computer equipment could be considered ethical. Many of the com-
ponents of computers, monitors, and peripherals are made of toxic materials.
For the sake of the water supply, you should think about disposing of computer
equipment properly.

In the end, ethics are principles held by an individual. You can’t be forced to
write good software that won’t harm others or to eliminate viruses. With this
introduction to tools for evaluating complex issues in information technology,
intellectual property, rules, laws, and privacy, it’s hoped that you will for ethical
reasons.

privacy
Not all cultures have the same set of ethics or laws concerning privacy. In the
United States, there’s much discussion and legislation on privacy and a num-
ber of laws designed to safeguard personal information. However, laws also
exist (as do holes in the laws) that allow information about you to be gath-
ered and disseminated by the government and corporations without your
consent. If you’re concerned about your privacy, you might have to proac-
tively defend it. In the workplace, where you are using your employer’s
equipment, you’re likely to have fewer legal protections for your privacy.
There are a number of techniques for protecting your private information at
home, however. You should also be aware of the tools—such as spyware and
cookies—used to gather information about you and your online activities.
Finally, privacy and intellectual property are issues of information accuracy,
an area not well addressed by legislation.

With so much information now available online—doctors’ records, government
records, credit records—that once needed to be viewed in person, the impor-
tance of information privacy has become paramount. Many people believe that
information about them acts as though it were still kept in file cabinets in an
office: little movement and little access. This isn’t the case, however. Just going
to the doctor’s office for a checkup passes your information through several
organizations (credit card, insurance, hospital, lab, and so on). Browsing the
Web and buying things online can also leave your Web habits open for viewing.
All this information is potentially helpful for companies trying to sell you
something or a government agency interested in determining how suspicious
your behavior might be.

ergonomics – Science of the
relationship between peo-
ple and machines; de-
signing work areas to
facilitate both productivity
and human ease and
comfort

privacy – Freedom from
unwanted access to or in-
trusion into a person’s
private life or information;
the Internet and computer-
ized databases have made
invasion of privacy much
easier and are an increasing
cause for concern

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

84 chapter two

In general, starting in the late 1960s, laws related to ensuring privacy have
become more protective of the privacy of U.S. residents. The creation of the
“do not call list” in 2003 to thwart telemarketers was the latest effort by
Congress to shield Americans from intrusive marketing behavior and violations
of privacy. The one legislative act that runs counter to this trend is the PA-
TRIOT Act of 2002, a response to the destruction of the World Trade Center
in New York City by terrorists on 9/11/2001. It specifies, in part, that law en-
forcement organizations have the right to monitor individuals’ Web and e-mail
activity if they’re suspected terrorists. At present, a debate rages about the con-
stitutionality of this act, which will likely be challenged in the years to come.

As of this writing, no law currently exists to protect the privacy of employees
working for a corporation. Employees’ activities can be monitored through
e-mail, log records, Web traffic, time spent using software, keystrokes, and other
mechanisms. Companies aren’t required to tell their employees about the types
of monitoring and can use the information for performance review, firing, and
even legal action. To the company, communicating electronically from within a
company or using a company’s equipment is considered no different from
punching a time clock. You are in the company confines, on company property,
and the company has a right to know how you’re using your (its) time. The use
of spyware (discussed later in this section) facilitates this monitoring.

A number of specialized technologies are used to gather information about your
Web habits and sell you products and services. Most are fairly harmless, some
are used by crackers, and several are considered obnoxious by many people.

Spam is unsolicited (and usually unwanted) e-mail. Most are attempts to sell
something to you. Spammers don’t expect a high return ratio, but depending
on the size of their distribution list, they can be successful with a small
percentage of recipients “clicking through”—that is, clicking on the e-mailed
advertisement. Most corporations that engage in mass e-mailing do so
cautiously because they don’t want to alienate their customers. The most suc-
cessful mass e-mails are sent to people who have a defined relationship to a
company’s existing customer base. These e-mails tend to make it easy to be
removed from the distribution list—a sign of goodwill toward the customer
that actually reduces the chances of customers asking to be removed because
they perceive it as something they can do at any time. These e-mails are sent
to customer lists created mostly through product registration and support
logs. In this case, you can likely reply to an e-mail with “Unsubscribe” in the
subject line and be removed from the list.

The opposite of this approach is unsolicited e-mail that doesn’t make it
clear how your e-mail address has been obtained or how to stop receiving
these e-mails. Often they come from a single person or organization using
multiple return addresses to fool antispam programs used by e-mail systems
such as Yahoo! and Gmail. Spammers get addresses from many sources. One

spam – Unsolicited (and
almost always unwanted)
e-mail; usually trying to sell
something

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

2

comput ing secur i ty and e th ics 85

technique is to use common sense with addresses. They have programs that
search for combinations of common first and last names, but you can use a
slightly odd e-mail name with nonalphabetic characters to help thwart this
approach. Other approaches are to find public declarations of e-mail ad-
dresses (on Web pages, for example) or to buy or steal lists of names and
e-mail addresses. Many people fear that their e-mail address is being sold or
given to others by the latest online merchant they visited. Using a special
e-mail address, such as a free Web e-mail account, just for merchant interac-
tions is one way to find out if this is happening. However, many merchants
won’t sell their lists to the lowest common denominator spammers (who
likely couldn’t afford them anyway). These spammers probably use other
tools, even spyware, to gather names. It’s best to never reply to spam e-mails.

Spyware is a catchall phrase for programs installed on your computer, with or
without your knowledge, that observe your computer activities. Spyware can
collect information about your computer use: anything from program use to
Web browsing habits. More intrusive spyware can collect e-mail addresses from
your address book. Spyware is often passed into your computer through a virus,
worm, or Trojan program. Some legitimate software products also include a
spyware program (they might call it adware) and inform you of it in the fine
print. Whether spyware is used with a program you install should be specified
in the license or registration agreement, and you should read it carefully to see
whether information about you will be communicated to other vendors or ad-
vertisers. Spyware/adware is not necessarily illegal, but it can be, and many
criticize it as an invasion of privacy, especially if the user is unaware of the
program’s existence.

Cookies are related to and sometimes used with spyware but are considered dif-
ferent because the user is assumed to be aware of their use. Cookies are files on
your hard drive used to communicate with Web pages you visit. Your Web
browser searches for a cookie with a unique identification when it’s pointed to a
Web page. If it doesn’t find one, it might download one if the Web page uses
them. If one does exist, it sends information to the Web page from the cookie,
and the Web page might in turn update the cookie. Cookies are used by Web
sites for many things and are sometimes helpful to users: keeping track of items
in your shopping cart as you move from page to page on a merchant’s site, your
Web site preferences, or usernames and passwords so that you don’t have to re-
type them every time you visit the site. Cookies can also be used to track visits
to a site and to better target advertisements.

Spyware and cookies can be controlled. Cookies can be tracked, reduced, or
eliminated. Your Web browser has settings that alert you when a cookie is sent
and allow you to block some or all cookies. Occasionally clearing history files,
cookies, and favorites from your browser is also a good move. A number of
third-party programs (some are free) can also help manage spyware and cookies.

spyware – Software that
can track, collect, and trans-
mit to a third party or Web
site certain information
about a user’s computer
habits

cookie – A program that
can gather information
about a user and store it on
the user’s machine

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

86 chapter two

n o t e

Antispyware programs, such as Spy Sweeper, Spyware Eliminator, and AntiSpy,
work like antivirus checkers; they scan disks for intruders and warn you when
spyware exists or is being installed. Cookie manager programs include Cookie
Cruncher, Cookie Crusher, CookieCop, and WebWasher. Spam can also be
filtered. Antispam programs include Brightmail, MailWasher, and SpamKiller.
A final category of privacy tool is an anonymous Web surfer setup, such as
Anonymizer.com or WebSecure. These programs prevent your Web surfing from
being identified with you. To find these programs, try searching online with
your favorite search engine.

Here are some other steps that can be taken to secure your privacy—some dras-
tic and some less so:

• Avoid leaving a record of your purchases when possible. Use cash if possible,
then debit cards, then credit cards, and then checks. Don’t join purchasing
clubs. Don’t give out information to be put on a call or an e-mail list. Skip
filling out warranty and registration information. You don’t need them to get
product support. Avoid tempting rebates.

• Guard against telephone and mail intrusion. Have an unlisted phone num-
ber. Use caller ID to block unknown numbers. Don’t have your phone
number and address printed on your checks.

• Review privacy rules and write to all financial institutions with which you
interact. Get off their mailing lists. Inform merchants that you don’t want
your personal information shared.

Information accuracy is as much an issue as access to information. Questions
arise as to who’s ultimately responsible for the accuracy of information that’s so
readily available, especially online. You are responsible for ensuring that the in-
formation credit organizations have is up to date. Some argue that you should
review your credit history once a year from the big three reporting agencies:
Equifax, Experian, and TransUnion. You should do the same with your medical
records.

You can find more information about your health records at the Medical

Information Bureau, www.mib.com.

The accuracy of Web pages is another issue. With print media, incorrect or
false information is often discovered and corrected in the editorial process. For
many of the billions of Web pages, there’s no editorial process or “quality con-
trol.” The possibilities for misleading and even harmful information about
almost any subject—including, possibly, information about you—have in-
creased exponentially. This problem doesn’t apply just to text. Digital pictures
can be modified and used to present false or misleading information. On the

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

www.mib.com
http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

2

comput ing secur i ty and e th ics 87

extreme end, the National Photographers Association has stated that any
alteration to an original photograph is dangerous. Legal precedents for deter-
mining the accuracy of photographs have yet to be set.

one last thought
This chapter has examined many vulnerabilities of computer systems, from
technical to social, and has reviewed many of the laws related to system intru-
sion, intellectual property, and privacy. Most pragmatically, it has explored the
ethical imperative of securing computer systems and a number of critical ways
to make these systems less vulnerable. As a computer user, you must realize
you’re not just personally vulnerable; you are part of an overall vulnerability.
For most users, lessening this vulnerability is fairly straightforward: Install and
constantly update antivirus software, firewalls, and operating system patches.
You also need to guard against communicating information and allowing access
that increases vulnerability. People and organizations need to reassess the bal-
ance between ease of use, customer service, time, and cost on the one hand and
system security on the other. Maintaining system security is a long-term invest-
ment for personal and organizational viability. As a computer user and potential
system designer and programmer, you play an essential role in creating and
supporting secure systems.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

88 chapter two

• Computer security is more than the hunt for intruders; it also includes creat-
ing a protective mindset and abiding by security policies.

• The terms “hacking” and “hacker” did not originally have the negative conno-
tation they often do today.

• Intruders to systems can be classified as directed and undirected hackers, each
with different motives but often having a similar effect on the systems they
target.

• Crackers can find holes in systems put there intentionally or unintentionally
by system administrators and programmers.

• Crackers use malicious software, such as viruses, worms, and Trojan programs,
to infiltrate systems.

• One of the greatest risks to a company and its computers is social
engineering—human (not technological) manipulation.

• There are four types of attacks on computer systems: access, modification,
denial of service, and repudiation.

• Total risk to an organization is made up of vulnerability, threat, and existing
countermeasures.

• Intruders target the confidentiality, integrity, availability, or accountability of a
system’s information.

• Countermeasures in managing security include common sense behavior, creat-
ing and following security procedures, using encryption, antivirus software,
firewalls, and system setup and architecture.

• You need to install antivirus software, perform system updates, physically re-
strict access to your computers, and have a good backup system.

• Users support cracking by using weak passwords—you need to have strong
passwords.

• One way to secure communication over a network is to encrypt the informa-
tion by using one of a number of encryption schemes, such as using private
and public keys.

• Firewalls and routers can be set up so that certain ports are unavailable and
certain servers—such as the company Web site server—can sit in a DMZ, a
more public and less protected part of the network.

• Prosecuting computer attackers has often been difficult because of variations
in national and international laws as well as the difficulty of proving a case.

• Despite the difficulties in prosecuting computer crimes, there are laws and
ethical reasoning that dictate commiting such crimes is unwise.

c h a p t e r s u m m a r y

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

comput ing secur i ty and e th ics 89

• Law enforcement and the courts are cracking down on computer criminals
more than ever.

• A number of issues in computing can be viewed from an ethical perspective
and seen as wrong; software piracy, virus propagation, plagiarism, breaking
into computers, and doing harm to people through computers are some.

• Privacy is protected by law, but employees have fewer rights to privacy while
on the job.

• There are many things you can do to protect your privacy; give out your per-
sonal information only when you must.

• Computer and network security are everyone’s responsibility, from basic users
to system designers.

acceptable use policy (AUP) (61)

access attacks (56)

accountability (58)

antivirus software (64)

asymmetric encryption (68)

authentication (58)

availability (58)

backdoors (52)

biometrics (63)

bot (53)

buffer overflow (52)

callback (61)

checksum (65)

confidentiality (57)

cookie (85)

copyright (72)

cracker (50)

demilitarized zone (DMZ) (70)

denial-of-service (DoS) attacks (56)

digital certificate (66)

2

k e y t e r m s

directed hacker (50)

disaster recovery plan (DRP) (61)

dumpster diving (55)

encryption (57)

encryption key (65)

ergonomics (83)

ethics (78)

firewall (69)

hacker (50)

Hacker’s Manifesto (51)

hacktivism (51)

heuristics (65)

honeypot (64)

identification (58)

integrity (58)

intellectual property (72)

malicious code (53)

modification attacks (56)

packet-filtering firewall (69)

patent (73)

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

90 chapter two

1. Who is Cliff Stoll?

2. What is the term for people who thwarted the AT&T phone system?

3. What did the term “hacker” originally describe?

4. What’s the difference between a directed and an undirected hacker?

5. What other potential intruders do systems managers need to guard against,
other than crackers?

6. What document justifies hacker activity?

7. How could most computer intrusions be avoided?

8. What login technique on a UNIX system could crackers take advantage of ?

9. Explain one careless programming problem connected to URLs.

10. Explain a buffer overflow and how it can be used by a cracker.

11. What is the difference between identification and authentication?

12. What is the main difference between a virus and a worm?

13. A system attack that prevents users from accessing their accounts is called
what?

14. Give an example of a repudiation attack.

15. What four types of targets are there for an information security specialist?

phreaking (50)

privacy (83)

proxy firewall (69)

repudiation attacks (56)

reverse-engineer (73)

risk (56)

script kiddie (51)

sniffer (56)

social engineering (54)

software piracy (80)

spam (84)

spyware (85)

symmetric encryption (68)

threat (57)

trade secret (73)

Trojan program (54)

undirected hacker (50)

virtual private network (VPN) (61)

virus (53)

virus hoax (81)

virus signature (or virus definition)
(64)

vulnerability (57)

worm (53)

t e s t y o u r s e l f

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

comput ing secur i ty and e th ics 91

2

16. Name four ways you can “get paranoid” and safeguard your system from
losing data.

17. What is the term for the most common and accurate antivirus software
search technique?

18. Name three laws you could use to prosecute a cracker.

19. How expensive should the damage caused by a cracker be to be prosecuted
by the U.S. Computer Fraud and Abuse Act? Explain.

20. Name four ways you could protect your privacy.

1. Computer security affects:

a. Programmers and system administrators
b. Naive users
c. All users of computers
d. Everyone

2. John Draper created:

a. A whistle in Cap’n Crunch cereal
b. Software for Microsoft
c. Software for Apple
d. A secure router

3. The term “hacker” originally had a negative connotation.

a. True
b. False

4. The term “script kiddie” refers to what?

a. Con man
b. Youthful hacker
c. Unsophisticated cracker
d. A game for hackers

5. What is the likely motivation of an undirected hacker?

a. Technical challenge
b. Greed
c. Anger
d. Politics, economics, poverty

6. What is the likely motivation of a directed hacker?

a. Technical challenge
b. Anger, greed, politics
c. Fear
d. Improving society

p r a c t i c e e x e r c i s e s

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

92 chapter two

7. The term hacktivists refers to:

a. Hackers motivated by greed
b. Hackers motivated by economics
c. Hackers who use social engineering
d. Hackers motivated by politics

8. The Hacker’s Manifesto does what?

a. Specifies how to break into systems
b. Justifies hacking as an end in itself
c. Justifies prosecuting hackers and crackers for their crimes
d. Uses Communist theory to justify hacking for its inherent

justice

9. What was the backdoor on a basic e-mail program in early versions of
UNIX?

a. rlogin
b. login
c. ls -l
d. blogin

10. Trojan programs are different from viruses because they need to be trans-
ported by an e-mail program and viruses do not.

a. True
b. False

11. One of the most notorious social engineers of the 1990s was:

a. Clifford Stoll
b. John Draper
c. David L. Smith
d. Kevin Mitnick

12. In a social engineering attack, a company phone book can be the target.

a. True
b. False

13. What does a modification attack do?

a. Denies users access to the system
b. Changes software and information
c. Modifies evidence of system entry
d. Allows access to a computer system

14. One way to ensure that you have a backup of information is to use a UPS.

a. True
b. False

15. Which of the following doesn’t stop virus and worm attacks?

a. SpamKiller
b. Opening e-mail attachments
c. A disaster recovery plan
d. Updating your antivirus software

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

comput ing secur i ty and e th ics 93

16. The best passwords are 8 to 10 letters long.

a. True
b. False

17. A virus-checking program that uses heuristics uses:

a. A honeypot
b. A virus signature
c. A checksum on files to check their validity
d. A set of rules to anticipate a virus’s behavior

18. Encryption algorithm standards used in computers today are:

a. Substitution, transcription, compaction, expansion
b. S-HTTP, SEC, SSL
c. DES, RSA, AES
d. Proxy, packet, DMZ

19. SSN is a more secure way of transferring files than Telnet.

a. True
b. False

20. What kind of service is best placed in a DMZ?

a. FTP and SMTP
b. Internal DNS server
c. Web server
d. Database server

21. The legal protection usually sought for software source code is:

a. A patent
b. A copyright
c. A trademark
d. A trade secret

22. Utilitarianism is a set of ethical principles that focuses on individual conse-
quences of an action.

a. True
b. False

23. The set of ethical principles that puts principles in terms of natural
rights is:

a. Rule-deontology
b. Deontology
c. Egoism
d. Utilitarianism

24. According to an argument in the chapter concerning piracy, an egoist
would consider piracy unethical because:

a. It is illegal.
b. It could affect many systems if a virus is released.
c. It is against the ACM rules of conduct.
d. The company that sells the software could lose share value.

2

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

25. You should always reply to spam e-mail with “Unsubscribe” in the subject
line.

a. True
b. False

1. Why was a simple whistle able to subvert the phone system in the 1970s?

2. Is a firewall useful in a home computer hooked up to the Internet? When?
How?

3. What is likely to happen with IP addresses, given that the world is running
out of them?

4. A number of system holes that allow crackers to enter a system were intro-
duced in this chapter. Can you find another?

5. How much does the microcomputer revolution owe to cracking and vice
versa?

1. What value for society is there in having rogue programmers breaking into
systems because they say it’s valuable for society as a whole? What dangers?

2. The companies that battle viruses and market antivirus software actually
share information about new viruses. Do you think this practice helps the
fight against viruses, or is the power of the marketplace not given its proper
due?

3. The chapter notes that it is everyone’s responsibility to combat malicious
hacking. Do you believe this is true? Why or why not?

4. Who holds the bulk of the blame for how easily viruses are propagated
around the globe: companies or users?

5. Examine some of the reasons people don’t bother to protect their systems
against intrusions. Look at passwords, software, software updates, architec-
ture, costs, and so on.

94 chapter two

d i s c u s s i o n t o p i c s

d i g g i n g d e e p e r

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

1. List 10 companies that make antivirus software. Which one is supposedly
the best? Why?

2. Find a good online source for the constantly changing vocabulary of the
hacker or cracker.

3. Find a Web site that gives awards for antivirus software.

4. Who is Mikko Hyppönen?

5. Find the Hacker’s Manifesto. What reasons does the author give for hacking?

comput ing secur i ty and e th ics 95

2

I n t e r n e t r e s e a r c h

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

c h a p t e r

computer archi tec ture

3

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

i n t h i s c h a p t e r y o u w i l l :

• Learn why you need to understand how computers work

• Learn what a CPU is and what it’s made of

• Learn how digital logic circuits are constructed

• Learn the basic Boolean operators

• Understand how basic logic gates operate and are used to build complex computer circuits

• Learn the importance of Von Neumann architecture

• Understand how a computer uses memory

• Learn what a system bus is and what its purpose is

• Understand the difference between memory and storage

• Be able to describe basic input/output devices

• Understand how a computer uses interrupts and polling

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

I recently got a call from a friend asking if I could “take a look” at his computer.

IMPORTANT NOTE TO COMPUTING MAJORS: If any friends or neighbors ask what you’re studying in school, you
are a history major. Trust me.

If you’ve ever “taken a look” at someone’s computer, you know you’d better not have anything planned for the next
four days. I thought about telling my friend I had a date that night, until I realized he knew me well enough that
he’d never buy it. So I told him I’d be right over. It turns out he needed help setting up his brand-new computer.

IMPORTANT NOTE TO COMPUTING MAJORS: When upgrading your computer, it’s important to take notes—that
way, when you’re tempted to think you want to upgrade your machine again,

your notes will remind you that you’d rather eat fiberglass.

As we sat there during Hour 1 of 152 of the transfer process (installing programs, upgrading software, transfer-
ring his business data, and, most important, moving 300 GB of movies and music), my friend asked, “So is this a

good computer?”

“A ‘good’ computer?” I replied.

He said, “Yeah, I’ve seen computers advertised for a lot cheaper, and $1500 seemed like a lot to spend.” He had
a good point. Just imagine what you could do with $1500! You could buy groceries for a year, pay rent for five

months, or buy a textbook.

So I asked him why he chose the computer he did. I found out he had used the method most nontechie people
prefer: He went to a computer store and told the salesperson he needed a computer. The salesperson pointed to

a computer and said, “You want this one,” so he bought it. Imagine if the same method were used in making
other purchases. Car Salesperson: “No, no, Mrs. Jones. You don’t want a minivan. You want a Ferrari. It’s much

faster!” Mrs. Jones: “Who do I make the check out to?”

In the end, we got everything but the printer working in just under four hours. That’s a personal best! I guess all
the practice is starting to pay off.

IMPORTANT NOTE TO COMPUTING MAJORS: I’d love to be able to help you when you’re asked to “take a look”
at someone’s computer, but unfortunately I can’t—I have a date.

98 chapter three

the lighter side of the lab
by spencer

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

computer archi tec ture 99

Anyone can use a computer. Then again, more than a few people have a hard time figuring

out where the power button is. Most people, however, are able to use the computer for

things such as e-mail, personal finances, or browsing the Web. Nearly every adult can drive a

car, but how many can build one? How many know how to fix them? Would you take your

car to be repaired by a person who knew only how to drive one?

To be a computer professional, you need to understand what goes on “under the hood” of a

computer. When you write a computer program, you need to understand what happens

inside the computer when it executes your instructions. When it breaks (and it will), you

should have some idea of what the problem might be. Knowing how a computer works is

not only interesting, but also can set you above other computer professionals who don’t have

this depth of knowledge.

A computer is a collection of hardware designed to run programs (software) and accomplish

tasks. This chapter is primarily about hardware and how that hardware is designed to work

together as a computer system. In later chapters, you learn more about software.

c o m p u t e r a r c h i t e c t u r e

inside the box
If someone asked to see your computer, what would you show him or her?
A desktop computer normally consists of something you look at, something
you type on, something you point with, and a big boxlike thing that does
something, but you might not be sure exactly what.

Figure 3-1 shows a typical home computer, but what is the actual computer? Is
it the thing you look at? Is it the big box thing? Or is it all the parts together?
The answer is that it’s all of the above, and it’s also none of the above. The com-
bination of the monitor (the thing you look at), the keyboard (the thing you
type on), the mouse (the thing you point with), and the computer case (the big

why you need to know about...

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

main board or mother-
board – The physical circuit
board in a computer that
contains the CPU and
other basic circuitry and
components

box) can be referred to as a computer system. For example, if you asked someone
to move your computer to another desk, he would probably move all four items
and the printer, too. Everything together is often referred to as a computer, but
the actual computer isn’t the whole thing. The computer case is closer to being
the actual computer, but it isn’t either. The computer is actually just the central
processing unit (CPU) inside the case on the main board (sometimes called the
motherboard). Everything else on the board exists to support the CPU in its
computing efforts. Figure 3-2 shows a main board and its primary components,
and Table 3-1 describes the functions of these components.

Figure 3-1, Typical personal computer system

Image © 2009, Dmitry Melnikov; used under license from Shutterstock.com

100 chapter three

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

computer archi tec ture 101

3

Courtesy of Intel Corporation

Figure 3-2, Main board with labeled components

SATA
connectors

memory
slots

power
connector

CPU
socket

external I/O connectors

PCI bus
slots

PCI Express bus slots

Table 3-1, Main board components

component function

CPU The actual “computer” in the computer;
executes instructions to read from and write
to memory and input/output (I/O) devices and to
perform math operations

memory slots Random access memory (RAM) dual inline memory
module (DIMM) cards provide the computer’s main
memory (RAM); memory can be expanded by plugging
additional DIMMs into the spare slots

(continued)

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Table 3-1, Main board components (continued)

component function

external I/O Provide connections for I/O devices, such as a mouse,
connectors printers, speakers, and other I/O devices

CMOS battery Powers the small amount of CMOS memory that holds
the system configuration while the main power is off

PCI and PCI Slots to connect PCI expansion cards to the main
Express bus board, used to add capabilities to the computer
slots that aren’t included on the main board; examples are

sound, network, video, and modem cards

power Connection to the power supply that provides
connector electricity to all components and expansion cards on

the main board

SATA Connectors for attaching hard drives and CD/DVD-ROM
connectors drives

To begin exploring computer architecture, you can start with the CPU.

the CPU
The CPU is the computer. It contains the digital components that do the actual
processing. It’s made up of millions of transistors organized into specialized dig-
ital circuits that perform operations such as adding numbers and moving data.
Transistors are simply small electronic switches that can be in an on or an off
state. The first Intel 8088 CPU had approximately 29,000 transistors. The
Pentium IV has about 42 million. The transistors’ ons and offs are treated as
binary 1s and 0s and are used to accomplish everything that happens in a
computer.

In Chapter 7, “Numbering Systems and Data Representations,” you learn
how binary 1s and 0s are used to represent data.

102 chapter three

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

computer archi tec ture 103

Inside the CPU, transistor circuits implement four basic functions:

• Adding
• Decoding
• Shifting
• Storing

Nearly everything that happens in a computer is done by using these four spe-
cialized circuits. You’ll see examples of each circuit later in the chapter, but for
now, here are brief descriptions:

• Adder circuits add numbers together. They are also used to perform other
mathematical functions, such as subtraction, multiplication, and division.

• Decoders are used to react to specific bit patterns by setting an output of 1
when the pattern is recognized. Decoders are often used to select a memory
location based on a binary address.

• Shifters are used to move the bits in a memory location to the right or left.
They are often combined in a circuit with adders to provide for multiplica-
tion and division.

• Flip-flops (also called latches) are used to store memory bits. Flip-flops
provide a way to maintain a bit’s state without having to continue providing
input.

how transistors work
Because everything a CPU does happens by the process of transistors turning
on and off, an explanation of how a transistor works might be a good place
to start your quest to learn how a computer works. Transistors are made of
semiconductor material, such as altered silicon or germanium. A transistor
consists of three parts: an emitter, a collector, and a base. A power source is
placed across the collector and emitter, but the nature of the semiconductor
doesn’t allow electricity to flow between the two unless another voltage is
placed between the base and the emitter. Therefore, the base of a transistor
can be used to control the current through the transistor and the voltage on
the collector and emitter. Figure 3-3 shows a diagram of a transistor and
how voltages are placed on it to switch it on and off. By switching on and
off, the transistor can be used to represent the 1s and 0s that are the founda-
tion of all that goes on in the computer. In this circuit, a positive voltage
considered to be a binary 1 is the output when the transistor is not conduct-
ing. When a 1 is applied to the base, the transistor is switched on
(conducts), and the output goes to 0.

3

semiconductor – A medium
that’s neither a good insula-
tor nor a good conductor
of electricity, used to con-
struct transistors

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Boolean operator – A word
used in Boolean algebra
expressions to test two
values logically; the main
Boolean operators are
AND, OR, and NOT

Figure 3-3, Transistors are used to build basic logic circuits, such
as this circuit that reverses (NOTs) the input signal

base

power
supply

emitter

ground

input

output

the transistor can
conduct electricity only

if a voltage is placed
on the base

collector

when a voltage is
placed on the base, the
collector voltage goes

toward the ground

The size of each actual transistor circuit is very small. In the Intel Core 2 Duo
CPU, transistors are only 45 nanometers wide. A nanometer is one billionth of
a meter. If you have a little time on your hands, you could think about dividing
a meter into a billion parts.

digital logic c ircuits
Transistors are the smallest units in the computer; the only thing they can do is
turn on and off. They have to be grouped into specialized circuits to allow ac-
tual computing to take place. The next level in the computer’s design is the
logic circuit. These circuits allow the computer to perform Boolean algebra.
Boolean algebra is concerned with the logic of Boolean operators: AND, OR,
and NOT.

You interact with devices using Boolean logic in much of what you do daily.
Your microwave oven has circuitry that says, in effect, “When the door is closed
AND the time has been set AND the start button is pushed, turn on the mi-
crowave.” Or you might have a light circuit in your house that uses this logic:
“If the switch by the front door is on OR the switch by the back door is on,
turn the overhead light on.”

104 chapter three

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

computer archi tec ture 105

An understanding of Boolean algebra helps you understand logic circuits.
Boolean algebra is a branch of mathematics that deals with expressing logical
processes involving binary values. The binary values are 0 and 1, which happen
to be ideal for using transistor circuits. Boolean algebra specifies expressions, or
functions, that describe the relationship of binary inputs and outputs. Perhaps
the best way to visualize these Boolean expressions is by using a truth table.
Figure 3-4 shows a truth table for the Boolean operator AND. The x, y, and z
are simply variables that represent values to be inserted in the truth table. Any
letters could be substituted in place of the ones used in these examples. In this
case, x and y are inputs, and z is the output.

truth table – A table repre-
senting the inputs and
outputs of a logic circuit;
truth tables can represent
basic logic circuits as well as
complex ones

Figure 3-4 Truth table for
the AND operator

x y z

0 0 0

0 1 0

1 0 0

1 1 1

inputs output

n o t e

Truth tables are tabular representations of Boolean expressions and always fol-
low the same format. On the left are one or more columns representing inputs.
On the right is usually one column representing the output, although some-
times multiple outputs are shown in the same truth table. A truth table should
contain one row for each possible combination of the inputs. For example, a
truth table with two inputs has four rows (22), and a three-input truth table has
eight rows (23).

Boolean expressions are made up of Boolean variables and Boolean operators.
Boolean variables are usually single letters that represent a value of 0 or 1.
The variables are then connected with Boolean operators. For example,
z 5 (xy) 1(x1y9) 1x9 is a Boolean expression that can also be represented by a
truth table. Boolean expressions such as this one will make more sense as you
learn more about truth tables and logic circuits.

Any Boolean expression can be represented by a truth table, and any

truth table can be used to represent a Boolean expression.

3

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

NOT

The NOT operator works with a single input, and its purpose is to reverse the
input. Figure 3-6 shows the truth table for the NOT operator. The Boolean
expression for the NOT operator can be represented by x9 5 z or x– 5 z. This
expression is stated as “NOT x results in z.”

Each basic Boolean operator can be combined with Boolean variables to form
complex Boolean expressions. In addition, as you see later, Boolean expressions

the basic Boolean operators
Three basic operators are used in Boolean expressions: AND, OR, and NOT.

AND

The truth table shown previously in Figure 3-4 is a tabular representation of the
AND Boolean operator. The AND operator takes two values as input. As men-
tioned, there’s one row in the table for every possible combination of the two
inputs. Each input combination has a specified output. As you can see, the
AND operator has an output of 1 (true) only if both inputs are 1. Any other
combination of inputs gives an output of 0. Later in this chapter, you see when
and why the AND operator is used in the computer. In Boolean algebra, the
AND operator is sometimes represented by a dot or, more commonly, no sym-
bol at all between the letters. The truth table in Figure 3-4 can be represented
by the Boolean expression xy 5 z, which can be restated by saying “x AND y
results in z.” In other words, the truth table describes the output for any set
of inputs.

OR

Figure 3-5 shows the truth table for the Boolean OR operator, which returns a 1
only when either or both of the inputs are 1. The Boolean expression x 1 y 5 z is
equivalent to the information represented in the truth table for the OR operator.
This expression can be restated as “x OR y results in z.”

AND – Boolean operator
that returns a true value
only if both operands are
true

OR – Boolean operator that
returns a true value if
either operand is true

NOT – Boolean operator
that returns a false value if
the operand is true and a
true value if the operand is
false

Figure 3-5, Truth table
for the OR operator

x y z

0 0 0

0 1 1

1 0 1

1 1 1

inputs output

106 chapter three

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

computer archi tec ture 107

can be used to describe a circuit that gives an output for a given set of inputs.
That’s just about all the computer does. It has millions of circuits that respond
to particular inputs. Simple circuits are grouped together to form more complex
circuits. These circuits in turn are grouped together to form circuits that are
even more complex and have specialized purposes, such as adding, decoding,
and storing bits.

digital building blocks
Each basic Boolean operator can be implemented as a digital circuit made of
one or more transistors that’s designed to carry out the function of its Boolean
operator. These circuits are often referred to as gates, and each one has a spe-
cific schematic symbol shown in the following figures. In the computer, the
binary 1s and 0s are actually different electrical voltage levels. A high voltage,
which is typically a positive 3 to 5 volts, is treated as the 1. A low voltage, nega-
tive 3 to 5 volts, represents the 0. These voltages ultimately come from the
power supply, but they’re applied to logic gates in the computer, and the output
of one gate becomes one of the inputs to another gate. The combinations of
gates then enable the computer to do all the things it does. Each gate in a cir-
cuit reacts in a completely predictable way. Gates can be combined to give a
certain output when a specific input occurs. For example, a circuit could be
designed to light up the correct elements of a seven-segment numeric display
when a bit pattern representing the number is placed on the circuit inputs.

AND gate

Figure 3-7 shows the symbol and truth table for the AND gate.

gate – A transistor-based
circuit in the computer that
implements Boolean logic
by creating a single output
value for a given set of
input values

Figure 3-7, Symbol and truth table for the AND gate

z

0

0

y

0

1

00

11

x

x
y z

0

0

1

1

Figure 3-6, Truth table
for the NOT operator

z

1

0

output

x

0

1

input

3

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

The OR gate also allows two inputs and one output. The truth table for the
OR gate again has output values for all possible combinations of input signals.
The OR gate truth table matches the truth table for the OR Boolean operator.

NOT gate

Figure 3-9 shows the symbol and truth table for the NOT gate.

108 chapter three

The NOT gate has only one input and one output. The truth table for the
NOT gate just shows that the output is the opposite of the input. That is, the
NOT gate’s function is to reverse the input. Again, this truth table is the same
as its Boolean operator counterpart.

The AND, OR, and NOT gates are the basic building blocks of the CPU.
There are three additional gates that can be created by using the basic gates:
NAND, NOR, and XOR, explained in the following sections. Sometimes they
are grouped with AND, OR, and NOT as basic gates.

The AND gate allows two inputs and has one output. The truth table gives the
output values for all possible inputs. Note that the truth table for the AND gate
is identical to the truth table for the AND Boolean operator.

OR gate

Figure 3-8 shows the symbol and truth table for the OR gate.

Figure 3-8, Symbol and truth table for the OR gate

z

0

1

y

0

1

10

11

x

x
y z

0

0

1

1

Figure 3-9, Symbol and truth table for
the NOT gate

z

1

0

x

x z 0

1

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

computer archi tec ture 109

3

NOR gate

Figure 3-11 shows the NOR gate symbol and truth table. The NOR gate is a
combination of an OR gate and a NOT gate. The output of the OR is fed into
the input of the NOT, effectively reversing the OR’s output. The NOR gate’s
symbol is the same as the OR with a circle added at the output, indicating
the NOT.

NAND gate

Figure 3-10 shows the NAND gate symbol and truth table. The NAND gate is a
combination of an AND gate and a NOT gate. In effect, it takes the output of
the AND gate and then reverses it with the NOT gate. The output in the truth
table for the NAND is exactly the opposite of the AND gate’s output. The
symbol for the NAND gate is an AND gate symbol with a small circle added
at the output to indicate the NOT.

Figure 3-10, Symbol and truth table
for the NAND gate

Figure 3-11, Symbol and truth table for
the NOR gate

z

1

0

y

0

1

00

01

x

0

0

1

1

x
y z

NOR – A logical OR fol-
lowed by a logical NOT that
returns a true value only if
both operands are false

NAND – A logical AND fol-
lowed by a logical NOT that
returns a false value only if
both operands are true

z

1

1

y

0

1

10

01

x

0

0

1

1

x
y z

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

gate behavior
With any gate, you can predict the output for any given set of inputs. Gates are
designed and built with transistors so that the output for any set of inputs follows
the specifications in the truth table. Therefore, if you were told the inputs to an
XOR gate are 0 and 1, you could correctly predict that the output is 1. If the
inputs are both 0, the output is 0.

Note that gates can be chained together to form more complex specialized circuits.
The output from one gate is connected as an input to another gate. One of the
first things you might notice from this connection is the capability to connect
multiple gates of the same type to form a version of the basic gates that has more
than two inputs. Figure 3-13 shows how a 3-input AND gate can be constructed

110 chapter three

XOR gate

In Figure 3-12, note that the truth table for the XOR (exclusive OR) gate indi-
cates that the output is 1 only when the inputs are different. If both inputs are
0 or 1, the output is 0. The symbol for an XOR gate is similar to the OR gate
with a parallel curved line added at the left.

Figure 3-13, Constructing a 3-input AND gate from two 2-input
AND gates

z

0

0

y

0

1

00

01

x

0

0

1

1

0

0

0

1

00

11

0

0

1

1

w

0

0

0

0

1

1

1

1

y z

w
x

XOR – A logical operator
that returns a true value if
one, but not both, of its
operands is true

Figure 3-12, Symbol and truth table for the XOR gate

z

0

1

y

0

1

10

01

x

x
y z

0

0

1

1

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

computer archi tec ture 111

Note in this truth table that there are three inputs: the first bit to be added, x;
the second bit, y; and the carry-in, ci , from a previous addition. Truth tables
normally have only one output, but because both the sum, s, and the carry-out,
co, work with the same set of inputs, they are shown in the same truth table in

3

Figure 3-14, Truth table for adding
2 bits with carry-in and carry-out

x y

0 0

0 0

0 1

0 1

ci

0

1

0

1

inputs

s co

0 0

1 0

1 0

0 1

1 0

1 0

1 1

1 1

0

1

0

1

1 0

0 1

0 1

1 1

outputs

from two 2-input AND gates and the truth table resulting from this construction.
The output of the first AND gate is 1 only if both w and x are 1. The output of
the second gate at z is 1 only if the output of the first gate is 1 and y is also 1.
Therefore, the truth table for the entire circuit shows that the output is 1 only if
all three inputs are 1s.

complex circuits
Now that you understand the basic gates and how truth tables work, you’re ready
to start combining basic gates to form a few of the main circuits that make up the
CPU. These circuits are the adder, decoder, shifter, and flip-flop.

adder

One of the main functions of the arithmetic logic unit (ALU) of the computer’s
CPU is to add numbers. A circuit is needed that adds two binary numbers and
gives the correct result. To build an adder circuit from the basic logic circuits,
start with the truth table showing the outcome for each set of circumstances.
Figure 3-14 shows the truth table for adding 2 bits, including carry-in (ci) and
carry-out (co). You might recognize that the terms carry-in and carry-out mean
the same thing as borrow and carry in decimal addition and subtraction. In the
adder, the bits are added according to the rules of the binary numbering
system.

Chapter 7, “Numbering Systems and Data Representation,” explains the
rules for adding binary numbers.

adder – The circuit in the
CPU responsible for adding
binary numbers

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

decoder

Decoder circuits are used heavily in the computer to perform functions such as
addressing memory and selecting I/O devices. The idea behind decoders is that
for a given input pattern of bits, an output line can be selected. Figure 3-16
shows a 2-bit decoder along with the truth table for the circuit. Each of the
output lines—a, b, c, and d—can be selected, or set to 1, by a specific bit pat-
tern on the input lines x and y. The circuit doesn’t seem too impressive with
just two inputs that can control only four lines, but a circuit with only
32 inputs could control 4 billion lines!

The truth table for the circuit in Figure 3-16 is best represented by showing all
possible combinations of the two inputs on the left and showing all four possi-
ble outputs on the right. Remember that a basic truth table has only one
output, so this truth table is actually four truth tables in one. It shows that for
any of the four possible combinations of the 2 input bits, there’s only one
output line set to a 1 (selected).

this case. The truth table indicates that for a given combination of the 2 bits
you want to add, along with a carry-in from a previous addition, the sum bit
has a fixed value, as does the carry-out bit.

The truth table for the adder circuit explains what needs to be done in the circuit.
Figure 3-15 shows a circuit built from the basic logic gates that implement the
truth table for the adder. You can experiment with the circuit by putting combi-
nations of 1s and 0s on the three inputs, and then following the circuit through
to see whether it generates the correct outputs, according to the truth table.

decoder – A digital circuit
used in computers to select
memory addresses and I/O
devices

Figure 3-15, Adder circuit

s

co

ciyx

112 chapter three

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

computer archi tec ture 113

flip-flop

The flip-flop isn’t just footwear for the beach—it’s also a special form of a digi-
tal circuit called a “latch.” The latch is so named because it latches onto a bit
and maintains the output state until it’s changed.

In the basic AND gate shown previously in Figure 3-7, the output of 1 is main-
tained only while both inputs are 1. In the OR gate, one or both inputs must
be a 1 before the output goes to 1. If both inputs are 0, the 1 in the output also
changes to 0.

The flip-flop circuit, shown in Figure 3-17, holds the value at the output even if the
input changes. There are two inputs to this type of circuit: S (set) and R (reset). The
output is labeled Q. The designator Q9 is the inverse of the value of Q.

Figure 3-17, A basic SR (set and reset)
flip-flop circuit implemented with NOR gates

R Q

S Q'

flip-flop or latch – A digital
circuit that can retain the
binary value it was set to
after the input is removed;
static RAM is constructed
by using flip-flop
circuits

Figure 3-16, Decoder circuit with two input lines controlling four output lines

3

a b

0 0

0 0

0 1

1 0

c

0

1

0

0

outputs

x y

0 0

0 1

1 0

1 1

d

1

0

0

0

inputs

x

y

a

b

c

d

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

You can use the diagram in Figure 3-17 and the truth table for the NOR gate
in Figure 3-11 to observe the operation of the flip-flop circuit. When the power
is first turned on, all inputs and outputs start at logical 0. Because a NOR gate
outputs 1 if both inputs are 0, both NOR gates begin to switch their outputs to
1. However, the first gate that switches to 1 sends that 1 to the feedback input
of the other NOR gate, and it then switches its output to 0. As that 0 is fed
back to the input of the first NOR, the output stays at 1. The circuit is then
stable with either Q 5 1 and Q95 0 or Q 5 0 and Q95 1. The circuit stays in
that state until a 1 is placed on S or R.

If a 1 is placed on the input S, the circuit flips to a state wherein the output Q
goes to a 1. If the input S then returns to 0, the output Q remains 1. The cir-
cuit is now stable and remains in that state until a 1 is placed on the R input.
Placing the 1 on R flips the circuit to the opposite state wherein Q is 0. Then it
stays in that state until 1 is again placed on the S input.

The capability of the flip-flop circuit to maintain a set state after the input volt-
age that set it goes away makes it ideal for storing bits. The registers and
high-speed cache memory in your computer are made of many thousands of
flip-flop circuits. In fact, virtually all high-speed memory in the CPU or on
video cards is made from flip-flop circuits. This type of memory is usually
referred to as static RAM (SRAM).

shifter

Many operations in a computer benefit from using a shifter circuit. Shifters
are used in math operations, such as multiply and divide. The shifter circuit
takes a fixed number of inputs and converts them to outputs that have the bits
shifted a fixed number to the left or right. Figure 3-18 shows the result of a
shift right.

114 chapter three

Figure 3-18, Inputs and outputs of a shifter circuit (1-bit right shift)

inputs

outputs

1

0

0

1

1

0

1

1

0

1

0

0

1

0

1

1

SRAM – Static RAM, a type
of high-speed memory con-
structed with flip-flop
circuits

shifter – A circuit that con-
verts a fixed number of
inputs to outputs that have
bits shifted to the left or
right, often used with
adders to perform multipli-
cation and division

In Figure 3-18, you can see that each bit is copied to the bit to the right. A 0 is
moved into the leftmost bit, and the rightmost bit is discarded. Shifter circuits
can be designed that have the capability to shift any number of bits to the right
or left and to carry bits in or out.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

computer archi tec ture 115

3

Very Large-Scale
Integration (VLSI) – The cur-
rent point of evolution in
the development of the in-
tegrated circuit; VLSI chips
typically have more than
100,000 transistors

Boolean basic identities –
A set of laws that apply to
Boolean expressions and
define ways in which ex-
pressions can be simplified;
they’re similar to algebraic
laws

other circuits

Other specialized circuits are used in the computer, such as the multiplexer,
parity generator, and counter. Building them involves the same process de-
scribed for the adder, decoder, and flip-flop circuits:

1. A truth table is constructed showing the output for each possible arrange-
ment of inputs.

2. A Boolean algebra expression equivalent to the truth table is created. The
expression might then be optimized by using a set of mathematic rules gov-
erning Boolean expressions. These rules are called Boolean basic identities.

3. A circuit diagram is created to implement the finished Boolean expression.

Because a Boolean expression contains only AND, OR, and NOT operators, a
circuit designed from an expression might ultimately be made up of only AND,
OR, and NOT gates. The benefit of this process is that designers can use
Boolean expressions to accurately predict what a circuit will do before spending
a penny to construct the circuit.

In the early days of computers, computer scientists and electronics engineers
had to spend many hours working with Boolean expressions and truth tables
to design computer circuits. Now current computers are used to design new
computers. Large and complicated software programs do most of the work of
designing and optimizing new logic circuits to perform tasks. Yet the basic
building block of the computer has not changed: It’s still the lowly transistor.

integrated circuits

The first computers were made to accomplish specific tasks in the same manner
described previously, but the earliest computers used mechanical switches instead
of transistors to represent 1s and 0s. Later, vacuum tubes were used for switch-
ing. Vacuum tubes work in a similar manner to transistors, but they are much
larger, use much more power, and generate tremendous heat. Early computers
made from vacuum tubes filled whole rooms and required extensive air-
conditioning to keep them cool. When vacuum tubes were replaced with
transistors, computers became much smaller, but they were still nearly room size
and required air-conditioning, too. In the late 1960s, scientists learned how to
put thousands of transistors and, therefore, logic circuits on a single piece of
semiconductor material. They were called integrated circuits (ICs). About 10
years later, scientists again found ways to make transistors even smaller and com-
bined them into specialized complex circuits, called Very Large-Scale Integration

(VLSI). The computers you use today are made up of VLSI chips containing mil-
lions of circuits. With this technology, the millions of transistors that make up
all the specialized circuits in the CPU can be etched onto a single piece of silicon
not much bigger than a pencil eraser.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Von Neumann architecture
As you learned in Chapter 1, the first mechanical computers were special-
purpose computers—computers designed and built to accomplish a specific
task, such as tabulating census information or calculating ballistic trajectory ta-
bles. These special-purpose computers could do only what they were designed
to do and nothing else. Engineers searched for a way to design a computer that
could be used for multiple purposes.

The Von Neumann architecture described in Chapter 1 had digital logic circuits
designed to execute different types of tasks, based on binary instructions
fetched from some type of storage device. Most computers today are still based
on the Von Neumann architecture and are sometimes still called Von Neumann
machines.

From a technical standpoint, Von Neumann architecture is defined by the fol-
lowing characteristics:

• Binary instructions are processed sequentially by fetching an instruction from
memory, and then executing this instruction.

• Both instructions and data are stored in the main memory system.
• Instruction execution is carried out by a central processing unit (CPU) that

contains a control unit (CU), an arithmetic logic unit (ALU), and registers

(small storage areas).
• The CPU has the capability to accept input from and provide output to

external devices.

Figure 3-19 shows a diagram of Von Neumann architecture.

116 chapter three

Figure 3-19, Von Neumann architecture

main memory

arithmetic logic unit

registers auxiliary
storage
device

control unit

central processing unit
output
device

input
device

control unit (CU) – The part
of the CPU that controls the
flow of data and instruc-
tions into and out of the
CPU

arithmetic logic unit (ALU) –
The portion of the CPU re-
sponsible for mathematical
operations, specifically
addition

register – A small unit of
very high-speed memory
located on the CPU; used to
store data and instructions
for the CPU

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

computer archi tec ture 117

At a basic level, a Von Neumann machine operates on what’s called a “fetch-
execute” cycle. Simply put, the CPU fetches an instruction from memory and
then executes this instruction. The actual process can be slightly more complex.
For example, the following is a typical fetch-execute cycle:

1. The control unit uses the address in a special register called a program
counter to fetch an instruction from main memory.

2. The instruction is decoded to determine what, if any, data it needs to com-
plete execution.

3. Any data that’s needed is also fetched from memory and placed into other
registers.

4. The ALU then executes the instruction by using the data in the registers, if
necessary.

5. Input or output operations required by the instruction are performed.

The computer has a crystal clock called the system clock that times, or synchro-
nizes, each step in the fetch-execute cycle. A computer is often referred to by its
clock speed. A Pentium IV 3 GHz computer has a clock frequency of 3 billion
clock pulses per second, which means it can complete 3 billion fetch-execute
steps each second. It makes you wonder why your computer ever seems slow!

This fetch-execute architecture on a general-purpose computer has been the
mainstay of computer design for more than 60 years. By using increasingly
faster clocks, computers have been able to get steadily faster. The first PC
processor, using an Intel 8088, had a clock speed of 4.7 MHz. The next
generation, the 80286, had a clock speed of up to 12 MHz and ran about three
times faster than the 8088 machine. The 80386 could clock up to 25 MHz and
ran twice as fast as the 80286. The 80486 was four times as fast, with a clock
speed of 100 MHz. This steadily increasing speed, however, hit a “wall” at
around 100 MHz. Increasing the clock speed much beyond 100 MHz pre-
sented a problem. The processor still had to fetch instructions and data from
memory over the electronic wires and circuitry of the bus that was limited to
that speed by the laws and physics of electricity.

buses
A bus in computer terminology is a set of wires and rules, or protocols, to facil-
itate data transfer. Von Neumann architecture involves using a system bus to
get information from memory to the processor and back and to carry informa-
tion to and from I/O devices. The electrical signals are the 1s and 0s used by
the digital logic circuits that make up components in the computer. For this
electrical signaling to be orderly, buses operate under a set of rules governing
the level and timing of all signals on the bus. This set of rules is called the bus

protocol. The bus, then, is the combination of wires and a protocol.

3

system clock – A crystal
oscillator circuit on a main
board that provides timing
and synchronization for
operating the CPU and
other circuitry

bus – A collection of con-
ductors, connectors, and
protocols that facilitates
communication between
the CPU, memory, and I/O
devices

system bus – The main bus
used by the CPU to transfer
data and instructions to
and from memory and I/O
devices

bus protocol – The set of
rules governing the timing
and transfer of data on a
computer bus

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Bus wires are divided into three signal groups:

• Control
• Address
• Data

The control group contains a clock-timing signal for the bus as well as other
wires pertaining to timing and the bus protocol. The address wires, or lines,
contain 1s and 0s representing the binary address of the main memory or an
I/O device. All devices connected to the bus have an address. When the CPU
puts an address onto the bus, the device responds by putting data on the data
lines of the bus for the CPU to read. The logic circuit used to detect and re-
spond to a particular address is a decoder similar to the one you learned about
earlier in the chapter. The data wires contain the binary data being read from or
written to memory and I/O.

Early PCs used buses with names such as PC/XT, ISA, EISA, MCA, and
Peripheral Component Interconnect Express (PCIe). Most PCs now use the PCI

bus. As with all other buses, the PCI bus is a set of wires, protocols, and con-
nectors that have been defined and standardized for use in computer systems.
Everything that interacts with the CPU does so through a bus and most often
via the PCI system bus.

Bus speed is determined by many factors, but one factor is the length of wires in
the bus; the longer the wires, the slower the bus. When computer designers
reached the limit in bus speed, their solution was splitting the bus into separate
specialized buses, with each one designed for a specific data transfer situation. That
way, the bus between the CPU and memory can be short and fast and doesn’t have
to share traffic with slower devices connected to the main system bus.

A typical computer has several buses, including a memory bus and a high-speed
graphics bus. The front-side bus architecture in many computers has been used
for several years but is beginning to be replaced by point-to-point buses, such as
HyperTransport and Intel QuickPath Interconnect. Another common bus is the
Low Pin Count (LPC) bus, a special Intel bus used to connect low-bandwidth
devices to the CPU.

Buses also allow external devices to have access to the CPU. Bus connectors on
the main board allow video adapter cards, network adapter cards, sound cards,
and other devices to be connected to the computer system.

peripheral buses
In addition to the main system bus, there are many other secondary buses in a
computer. Many of these buses are used to connect storage and other peripheral
devices to the system bus. One of the most popular is the SCSI (Small Computer
System Interface) bus, used to connect many different types of I/O devices to the

118 chapter three

PCI – A system bus to con-
nect a microprocessor with
memory and I/O devices;
PCI is widely used in per-
sonal computers

SCSI – A high-speed bus de-
signed to allow computers
to communicate with pe-
ripheral hardware, such as
disk drives, CD/DVD-ROM
drives, printers, and
scanners

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

computer archi tec ture 119

3
SATA (Serial AT
Attachment) – A popular
bus used to connect hard
drives and other mass stor-
age devices to the
computer

ROM (read-only memory) –
A type of memory that
retains its information with-
out power; some types of
ROM can be reprogrammed

RAM (random access
memory) – A generic term
for volatile memory in a
computer; RAM is fast and
can be accessed randomly
but requires power to
retain its information

BIOS (basic input/output
system) – A ROM (or pro-
grammable ROM) chip on
the motherboard; the BIOS
provides the startup (boot)
program for the computer
as well as basic interrupt
routines for I/O processing

computer. Although it’s known for its high performance and reliability, perhaps
its most important characteristic is the capability to allow bus mastering. Bus
mastering occurs when a device other than the normal controlling device (such as
the CPU) has the capability and permission to take control of the bus, directing
and facilitating data transfers. Bus mastering allows the CPU to perform other
tasks while two devices are communicating. This capability is especially important
when copying data from one device to another. Another popular and important
peripheral bus used to connect storage devices is SATA (Serial AT Attachment).
It’s replaced the older Parallel ATA bus because of its smaller cable size, higher
speed, and more efficient data transfer.

storage
A computer would be nearly useless if it couldn’t retain programs and data
when the power is turned off. In addition to needing the capability to read
from and write to electronic memory, memory contents need to be stored
in a more permanent manner. The term “storage” refers to the family of
components used to store programs and data. Storage includes both primary
storage (memory) and secondary or mass storage.

memory
As you’ve seen, one of the basics of Von Neumann architecture is the fetch-execute
cycle. Each instruction is fetched from memory into the CPU for execution.
Electronic memory is key to this architecture and to the speed of execution of
computer processing.

Memory comes in two basic types: ROM (read-only memory) and RAM (ran-
dom access memory). The name ROM indicates memory that’s permanently
etched into the chip and can’t be modified; however, some special types of
ROM can be rewritten under certain conditions. ROM isn’t erased when the
computer power goes off. It responds to a set of addresses and places requested
data on the bus, but the CPU can’t write to it.

ROM is used in a chip on the motherboard called the BIOS (basic input/output
system). The BIOS contains instructions and data that provide startup programs
for the computer and basic I/O routines.

Although the name ROM indicates the memory can’t be written to, certain types
of ROM can be modified under special conditions. These ROM types usually
have additional designators, such as electrically erasable programmable read-only
memory (EEPROM), and can rewrite all or portions of the memory on the chip.

RAM is called “random” because it doesn’t have to be read sequentially; instead,
any location in memory can be accessed by supplying an address. It’s memory that

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

120 chapter three

can be read from or written to, unlike ROM. RAM is also volatile, meaning it can
be changed at will and requires constant power to maintain data stored in it.

Every program that runs on the computer is loaded into RAM, and the CPU
fetches and executes the program from there. Program data is also stored in
RAM. As you type your term paper into a word processor, the characters you
type are written to RAM and stored there until you click Save. As mentioned,
RAM is volatile, meaning that when the power goes off, RAM is cleared.

RAM is a generic term for read/write memory. Actually, there are different
types of RAM. In general, DRAM (dynamic RAM) is typically made of circuits
that use just one transistor per bit. These DRAM circuits need to be refreshed
constantly to maintain the data stored in them. This refreshing process takes
time, which is the main reason DRAM is so much slower than SRAM (static
RAM). Remember that the CPU’s fetch-execute cycle depends on the bus and
on memory speed. Slower RAM could mean a slower computer.

A few companies have created improved versions of standard DRAM. An ad for
a computer might specify that it uses DDRRAM or SDRAM in main memory.
These acronyms stand for special types of DRAM designed to be somewhat
faster than normal RAM. DDRRAM, which allows memory access twice in
each clock cycle, is used in many computers. DDR2 and DDR3 RAM speed
up memory access even more by providing two and three memory accesses per
clock cycle, respectively.

SRAM, made from flip-flop circuits, is the fastest type of memory. It’s normally
used only in the CPU’s registers and in cache memory. Cache memory is a small
amount of SRAM used to speed up the computer. When CPU clock speeds be-
gan to exceed the maximum possible bus speed, computer designers needed to
find a way around the problem. They came up with a technique that makes use
of high-speed, expensive SRAM as a go-between for the CPU and the main
DRAM. Instructions and data are initially fetched from DRAM into SRAM at
the slower bus speed, but when the CPU needs the instruction or data again,
it can be fetched at the higher speed. Using high-speed memory and caching
techniques allows the CPU speed to increase, even though the system bus speed
has topped out at around 800 MHz.

Personal computers typically have two levels of cache memory, referred to as
Level 1 cache and Level 2 cache. Level 1 cache is manufactured as part of the
CPU. Level 2 cache is normally a separate chip connected to the CPU via a
high-speed local bus.

Conventional asynchronous DRAM chips have a rated speed in nanoseconds
(ns), or billionths of a second, a speed that represents the minimum access time
for reading from or writing to memory. This includes the entire access cycle.
Memory speeds in modern systems range from 5 to 10 ns.

DRAM – Dynamic RAM, a
generic term for a type of
RAM that requires constant
refreshing to maintain its
information; various types
of DRAM are used for the
system main memory

cache memory – High-speed
memory used to hold fre-
quently accessed
instructions and data in a
computer to avoid having
to retrieve them from
slower system DRAM

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

computer archi tec ture 121

3

mass storage
Mass storage is so named because it uses devices such as hard drives or DVDs with
much more storage capacity than RAM or ROM. It’s usually a much cheaper form
of storage per megabyte, and its contents stick around after the power is turned off.

hard drives

The most commonly used form of mass storage is still the hard drive. It’s called
a hard drive because the information is stored on metal platters.

Hard drives are made up of one or more metal platters (see Figure 3-20) with a
coating consisting of magnetic particles. These particles can be aligned in two
different directions by an electromagnetic recording head, with the two differ-
ent directions representing 1s and 0s. The particles remain aligned in the same
direction until the read/write head changes their direction.

Figure 3-20, Hard drive platters and read/write heads

read/write head

platters/disks

The platter spins very fast, typically at speeds of 7200 or more revolutions per
minute. As it spins, the read/write head moves horizontally across the disk’s sur-
face, positioning over and writing on a specific area. A disk is formatted by the
read/write head recording marks on the disk’s surface in concentric circles,
called tracks. Each track is further divided into sectors. Organizing the surface
of the disk in this way allows the hard drive to find a specified track and sector
on the disk quickly for reading or writing. Hard drives can access data randomly,
much like RAM. They’re a standard in computers for storing large amounts
of information and can store thousands of gigabytes of information
inexpensively.

When deciding on the type of mass storage, one factor to consider is the cost
per megabyte. For example, a 500 GB hard drive that costs $100 has a cost per
megabyte of .02 cents. Compare that with a 1 GB DDRRAM memory chip
that sells for $20. That has a cost per megabyte of 2 cents. You can see that
hard drive storage is much cheaper than RAM.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

flash drive – A small,
thumb-size memory device
that functions as though it
were a disk drive; flash
drives normally plug into a
PC’s USB port

RAID (redundant array of
independent disks) – A col-
lection of connected hard
drives arranged for in-
creased access speed
or high reliability

CD-ROM – A 120-mm disc
used to store data, music,
and video in a computer
system by using laser tech-
nology; CD-ROMs are
capable of holding up to
850 MB of information

DVD – A technology that
uses laser and layering
technology to store data,
music, and video on 120-
mm discs; DVDs are capable
of holding up to 9 GB of
information

USB (universal serial bus) –
A high-speed interface be-
tween a computer and I/O
devices; multiple USB de-
vices can be plugged into a
computer without having
to power off the computer

n o t e

When hard drive storage needs to be exceptionally fast and/or exceptionally
reliable, multiple hard drives are connected to work together as a unit. These
arrays of disks are called RAID (redundant array of independent disks) systems.
There are seven levels of RAID, each designed to provide a different level of
speed or reliability.

Hard drives can typically access information in a matter of milliseconds. That
sounds quite fast, but the nanosecond speeds of the CPU and SRAM make hard
drives seem like snails. Computer engineers are constantly striving to design
computers and operating systems so that memory is used as much as possible.

One way to speed up a computer system dramatically is to increase the

amount of memory so that the hard drive is used less during operation.

optical storage

Unlike hard disks, CDs and DVDs store data by using optical (light) technolo-
gies. CD-ROM (compact disc read-only memory) and DVD (digital video disc)
have become popular forms of mass storage. Most PCs now have DVD-R/RW
(read/write) drives that use a laser to burn microscopic pits in the surface of
both CDs and DVDs. These pits are then interpreted as 1s and 0s when read-
ing the disc. Like a hard disk, an optical disc spins, and the laser head moves
horizontally across the surface. Unlike a magnetic hard disk, an optical disc is
written to in a continuous spiral from the inside to the outside. CDs can store
up to 850 MB of information. DVDs are the same physical size as CDs but can
store nearly 9 GB of information and are often used to store video data.

flash drives

In the past few years, USB (universal serial bus) devices have replaced
floppy disks as the choice for portable storage. This device, known as a
flash drive or thumb drive, plugs into a USB port on a computer and stores
thousands of megabytes of data in a package small enough to fit on a
keychain. To the computer’s operating system, a flash drive appears as a
removable hard drive, but it really uses a special type of electronic memory,
called flash memory. Flash memory is nonvolatile, meaning the data is
retained when the power is turned off.

input/output systems
I/O systems are the final component in the Von Neumann architecture. The
CPU fetches instructions and data from memory, and then executes the in-
structions. If the instruction is a math operation, shifter and adder circuitry

122 chapter three

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

port – In the context of I/O
devices, the physical con-
nection on the computer
that allows an I/O device to
be plugged in

computer archi tec ture 123

might perform the math, placing the new values in the CPU’s registers. The
instruction might also transfer binary values from the registers or memory to
an I/O device. I/O devices make up an essential part of Von Neumann archi-
tecture and the computer system. A computer without any I/O devices would
be completely useless because I/O devices are the computer’s connection to
the user.

input devices
The main input device for most computer systems is the keyboard. The key-
board connects to the CPU through the keyboard controller circuit and the
system bus. Your keystrokes are translated in the keyboard to binary signals
of 1s and 0s that the CPU interprets as letters, numbers, and control codes.
Keyboards, and most other I/O devices, connect to the main board through a
port (see Figure 3-21). Ports are connectors on the outside of the computer that
allow I/O devices to be plugged into the system bus.

3

Figure 3-21, The main board provides numerous ports for connecting peripheral devices

The mouse also serves as a primary input device. It works by sensing movement
and translating it into binary codes. Other input devices include trackballs, sty-
luses (pens), touch pads, touch screens, and scanners. Modems and network
cards could be included in the list of input devices, although they’re often
categorized as networking or communication devices.

Networking and communication devices are covered in Chapter 4,
“Networks.”

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

124 chapter three

CRT (cathode ray tube) –
The technology used in a
conventional computer
monitor; CRTs use electron
beams to light up phosphor
displays on the screen

RGB (red, green, and
blue) – A type of computer
monitor that displays color
as a function of these three
colors

resolution – A measure-
ment of the granularity of
a computer monitor or
printer; usually given as a
pair of numbers indicating
the number of dots in a
horizontal and vertical di-
rection or the number of
dots per inch

refresh rate – The number
of times per second an im-
age is renewed onscreen; a
higher refresh rate results
in less flickering in the
display

LCD (liquid crystal display) –
A type of electronic device
used as a computer moni-
tor; popular in notebook
computers and PDA devices
and now used widely for
desktop monitors

output devices
A computer system would be of little worth if it couldn’t communicate with
the outside world, so a number of output devices are necessary.

monitors

The primary output device for home and business computer systems is, of
course, the video display, or monitor. For years, monitors have been CRT (cath-
ode ray tube) devices. In an RGB (red, green, blue) CRT, three electron streams
(one for each color) are encoded with the color information and then aimed
from the back of the monitor to the front, where they strike corresponding
phosphor dots of each color. When the beam hits one of these dots, it lights it
up. The beams are swept horizontally and vertically over the tube’s face, varying
the intensity to make up different patterns and colors. This process, called
raster scanning, has been used nearly as long as computers have been in exis-
tence. The display quality is defined by the resolution and the refresh rate.

Resolution is the number of dots (pixels) on the monitor, usually measured in
terms of the number of pixels or dots horizontally and vertically. A monitor
advertised as 1600 3 1200 / 68 Hz is capable of displaying 1600 by 1200
(1,920,000) pixels, and its refresh rate (number of times an image is renewed
onscreen) is 68 times per second. (The faster the refresh rate, the less the
image flickers.)

LCD (liquid crystal display) monitors are much thinner and run at a much cooler
temperature than CRT displays (see Figure 3-22). Originally, they were just used
in notebook computers, but they have become standard on most desktop comput-
ers as their prices have decreased. Instead of an electron beam, LCD displays use
small transistors that block light when a voltage is applied. As with CRT displays,
LCDs are rated in terms of resolution and refresh rate.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

computer archi tec ture 125

3

printers

The printer is another main output device. Perhaps the most popular is the
inkjet printer, which creates pictures and text on pages by spraying tiny droplets
of ink onto the paper as the print head moves back and forth.

Laser printers are also popular, especially in business settings. They can typically
print faster than inkjet printers at a lower cost per page. Laser printers first
scan the print image onto an electrostatic drum. The drum then contacts a
fine, black powder called toner, and the toner sticks to the drum where the
image has been drawn. The drum is then placed in contact with the paper, and
the toner is transferred to it. The last step is a heat-fusing process that melts the
toner onto the paper’s surface. Color laser printers work similarly, except they
have cyan (blue), magenta (red), and yellow inks in addition to black.

The quality of printer output is measured in resolution (dots per inch, or dpi)
in both horizontal and vertical directions. Resolution ranges from 300 dpi
to 2400 dpi for both inkjet and laser printers. Printers are also rated by
the number of pages per minute (ppm) the printer is capable of printing. Laser
printer ratings typically range from 6 to 15 ppm, inkjets are rated at 4 ppm and
higher for black text, and photo-quality inkjets range from 0.3 to 12 ppm,
depending on the type and quality of printing.

Figure 3-22, Comparison of CRT and LCD monitors

CRT: Image © 2009, androfroll; used under license from Shutterstock.com

LCD: Image © 2009, Dmitry Melnikov; used under license from Shutterstock.com

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

sound cards

Another common output device is the sound card. Although many main boards
have sound capability as part of the chipset, sound cards are typically used as well.
The sound card fits into the PCI bus expansion slot on the main board. At the
back of the sound card are connectors for audio input and output. Analog sounds
can be converted to digital codes and stored in memory or storage devices on the
computer. The sound card is used to digitize sounds for storage or to read binary
sound files and convert them back into analog sounds.

interrupts and pol l ing
As you have learned in this chapter, the CPU fetches and executes at a rate
equal to the processor’s clock speed. Each clock pulse causes the CPU to fetch,
decode, or execute a binary machine code instruction. As the CPU goes
through this process continuously, how does it know when a keyboard key has
been pressed?

For the keyboard and other I/O devices, there are two techniques designed to
process input and output information: polling and interrupts. In polling, at
regular intervals the processor asks each I/O device whether it has any requests
for service pending. It’s a bit like driving with small children who repeatedly ask
“Are we there yet?” “Are we there yet?” “Are we there yet?”

Polling works, but it’s inefficient because much of the CPU’s time is spent ask-
ing the question (interrogating). Interrupt handling is a more efficient method.
The CPU has a companion chip with connections, known as interrupt lines, to
wires in the control section of the system bus. When an I/O device places a
voltage signal on one of these lines, the interrupt chip checks the interrupt’s
priority and passes it on to the CPU. The CPU then stops executing its current
program and jumps to a special program designed to handle that specific
interrupt.

choosing the best computer
hardware
As you learn more about how the computer works, you’re better prepared to
answer the question “Which system or device is better?” Many times in your
computer science career, you’ll need to make decisions on hardware and soft-
ware purchases. For example, “Which is better, an Intel Core 2 processor or an
Intel Core 2 Quad mobile processor?” Your answer to this and any other
“Which is better?” question should be “It depends!” The question can’t be an-
swered unless you know the task the computer or device is going to be used for.
You have to know what outcome you need before you can say which computer
or I/O device can best solve the problem.

126 chapter three

polling – A technique in
which the CPU periodically
interrogates I/O devices to
see whether they require
attention; polling requires
many more CPU resources
than interrupt handling

interrupt handling – A com-
puter process in which a
signal is placed on the bus
to interrupt normal pro-
cessing of instructions and
transfer control to a special
program designed to deal
with events such as I/O
requests

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

computer archi tec ture 127

3

For example, by now you should know that a computer’s speed depends on
more than just the CPU clock speed. Factors such as the memory type, bus
speed, and even hard drive speed can affect overall speed far more than the
CPU clock. Many people have purchased a new computer only to find that it
didn’t solve the problem they were trying to solve.

one last thought
This book is just the beginning of your study of computer hardware and soft-
ware. You should stay current on new technologies and see where they fit into
your existing understanding of computers. Remember that having a better un-
derstanding of how a computer works and how the parts of a computer system
interact can improve your skills in whatever computer specialty you choose.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

• Understanding the inner workings of a computer is important if you’re plan-
ning a career in computers.

• The CPU is the “real” computer in a computer system.

• Transistors are the smallest hardware unit in a computer and are used to repre-
sent the 1s and 0s in a computer.

• Transistors are arranged into circuits that provide basic Boolean logic.

• The basic Boolean operators are AND, OR, and NOT.

• The basic Boolean operators can be implemented as digital circuits or gates; simple
gates can be combined to form complex circuits that perform specific functions.

• The main circuits that make up the CPU are adders, decoders, shifters, and
flip-flops.

• Von Neumann architecture, characterized by a fetch-execute cycle and the
three components of CPU, memory, and I/O devices, is the current standard
for computers and has been for more than 60 years.

• Buses transfer information between parts of the Von Neumann architecture.

• Memory consists of different varieties of ROM and RAM.

• Mass storage is nonvolatile and used to store large amounts of data
semipermanently.

• I/O systems consist of input devices, such as keyboards and mice, and output
devices, such as monitors and printers.

• The CPU interfaces with I/O devices via techniques such as polling and inter-
rupt handling.

adder (112)

AND (106)

arithmetic logic unit (ALU) (116)

BIOS (basic input/output system) (119)

Boolean basic identities (115)

Boolean operator (104)

bus (117)

bus protocol (117)

cache memory (120)

c h a p t e r s u m m a r y

k e y t e r m s

CD-ROM (compact disc read-only
memory) (122)

control unit (CU) (116)

CRT (cathode ray tube) (124)

decoder (112)

DRAM (dynamic RAM) (120)

DVD (digital video disc) (122)

flash drive (122)

flip-flop or latch (113)

128 chapter three

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

computer archi tec ture 129

1. What is the purpose of a main board?

2. What does CPU stand for?

3. What are the four basic functions implemented in the CPU?

4. What is the purpose of a decoder circuit?

5. What are the three parts of a transistor?

6. What are the main Boolean operators?

7. What type of table is used to represent the inputs and outputs of a logic
circuit?

8. Which complex circuit is used to address memory?

9. What is the output of an XOR gate if both inputs are 0?

10. Which gate is combined with an AND to form the NAND gate?

11. What symbol is used for the OR Boolean operator in a Boolean expression?

12. Which of the complex digital circuits is used to construct SRAM?

gate (107)

interrupt handling (126)

LCD (liquid crystal display) (124)

main board or motherboard (100)

NAND (109)

NOR (109)

NOT (106)

OR (106)

PCI (Peripheral Component Interconnect)
(118)

polling (126)

port (123)

RAID (redundant array of independent
disks) (122)

RAM (random access memory) (119)

refresh rate (124)

register (116)

t e s t y o u r s e l f

resolution (124)

RGB (red, green, blue) (124)

ROM (read-only memory) (119)

SATA (Serial AT Attachment) (119)

SCSI (Small Computer System
Interface) (118)

semiconductor (103)

shifter (114)

SRAM (static random access memory)
(114)

system bus (117)

system clock (117)

truth table (105)

USB (universal serial bus) (122)

Very Large-Scale Integration (VLSI)
(115)

XOR (exclusive OR) (110)

3

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

13. Which memory type is faster: SRAM or DRAM?

14. What are the characteristics of Von Neumann architecture?

15. In computer terminology, what is a bus?

16. What are the three signal groups of a bus?

17. What is the purpose of cache memory?

18. What is polling?

19. Which is more efficient: polling or interrupt handling?

20. How is resolution measured?

1. Which of the following circuit types is used to create SRAM?

a. Decoder
b. Flip-flop
c. LCD
d. ROM

2. Which of the following is not one of the basic Boolean operators?

a. AND
b. OR
c. NOT
d. XOR

3. Transistors are made of ________________ material.

a. Semiconductor
b. Boolean
c. VLSI
d. Gate

4. Which of the following is not one of the bus signal groups?

a. Control
b. Address
c. Data
d. Fetch

5. Which type of memory can’t be written to easily?

a. RAM
b. SRAM
c. ROM
d. Flip-flop

130 chapter three

p r a c t i c e e x e r c i s e s

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

computer archi tec ture 131

6. Which of the following memory types is the fastest?

a. DRAM
b. ROM
c. XOR
d. SRAM

7. In a truth table, inputs are represented on which side?

a. Top
b. Bottom
c. Left
d. Right

8. Any Boolean expression can represented by a truth table.

a. True
b. False

9. Inputs of 1 and 0 to an XOR gate produce what output?

a. 0
b. 1

10. In a computer, what function does a decoder usually perform?

a. Adding
b. Shifting
c. Addressing memory
d. Multiplying

11. Boolean expressions are simplified through the use of:

a. Basic identities
b. Gate logic
c. Algebraic expressions
d. Specialized circuits

12. Which type of I/O processing is most efficient?

a. Boolean
b. Polling
c. Logic
d. Interrupt

13. Which of the following defines the display quality of a monitor?

a. Resolution
b. Flip rate
c. Beam strength
d. Inversion

14. Most computers today are based on:

a. Von Neumann architecture
b. Upscale integration
c. Tabulation basics
d. Small-Scale Integration

3

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

15. Which part of the CPU is responsible for mathematical operations?

a. CU
b. ALU
c. RLU
d. VLSI

16. A _______________ in computer terminology is a set of wires and proto-
cols designed to facilitate data transfer.

a. Gate
b. Bus
c. Boolean circuit
d. CPU

17. Most computers these days use the ________________ bus.

a. VLSI
b. ACM
c. ASI
d. PCI

18. The _______________ contains instructions and data that provide the
startup program for a computer.

a. RAM
b. DRAM
c. BIOS
d. CPU

19. High-speed __________________ is used to speed processing in a com-
puter system.

a. Mass storage
b. Cache memory
c. ROM
d. CD-ROM

20. The quality of printer output is measured in _______________________.

a. ppm
b. cu
c. dpi
d. rom

1. What are the Boolean basic identities, and how are they used in reducing
Boolean expressions?

2. How does the quality of laser printer output compare with an inkjet?
Which has a lower cost per page?

3. What are the newest types of memory, and how are they faster than older
memory technologies?

132 chapter three

d i g g i n g d e e p e r

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

computer archi tec ture 133

4. Compare the different storage media currently on the market. Which is
fastest? Most cost effective? Most portable? Most durable?

5. What do you think standard monitor resolution should be and why?

1. If you could afford any computer, what would you have? Why? List the
different hardware components you would include.

2. What new computer hardware technology do you think will have the
largest effect on the computer industry in the next decade?

3. Why learn Boolean expressions and gate logic?

4. What could be some possible alternatives to Von Neumann architecture?

5. What are some of the ways logic gates are used in your everyday life?

1. What is the fastest clock speed currently used in desktop and notebook
computers?

2. Who are the main vendors of CPUs? Which one appears to be the leading
vendor and why?

3. Compare three desktop computers from different vendors. Describe the ad-
vantages and disadvantages of each.

4. What Web sites display speed rankings for hardware components?

5. List three manufacturers of main boards and describe their products.

I n t e r n e t r e s e a r c h

3d i s c u s s i o n t o p i c s

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

c h a p t e r

ne tworks

4

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

i n t h i s c h a p t e r y o u w i l l :

• Learn how computers are connected

• Become familiar with different types of transmission media

• Learn the differences between guided and unguided media

• Learn how protocols enable networking

• Learn about the ISO OSI reference model

• Understand the differences between network types

• Learn about local area networks (LANs)

• Learn about wide area networks (WANs)

• Learn about wireless local area networks (WLANs)

• Learn about network communication devices

• Learn how WANs use switched networks to communicate

• Learn how devices can share a communication medium

• Learn about DSL, cable modems, and satellite communications

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

I love technology. To give you a glimpse into my mind, when someone comments (as they often do) that I might
as well glue my cell phone to my ear, I think, “Hey, that’s actually not a bad idea. It would free up both hands

to play Call of Duty.” (You try sniping one-handed!)

Luckily, I can save the money I would have spent on glue because I recently got a Bluetooth headset for my
birthday. Instead of facing the embarrassment of having a cell phone glued to my ear, now I can talk on

my phone all the time, and to people around me, I just seem to be talking to myself. Phew!

Whether it’s a cell phone, an MP3 player, a digital camera, or all of the above combined in one device, I love it.
I’ve often wondered what I would have done had I been born 500 years ago. I probably would have been the

first one on the block with an Abacus Core Duo.

I’m well aware of where this love for technology comes from: my dad. As far back as I can remember, we were
always the most technologically advanced family on the block. In fact, my dad has exclusive ownership of a top-

secret, cutting-edge piece of technology.

A few years back, I was lying on the couch watching TV and noticed construction sounds coming from the base-
ment (hammering, sawing, drilling, and so on). My dad and our neighbor kept walking upstairs and past the

couch out to the backyard and then back into the house and downstairs again.

After Battlestar Galactica the football game was over, my curiosity got the best of me, and I went downstairs to
see what in the world was going on. I noticed they were building a tray to rest on the arms of a treadmill. On

the tray was a mouse and keyboard, and on the wall above it was another tray holding a computer and
monitor. I looked at my dad, who said matter-of-factly, “It’s a Walk-n-Work.”

My family is the only one with a Walk-n-Work, but technological miracles are all around us. I think we can all
agree, however, that greater than any technological miracle is the miracle that I was ever born.

136 chapter four

the lighter side of the lab
by spencer

the lighter side of the lab
by spencer

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

networks 137

Imagine life without e-mail, Web browsers, and search engines. Picture a bored teenager with

no instant messaging, having to resort to using the telephone or (heaven forbid) snail mail to

communicate with friends. Networking is the glue that connects computers together. Without

networking, computer users couldn’t share printers. Online shopping, banking, and research

would be impossible. Soon after the computer was invented, computer scientists realized that

computers needed to be connected to other computers and peripheral devices and began work-

ing on technologies and standards that would make networking possible.

Networking has now moved from government research centers, universities, and large corpo-

rations to home computing. As people began to have more than one computer at home, they

needed to share resources, such as printers and Internet connections. Networking has indeed

become central to computing. The network has effectively become an extension of the com-

puter’s system bus.

Now that networking has become an integral part of computing for homes and enterprises,

designing, implementing, and maintaining networks have become increasingly important.

Many types of security management and performance tuning can be done only by trained

professionals. In your computing education, you’ll learn more about networks and network-

ing. You probably already use networks in nearly all that you do. Networks are beginning to

extend to almost all aspects of daily life, from mobile devices to game consoles and even to

household appliances. Networks, including the Internet, are becoming an integral part of

personal computers, and as a computing professional, you’ll have to incorporate network

technologies into nearly everything you develop for computers. This chapter gives you a

basic understanding of how networks operate and introduces you to the communication

protocol at the heart of the Internet.

n e t w o r k s
why you need to know about...

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

138 chapter four

transmission medium – A
material with the capability
to conduct electrical and/or
electromagnetic signals

bandwidth – A measure-
ment of how much
information can be carried
in a given time period over
a wired or wireless commu-
nication medium, usually
measured in bits per second
(bps)

n o t e

connecting computers
As you learned in Chapter 3, computers are binary devices. Instructions, num-
bers, pictures, and sounds are all stored and transferred by using 1s and 0s, which
are actually electrical voltage signals. Computers could be connected to each other
to share information by just extending the bus signals—if the computers were
right next to each other. Buses consist of many wires. The PCI bus has 98,
for example. A cable to extend the PCI bus to another computer would have to
be very thick and wouldn’t be practical at all. Because of the difficulties of extend-
ing the system bus to connect computers, new technologies had to be developed.
Although computers next to each other are sometimes connected, connecting
computers that are physically farther apart is often necessary. In all situations,
connecting computers requires a medium, such as wire, to carry electrical signals
and a communication protocol to control and manage the process.

transmission media
Sending 1s and 0s from one computer to another requires a transmission

medium. A transmission medium is some type of material that conducts electri-
cal and/or electromagnetic signals. One popular medium is copper wire, which
is a good conductor of electricity and is less expensive than other media. It’s
also quite flexible and easy to work with.

More than one transmission medium is referred to in the plural form as

“transmission media.”

Transmission media are rated in four different ways:

• Bandwidth—The speed the medium is able to handle, measured in bits per
second. Bandwidth is a function of how much the medium is affected by
outside electrical influences, referred to as noise.

• Signal-to-noise ratio—The proportion of signal compared to noise, which is
calculated by the formula stnR 5 10 log10 (signal/noise). High ratios are bet-
ter than low ratios because a high ratio indicates that the signal is stronger
than the noise.

• Bit error rate—The ratio of the number of incorrectly received bits to the
total number of bits in a specified time period. A medium’s capability to
transmit binary information usually drops off (the error rate increases) as the
transfer rate increases.

• Attenuation—The tendency of a signal to become weaker over distance.
Because of resistance to electrical flow, an electrical signal gets weaker as it
travels, especially on copper wire. This attenuation means that all transmission
media have limitations on the distance the signal can travel.

signal-to-noise ratio – A
measure of the quality of a
communication channel

bit error rate – The percent-
age of bits that have errors
in relation to the total
number of bits received in a
transmission; a measure of
the quality of a communica-
tion line

attenuation – A reduction
in the strength of an elec-
trical signal as it travels
along a medium

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

4

copper wire: coaxial and twisted pair

Copper wire has been the network conductor of choice for many years. It’s also
used to carry satellite or cable TV signals inside your house. Copper wire is
manufactured in two basic formats: coaxial (sometimes called “coax”) and
twisted pair.

Transmitting data requires two wires: one to carry the signal and one for the
ground, or return line. Two copper wires could be used to connect computers
together. Just using two wires has problems, however. Electronic noise is

Transmission media are classified as two general types: guided and unguided.
Guided media are physical media, such as copper wire or fiber-optic cable. The
term unguided media describes the air and space that carry radio frequency
(RF) or infrared (IR) light signals.

guided media
The most common guided medium is copper wire in the form of twisted pair or
coaxial cable. Another type of guided medium is fiber-optic cable, which uses
glass and light to transmit data. Figure 4-1 shows these common types of cables.

networks 139

guided media – Physical
transmission media, such as
wire or cable

unguided media –
Transmission media you
can’t see, such as air or
space, that carry radio or
light signals

Figure 4-1, Coaxial, twisted pair, and fiber-optic cable
are guided media

copper wire

plastic
buffer

glass or
plastic core

DuPont
Kevlar for
strength

cladding

outer jacket

insulation

copper mesh

outside insulation

coaxial cable

fiber-optic cable

unshielded twisted pair (UTP)

coaxial – Communication
cable that consists of a
center wire surrounded
by insulation and then a
grounded foil shield
wrapped in steel or copper
braid

twisted pair – A pair (some-
times pairs) of insulated
wires twisted together and
used as a transmission
medium in networking

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

140 chapter four

all around. It’s emitted by all electronic wiring and equipment and even by the
sun. Because copper is affected by this noise, one way to increase the band-
width of copper wire is to protect it from noise by surrounding it with a metal
shield. Cable manufactured in this way is called coaxial cable. It has a high
signal-to-noise ratio and can support bandwidths up to 600 MHz. Different
types of coaxial cable have been used over the years to network computers.
The cable types usually have names such as 10BaseT. Coaxial cable has been a
popular medium in the past, but it’s being replaced in most instances by twisted
pair cables that are less expensive to produce and have even higher bandwidths.
Coax is still used when computers connect to the Internet through a cable TV
service via a cable modem.

The main copper transmission medium currently in use is called twisted pair
because it consists of pairs of copper wires that are twisted. The reason the wires
are twisted has to do with the electrical property of inductance. When metal
wires run parallel to each other in close proximity, electrical current in one wire
induces an electrical signal in the wire or wires next to it. In motors and genera-
tors, this property is good, but in computers and networking, inductance is a
big problem. Because the electrical signals on the wires are treated as 1s and 0s,
and because 1s and 0s make up the data being transmitted, it would be bad if
a 0 were changed to a 1 or vice versa by some type of interference on the line.
It would especially be a problem if the bit error involved a substantial increase
in your credit card balance. Twisting the wires nearly eliminates inductance,
enabling higher bandwidth and longer wires. All copper wires are also subject to
impedance, which makes electrical signals weaken as they travel along the wire.
The reduction in signal is called attenuation, as mentioned earlier.

Twisted pair cable comes in two configurations: shielded and unshielded. Like
coaxial, the twisted pair can be wrapped in an aluminum foil–like shield to pro-
tect the wires from outside interference. Shielded twisted pair is designed to be
faster and more reliable than unshielded cable, but it’s more expensive and less
flexible. The less expensive unshielded twisted pair (UTP) cable continues to be
the more popular of the two.

Twisted pair cables have been rated by the Electronic Industry Alliance/
Telecommunications Industry Association (EIA/TIA) according to the maxi-
mum frequency the cable can reliably support. Table 4-1 lists the category
ratings of twisted pair cable. Categories above 2 normally have four pairs of
twisted wire.

10BaseT – A twisted pair
Ethernet networking cable
capable of transmitting at
rates up to 10 Mbps
(megabits per second)

impedance – The opposi-
tion a transmission medium
has toward the flow of
alternating electrical
currents

inductance – The magnetic
field around a conductor
that opposes changes in
current flow

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

4

networks 141

Table 4-1, EIA/TIA twisted pair cable categories

category maximum frequency

1 4–9 KHz

2 1 Mbps or less

3 10 MHz

4 20 MHz

5 100 MHz

5e 100 MHz

6 250 MHz

6a 500 MHz

7 600 MHz

You might have heard the term Cat 5 used to refer to networking cable. Cat 5

(Category 5) is the most common twisted pair cable in use for homes and busi-
nesses. The maximum frequency of 100 MHz for Cat 5 cable is fast enough for
most home and business networks. Twisted pair cables are also known by names
such as 100BaseT and 10GBaseT.

Copper has been used for many years in coaxial and twisted pair configurations,
but as the need for faster data transmission has increased, the computer indus-
try has turned to optical media.

fiber-optic cable

Copper wire “guides” electrical signals along the wire. Fiber optic uses glass
fibers to guide light pulses along a cable in a similar manner. Fiber-optic cables
are made of a thin strand of nearly pure glass surrounded by a reflective mater-
ial and a tough outer coating. These cables can transmit binary information in
the form of light pulses. Transmission speeds are much higher than with copper
because fiber-optic cables are much less susceptible to attenuation and induc-
tance. In fact, inductance doesn’t apply to fiber-optic cables at all. Light, unlike
electricity, is immune to inductance and electronic noise on the cable. Because
inductance isn’t a problem at high frequencies, as in copper cable, fiber-optic
cables have bandwidths hundreds of times faster than copper.

If fiber optic is faster, why hasn’t the world switched to it? In the past, the prob-
lem has been the cost. Fiber-optic cable is complicated to manufacture, and the
glass used in the cable has to be very pure. In the early days of fiber-optic

Cat 5 – A popular Ethernet
twisted pair communication
cable capable of carrying
data at rates up to 100
Mbps

100BaseT – A fast Ethernet
networking cable made up
of four twisted pairs of
wire and capable of trans-
mitting at 100 Mbps

10GBaseT – The fastest
Ethernet networking cable,
capable of transmitting at
10 Gbps (gigabits per
second) over twisted pairs
of wires

fiber optic – Guided net-
work cable consisting of
bundles of thin glass
strands surrounded by a
protective plastic sheath

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

142 chapter four

development, the cables were expensive. As more businesses have chosen the
speed and reliability of fiber-optic cable, however, economies of scale have
brought the price down. In some cases, fiber-optic cable is becoming even
cheaper than copper. As the price of fiber optic continues to drop and the
quality increases, you can expect fiber optic to become the most widely used
guided medium. Although fiber optic will continue in popularity, many factors
are contributing to an increased use of the unguided media of wireless
technologies.

unguided media: wireless technologies
Wouldn’t it be nice if you could skip wires and use radio waves to connect your
computers? Well, you can. The convenience and low price of wireless
networking have allowed the computing industry to make inroads into many
businesses and nearly all home networks. The main benefit of wireless tech-
nologies is that there’s no need to run cables between computers. Cabling is
expensive in both materials and labor. Another benefit is that computers can be
mobile, instead of having to be attached to the network at a single location.
Table 4-2 lists some wireless technologies, many of which are illustrated in
Figure 4-2.

Table 4-2, Wireless technologies

wireless technology transmission distance speed

Bluetooth 33 feet (10 meters) 1 Mbps

WLAN 802.11b 112 feet (34 meters) 11 Mbps

WLAN 802.11a 65 feet (20 meters) 54 Mbps

WLAN 802.11g 112 feet (34 meters) 54 Mbps

WLAN 802.11n 200 feet (68 meters) 600 Mbps

satellite worldwide 1 Mbps

fixed broadband 35 miles (56 kilometers) 1 Gbps

WAP (cell phones) nationwide 384 Kbps

To understand wireless technologies, you need to understand how radio trans-
missions work. You use the technology behind wireless networking all the
time—cell phones, walkie-talkies, garage door openers, microwave ovens, and, of
course, radio. In all these products, an electronic signal is amplified and then

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

radiated from an antenna as electromagnetic waves. These waves travel through
the air and sometimes through outer space and are picked up by another an-
tenna and converted back to an electronic signal. Electromagnetic waves can be
transmitted at many different frequencies. The difference between a low-pitched
sound and a high-pitched sound is the frequency of the sound waves, or vibra-
tions. The frequency of radio waves works in much the same way, except that
radio waves deal with electromagnetic waves instead of vibrations. Each time you
tune to a new radio station, you’re actually changing frequencies.

Wireless networking uses the same technology as the radio in your car and the cell
phone in your pocket. The complete possible range, or spectrum, of radio frequen-
cies has been divided by international governing bodies into bands of frequencies.
Each band is allocated for a specific industry or purpose. The frequency band at
the 2.4 GHz range has been allocated for unlicensed amateur use, making it a
perfect fit for wireless networking for home and businesses.

4

networks 143

hotspots

802.11 wireless connections have
been installed in airports, book-

stores, coffee shops, and other
commercial locations to enable

people to access the Internet with
their wireless-enabled notebook
computers or PDAs. These loca-
tions are known as “hotspots.”

Figure 4-2, Wireless technologies

Bluetooth

call center

satellite

fixed
broadband

wireless

802.11b

digital
cellular

digital
cellular

house

warehouse
WLAN

(wireless LAN)

office
WLAN

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

144 chapter four

IEEE (Institute of Electrical
and Electronics Engineers) –
An organization involved in
formulating networking
standards

802.11 – A family of spe-
cifications for WLANs
developed by IEEE;
currently includes 802.11,
802.11a, 802.11b, 802.11g,
and 802.11n

Bluetooth – A specification
for short-range RF links
between mobile computers,
mobile phones, digital cam-
eras, and other portable
devices

n o t e

The Institute of Electrical and Electronics Engineers (IEEE) formulated a standard
for wireless networking using the 2.4 GHz range and numbered it 802.11. Later
variations have included 802.11b, 802.11g, and 802.11n, which have been used
heavily in wireless networking. If you have a wireless home networking system,
it’s probably using one of the 802.11 wireless standards.

These wireless standards allow wireless networks to transmit data between com-
puters and wireless devices in much the same manner as guided media, such as
copper and fiber optics. The goal in both is to transmit binary information be-
tween computer systems. Selecting the right medium, however, is only part of
the problem. There’s a lot more to networking computers than choosing a
transmission medium.

Bluetooth is another wireless protocol that’s becoming popular for connecting
keyboards, mice, printers, and other I/O devices to the computer. Bluetooth isn’t
really a networking protocol but can be used to interface to a LAN. The
Bluetooth specification allows the maximum distance between devices to range
from 3 inches to 328 feet, depending on the transmitter’s power. The most com-
mon distance for Bluetooth is 30 feet.

light transmission

For short distances, infrared light is also used to send and receive information
through the transmission medium of the air. For infrared to work, there must be a
clear line of sight between the sending device and the receiving device. Portable
devices, such as PDAs, cell phones, and notebook computers, often have this capa-
bility. Many types of wireless keyboards and mice also use infrared technology.
Pulses of infrared light are used to represent the 1s and 0s of binary transmission.
Infrared transmissions are capable of transmission rates up to 4 Mbps.

Remote controls for home entertainment devices also use infrared

transmission.

protocols
A protocol is a set of rules designed to facilitate communication. In both hu-
man and computer interactions, protocols are essential.

You deal with protocols in your life every day. For example, you deal with classroom
protocol each day you attend class. (For some of you, that’s less often than it should
be!) When you’re in a classroom with the professor talking and you have a question,
the normal protocol is for you to raise your hand and keep it up until the professor
acknowledges you. At some point, the professor indicates that you can ask your
question. When you have finished your question, the professor answers it and then
asks if the question was resolved. If so, the professor resumes the lecture.

protocol – A set of rules
designed to facilitate com-
munication; protocols are
heavily used in networking

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

4

networks 145

n o t e Networking would be impossible without the use of protocols.

The classroom protocol used in this example is designed to facilitate commu-
nication and understanding in the classroom by providing for an orderly flow
of information transfer. This description is simple, but the classroom protocol is
actually quite a bit more complex. Protocols are often represented with a timing
diagram, which shows the protocol interactions between two entities. Table 4-3
is an example of timing for the classroom protocol.

Table 4-3, Protocol timing diagram

time period professor student

1 Lecturing

2 Raises hand to show the need
to ask a question

3 Notices student’s hand
and finishes thought

4 Tells student to proceed

5 Lowers hand to acknowledge
professor’s recognition

6 Asks question

7 Stops talking to indicate
question is complete

8 Answers question

9 Continues lecturing

A similar process occurs throughout computer communications, especially in
networking. If you design a circuit to put a binary signal on a transmission
medium, you have to take into consideration the protocol for communicating
data from one machine to another. It isn’t enough to just put voltages on the
line. You must also provide for an orderly flow of information from one ma-
chine to the other. This flow happens through a transmission protocol. In fact,
many protocols are used in your computer. One example is with Web pages,
covered in Chapter 5. You have probably typed “HTTP” in your browser’s
address bar. The “P” in “HTTP” stands for protocol, as it does in TCP/IP and
FTP. Without protocols, there would be no Internet. Actually, without
protocols, computers would not function.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

146 chapter four

You learn a lot more about protocols, such as HTTP, FTP, and TCP/IP, in
Chapter 5, “The Internet.”

Communication protocols, such as Transmission Control Protocol (TCP), allow
two computers to establish a communication connection, transfer data, and
terminate the connection. A timing diagram for a protocol such as TCP (see
Table 4-4) might look similar to the one for the classroom protocol. Instead of
words, however, computers use special codes to facilitate the communication
process.

Table 4-4, Timing diagram for a communication protocol

time period computer 1 computer 2

1 Listening Listening

2 Are you ready?

3 Yes, I am

4 Here comes part 1

5 I received part 1

6 Here comes part 2

7 I received part 2

8 I’m finished

9 Terminate

TCP is actually a little more complicated, but the process is similar.
Computers use communication protocols to ensure that the information gets
from the sender to the receiver exactly as it’s sent. This means the protocol
must have provisions to check for errors and retransmit parts of the informa-
tion, if necessary. This process happens whenever you’re browsing the Internet,
playing streaming files, or chatting over an instant messenger. You haven’t had
to worry about the process because in 1984, two standards groups, the
International Organization for Standardization (ISO) and the Comité
Consultatif International Téléphonique et Télégraphique (International

ISO (International Organiz-
ation for Standardization) –
An organization that
coordinates worldwide
standards development

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

4

networks 147

CCITT (Comité
Consultatif International
Téléphonique et
Télégraphique or
International Telegraph and
Telephone Consultative
Committee) – A standards
group involved in the de-
velopment of the ISO OSI
reference model

ISO OSI reference model –
A data communication
model consisting of seven
functional layers

datagram – A packet of
information used in a con-
nectionless network service
that’s routed to its destina-
tion by using an address
included in the datagram’s
header

n o t e

Telegraph and Telephone Consultative Committee, CCITT), formulated the
ISO Open Systems Interconnect reference model (ISO OSI reference model),
usually called just the OSI model.

ISO OSI reference model
The OSI model was designed to formulate a standard for allowing different
types and brands of computers to communicate with one another. It’s a concep-
tual model for the communication process that has seven discrete layers, each
with a specific responsibility or function:

1. Physical—The Physical layer defines the electrical, mechanical, procedural,
and functional specifications for activating and maintaining the physical
link (such as the cable) between end systems.

2. Data Link—The Data Link layer provides reliable transit of data across the
physical link and is responsible for physical addressing, data error notifica-
tion, ordered delivery of frames, and flow control.

3. Network—The Network layer provides connectivity and path selection be-
tween two end systems. This layer uses routing protocols to select optimal
paths to a series of interconnected subnetworks and is responsible for
assigning addresses to messages.

4. Transport—The Transport layer is responsible for guaranteed delivery of
data. It uses data units called datagrams. The Transport layer is also re-
sponsible for fault detection, error recovery, and flow control. This layer
manages virtual circuits by setting them up, maintaining them, and
shutting them down.

5. Session—The Session layer is responsible for establishing, maintaining, and
terminating the communication session between applications.

6. Presentation—The Presentation layer is responsible for formatting data so
that it’s ready for presentation to an application. This layer is also responsi-
ble for character format translation, such as from ASCII to Unicode, and
for syntax selection.

7. Application—The Application layer is responsible for giving applications
access to the network.

Networking protocols and topologies don’t always use all seven layers of

the OSI model.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

148 chapter four

Note in Figure 4-3 how the layers function when a message is transmitted. The
message originates at an application, such as your Web browser. The message is
then passed down to the Presentation layer. The Presentation layer adds a header
pertaining to the message and the layer’s responsibilities. It’s then passed to the
Session layer and another header, specific to the Session layer, is added to the
message and the presentation header. This same process continues down to
the Physical layer. The Physical layer places the new message, consisting of the
original message along with all headers from previous layers, on the transmission
medium. When the receiving side gets the message, each layer examines its header
and acts on the information it contains. Normally, each layer passes the message,
minus the layer’s header, up to the next layer. If a layer detects a problem, it can
request retransmission of the message.

Each layer is defined in terms of a header and a protocol data unit (PDU). The
headers for each layer contain fields of information related to the layer’s func-
tion and the message data being sent. The sending side of the communication
creates the header, and then the corresponding layer on the receiving side uses
this header. The PDU is used to communicate information about the message
to the next layer on the same side. Figure 4-3 shows the communication process
of the OSI layers.

Figure 4-3, How the OSI model processes data

NH
DH

TH
SH
PH

transmission medium

original
message

NH
DH

TH
SH
PH

original
message

NH
TH
SH
PH

original
message

TH
SH
PH

original
message

SH
PH

original
message

PH

PH : Presentation header
SH : Session header
TH : Transport header
NH: Network header
DH: Data Link header

original
message

original
message

NH
DH

TH
SH
PH

original
message

NH
DH

TH
SH
PH

original
message

NH
TH
SH
PH

original
message

TH
SH
PH

original
message

SH
PH

original
message

PH
original
message

original
message

PhysicalData LinkNetworkTransportSessionPresentationApplication

PDU (protocol data unit) –
A data communication
packet containing protocol
information in addition to a
data payload

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

4

networks 149

You can see that layers in the OSI model are defined and designed to provide
services for the process of communicating between computers. The description
here is brief but gives you enough information about each layer’s responsibili-
ties. The actual ISO OSI definition consists of many pages of specific
information about the responsibilities of each layer. The effect of breaking
down a communication process into layers is that each layer can be pro-
grammed and designed independently of the others. During the design phase,
after a layer has been tested and is working correctly, it can be plugged into
the other layers. Different types of networks can use the same programming
code for all the layers, except the layer specifically responsible for that type of
network. For example, if all the layers have been programmed to handle
Internet communication over copper wire, a change to a wireless technology
requires modifications to the Physical layer only. The rest of the layers could
remain as they are for the network on copper wire.

You might have noticed that learning about networks requires learning a whole
new vocabulary—and you’ve barely started. Learning these new terms, however,
can help you when interviewing for jobs and communicating with other com-
puter professionals.

network types
One way of classifying networks is in terms of their proximity and size. A LAN

(local area network) is a small number of computers connected in close prox-
imity, usually in a building or complex, and over copper wire. A WAN (wide
area network) consists of many computers spread over a large geographical
area, such as a state or a continent. Sometimes you hear the term MAN (met-
ropolitan area network) to describe a network that spans a city or metropolitan
area. Deciding whether to use the term LAN or WAN to describe a network
isn’t always easy. There’s no standardized definition, although if the network
is confined to a single building, it’s usually called a LAN. If multiple physical
locations are connected through a combination of copper wire and/or tele-
phone or other communication services, the network is normally referred to as
a WAN. The Internet is the largest example of a WAN. Figure 4-4 shows an
example of a WAN composed of a combination of LANs and WLANs.

Because of the increasing popularity of wireless networking, especially in home
and small businesses, a new term has entered into the vocabulary. WLAN (wire-
less LAN) describes a LAN that uses a wireless transmission medium, instead of
copper wire or fiber optics.

LAN (local area network) –
A network of computers in
a single building or in close
proximity

WAN (wide area network) –
A network in which com-
puter devices are physically
distant from each other,
typically spanning cities,
states, or even
continents

WLAN (wireless LAN) – A
local network that uses
wireless transmission in-
stead of wires; the IEEE
802.11 protocol family is
often used in WLANs

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

150 chapter four

LAN topologies
After the transmission medium and protocols are in place, the computers can
be connected in different configurations. These network configurations are of-
ten referred to as network topologies. The computers attached to a network are
often referred to as nodes.

There are three basic topologies, or ways of connecting computers, in a LAN:

• Ring topology—This method connects all the computers in a ring, or loop,
with a cable going from one computer to another until it connects back to
the first computer. When a computer wants to send a message or data to an-
other computer on a ring network, it sends the message to the next computer
in the ring. Each computer on the ring network has a unique address. If the
message isn’t addressed to the computer receiving it, the computer forwards
the message to the next computer. This process repeats until the message
reaches the correct computer.

• Star topology—In a star topology, a computer or a network device, such as a switch,
serves as a central point, or hub, for all messages. When a computer in this config-
uration wants to send a message to another computer, it sends the message to the

Figure 4-4, Example of a WAN configuration

WLAN

gateway

firewall firewall

LAN

satellite
dish

laptop

PDA
computer

node node node

keyboard

mouse

gateway

wireless
router

LAN

WAN

satellite
dish

satellite

Bluetooth

network topology – A
schematic description of the
arrangement of a network,
including its nodes and con-
necting lines

node – Any addressable
device attached to a net-
work that can recognize,
process, or forward data
transmissions

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

4

central node, which forwards the message to the computer it’s addressed to. Again,
all computers on the network must have a unique address.

• Bus topology—A network in a bus topology is configured much like a system
bus on a computer. Each computer, or node, on the network is connected to a
main communication line, or bus. Any computer attached to this bus can
place a message on the bus that’s addressed to any other computer on the bus.
All the computers “listen” to the bus, but only the one with the correct address
responds. The bus line requires a special terminator at its end to absorb signals
so that they don’t reflect back down the line.

The bus topology has historically been one of the most popular methods of
connecting computers in a LAN, but the advent of the Internet and home
networking has increased the star topology’s popularity. Figure 4-5 shows these
three network topologies.

networks 151

Figure 4-5, LAN topologies

server

terminator terminator

bus topology

ring topology

workstation

workstation workstation

printer

star topology

hub

1439080356_ch04_REV2.qxd 9/23/09 5:03 PM Page 151

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

152 chapter four

Ethernet – A common
method of networking
computers in a LAN, using
copper cabling at speeds up
to 100 Mbps

token ring – A LAN technol-
ogy that has stations wired
in a ring, in which each sta-
tion constantly passes a
special message token on
to the next; whichever sta-
tion has the token can send
a message

FDDI (Fibre Distributed
Data Interface) – A token-
passing, fiber-optic cable
protocol with support for
data rates up to 100 Mbps;
FDDI networks are typically
used as the main lines for
WANs

ATM (Asynchronous
Transfer Mode) – A net-
work technology based on
transferring data in cells or
packets of a fixed size at
speeds up to 2.488 Gbps

LAN communication technologies
LANs can also be classified according to the technology used to connect
nodes to the network. A widely used technology that has become the industry
standard for LANs is Ethernet. Ethernet is based on a bus topology, but it can
be wired in a star pattern, sometimes called a star/bus topology. Today,
Ethernet is the most popular LAN technology because it’s inexpensive and
easy to install and maintain. The original Ethernet standard transferred data
at 10 Mbps, and a more recent standard, Fast Ethernet, transfers data at
100 Mbps. Many PCs come with built-in Ethernet 10/100 ports to accom-
modate both speeds. Gigabit Ethernet provides even faster transfer rates of up
to 1 Gbps (1 billion bits per second), and recently 10 Gigabit Ethernet ap-
peared on the scene.

The second most popular LAN technology is token ring, which uses a ring
topology and controls access to the network by passing around a special signal
called a token. Standard token ring networks support data transfer of 4 or 16
Mbps. Other LAN technologies that are generally faster and more expensive are
FDDI and ATM. Table 4-5 summarizes the bandwidths of LAN technologies.

Table 4-5, Bandwidths of LAN technologies

LAN technology bandwidth

Ethernet 10 Mbps (megabits per second)

Fast Ethernet 100 Mbps

Gigabit Ethernet 1 Gbps (gigabits per second)

10 Gigabit Ethernet 10 Gbps

token ring 4 or 16 Mbps

fast token ring 100 or 128 Mbps

FDDI 100 Mbps

ATM Up to 2.488 Gbps

network communication devices
LANs, WANs, and WLANs can be connected to form larger, more complex
WANs. These larger WANs might consist of LANs of different types, located
physically far apart. To connect them, various communication devices are used.
To connect to a network, a computer or network device needs a network

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

4

interface card. Networks also use repeaters, hubs, switches, bridges, gateways,
routers, and firewalls to solve networking issues.

NIC
Each physical device connected to a network must have a network interface

card (NIC). This card is usually in an expansion slot on the motherboard or in a
card slot on a notebook computer and includes an external port for attaching a
network cable or an antenna for wireless connection. Each NIC has a unique,
48-bit address—the Media Access Control (MAC) address or a physical address
assigned by the NIC manufacturer—used to identify it on the network (by the
OSI Physical layer). The NIC becomes the interface between the physical net-
work and your computer, so it normally connects to the main system bus.

repeater
As mentioned, signals decrease (attenuate) as they travel through a transmission
medium. Attenuation limits the distance between computers in a network.
Repeaters alleviate this problem by amplifying the signal along the cable
between nodes. Repeaters don’t alter the content of data in any way. They just
boost the signal.

hub
A hub is a special type of repeater with multiple inputs and outputs, unlike the
standard repeater that has just one input and one output. All the inputs and
outputs are connected. The hub allows multiple nodes to share the same
repeater.

switch
A switch is similar to a hub, in that it’s a repeater with many input and output
ports. A switch differs from a hub because not all the inputs and outputs are
connected. Instead, the switch examines the input’s packet header and switches
a point-to-point connection to the output addressed by the packet. Because it’s
not just a passive device, as a hub is, a switch has the OSI Layer 2 (Data Link)
responsibilities of examining headers for addresses.

bridge
A bridge is similar to a switch, in that it amplifies signals that it receives and
can connect inputs with outputs, but it can allow dividing a network into
segments to reduce overall traffic. Recall that in a bus network, all messages are
presented to all computers on the network. That places a heavy load on each
computer, as every message must be examined to see whether the computer
needs to respond. In a large network, this traffic can slow the network quite a

networks 153

network interface card
(NIC) – A circuit board that
connects a network
medium to the system bus
and converts a computer’s
binary information into a
format suitable for the
transmission medium; each
NIC has a unique, 48-bit
address

repeater – A network de-
vice used to amplify signals
on long cables between
nodes

hub – A network device
that functions as a multi-
port repeater; signals
received on any port are
immediately retransmitted
to all other ports on the
hub

switch – A network re-
peater with multiple inputs
and outputs; each input can
be switched to any of the
outputs, creating a point-
to-point circuit

bridge – A special type of
network switch that can be
configured to allow only
specific network traffic
through, based on the
destination address

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

154 chapter four

gateway – A network com-
ponent, similar to a bridge,
that allows connecting net-
works of different types

router – A network device,
similar to a gateway, that
directs network traffic,
based on its logical address

firewall – A network device
that protects a network by
filtering out potentially
harmful incoming and out-
going traffic

n o t e

bit. A bridge can prevent this slowdown because it can read the address of each
message it receives and then forward it to just the network segment containing
the addressed computer.

gateway
A gateway is similar to a bridge but has the additional capability to interpret
and translate different network protocols. Gateways can be used to connect net-
works of different types or to connect mainframe computers to PCs. Your PC
no doubt connects to the Internet through a gateway. Most gateways are simply
a computer with software that provides gateway functionality.

router
Routers are small, special-purpose devices or computers used to connect two or
more networks. Routers are similar to bridges and gateways, but they function
at a higher OSI layer. Because they can “route” network traffic based on the
logical (IP) addresses assigned at Layer 3 (the Network layer), they aren’t depen-
dent on the physical (Layer 1) MAC address of the computer’s NIC. Routers
can also understand the protocol information placed in messages by the
Network layer and make decisions based on it. Routers are at the heart of the
Internet. You learn more about the Internet and IP addresses in Chapter 5,
but routers are essential for getting your Web page request to its intended
destination.

f irewall
A firewall is a device designed to protect an internal network or node from
intentional or unintentional damage from an external network. Firewalls limit
access to networks. Many firewalls are router based, meaning that firewall
functionality is added to the router. A firewall can examine inbound and out-
bound network traffic and restrict traffic based on programmed parameters and
lists. A well-designed firewall can do much to protect an internal network from
unwanted or malicious traffic. Although most firewalls are separate hardware
devices, many operating systems, such as Windows XP and Vista, have built-in
software firewalls.

The use of firewalls and other network security techniques is discussed in
more detail in Chapter 2, “Computing Security and Ethics.”

A network firewall is named after the physical firewall in buildings

designed to slow the spread of a fire from room to room.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

4

switched networks
So far, you have read about computers being connected in LAN and WAN con-
figurations. You might have pictured these computers being connected via
copper cable, such as coaxial and twisted pair, or via wireless networks. If you
have two computers you want to connect, you can run a Cat 5 wire between
them—if they’re close to each other. What if one computer is in San Francisco
and the other is in New York? You could get a huge spool of wire and start
walking, or you could try to find someone who already has a wire running
from San Francisco to New York and share that wire.

Well, someone already does have a wire going from nearly any location in the
world to any other location: the telephone company. By the time computers
were invented and, more important, by the time people wanted to network
them, telephone companies already had cables all over the place. It was natural
to want to use this existing network of wires to connect computers. The prob-
lem, however, was that the phone system was designed to carry analog voices,
not digital data. The first hurdle of using the phone system to transmit data
was finding a way to convert bits into sounds. Engineers came up with a device
called a modem (modulator/demodulator). Modems convert binary digits into
sounds by modulating, or modifying, a tone so that one tone can indicate a
0 bit and another tone can indicate a 1 bit. If you have connected to the
Internet with a modem, you have heard the different tones as the sending and
receiving modems begin communicating with each other.

Voices require only a small frequency range to be understood. For this reason,
telephone companies were able to split the bandwidth of a copper conductor
into multiple ranges or bands and let homes and businesses share the total
bandwidth. Doing so made running the wires more cost effective. The small
bandwidth required for voice presented a new problem for engineers, however.
The standard voice-grade telephone line is designed to carry frequencies in the
range of 300 to 3300 Hz. This means the highest data range is 3300 bits per
second. So how does a 56K (56,000 bps) modem go faster than that? Modem
manufacturers achieved higher speeds by coming up with some tricks.

First, they realized they could modulate not only the frequency of a sound (how
fast it vibrates) with a technique called frequency modulation (FM), but also the
volume (amplitude) of sound waves with amplitude modulation (AM). The
combination of the two allows fitting more bits into the same frequency range.
Additionally, it’s possible to shift the starting point, or phase, of an audio wave-
form and measure the shift on the other end. This technique is called phase
modulation (PM). Figure 4-6 shows FM, AM, and PM. Using a combination of
all three allows transmission speeds of approximately 30,000 bps. To get the ad-
ditional speed and approach 56,000 bps, the data has to be modified so that it
doesn’t take up as much bandwidth, and different rates are used for sending and
receiving.

networks 155

modem – A device that con-
verts binary signals into
audio signals for transmis-
sion over standard
voice-grade telephone lines
and converts the audio
signals back into binary

FM (frequency modulation) –
A technique of placing data
on an alternating carrier
wave by varying the signal’s
frequency; this technique is
often used in modems

AM (amplitude modula-
tion) – A technique of
placing data on an alter-
nating carrier wave by
varying the signal’s ampli-
tude; this technique is
often used in modems

PM (phase modulation) – A
technique of placing data
on an alternating carrier
wave by varying the signal’s
phase; the most common
modulation type in
modems

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

156 chapter four

The main method for modifying data to take up less bandwidth is compressing
it. A number of techniques have been developed for compressing data so that
more information can be sent in a given bandwidth. You’ll likely learn more
about them in future computing courses. One technique is replacing repeating
patterns with a code. For example, as you’ve been reading this chapter, you
might have noticed that words such as “protocol,” “bandwidth,” “frequency,”
and “network” have been repeated often. This repetition might be a bit annoying
to read, but it’s great for transmitting over a modem. A modem’s compression
capabilities can take repeating patterns of letters and numbers and replace them
with a much shorter code. The word “bandwidth” has nine letters, for example.
If it’s replaced with a 2-byte code, that saves 7 bytes for every occurrence of
the word and allows sending more data within the limits of the telephone
frequency range.

Finally, frequency is a function of the number of transitions from a sound
wave’s high point to its low point in a second. If the bits in a message could
be rearranged so that the 1s and 0s were grouped better, the number of

AM and FM

AM and FM radio station carrier
signals are modulated in the

same manner as in wireless net-
working. FM is better for music

because it’s less susceptible to
signal noise.

A radio station’s frequency (such
as 1160 AM or 102.7 FM) indi-

cates its carrier frequency. From
that frequency, the signal is
modulated with AM or FM.

Figure 4-6, Frequency modulation, amplitude
modulation, and phase modulation

amplitude modulation (AM)

phase modulation (PM)

frequency modulation (FM)

0 0 0 0 0 01 1

0 0 0 0 0 01 1

0 0 0 0 0 01 1

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

4

networks 157

T1 line – A digital transmis-
sion link with a capacity of
1.544 Mbps; T1 uses two
pairs of normal twisted
wires, the same twisted
wire used in most homes

transitions would be reduced, and more bits could be sent in the same
amount of time.

The combination of these three techniques has pushed modems to their 56K
limit, which probably isn’t fast enough for most people these days. Although
voice-grade modems aren’t used much now, many of these same techniques
are used in cable and DSL modems.

high-speed WANs
Because most WANs use the telephone company’s existing wires, they have to
operate within the constraints established by telephone companies. With stan-
dard voice-grade lines, the maximum data rate for modem dial-up is 56K, as
stated previously. For most network applications, this rate is painfully slow.
Because networking is becoming an extension of the system bus, it stands to rea-
son that there’s a need for high-speed network connections. The normal copper
wire used in your home or business is actually capable of speeds faster than
1.5 Mbps. The telephone company limits the bandwidth, however, so that more
subscribers can share the wiring’s cost. One way of getting a faster connection is
by leasing all the bandwidth on the wire. Normal copper wire is capable of
carrying 24 voice channels, so you could lease all 24 channels on the wire. This
dedicated line is called a T1 line. As you might imagine, leasing a T1 line can be
quite expensive.

If you need a faster connection, you can lease one of the higher-speed lines
the telephone company offers. The T3 line consists of 28 T1 lines. For even
faster speeds, fiber-optic lines with optical carrier (OC) designations are used.
Table 4-6 lists the high-speed WAN options available from telephone
companies.

Table 4-6, High-speed WAN connections

connection speed equivalent

T1 1.544 Mbps 24 voice lines

T3 43.232 Mbps 28 T1 lines

OC3 155 Mbps 84 T1 lines

OC12 622 Mbps 4 OC3 lines

OC48 2.5 Gbps 4 OC12 lines

OC192 9.6 Gbps 4 OC48 lines

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

158 chapter four

multiple access
Most WAN connections use one of two techniques to divide a connection’s
bandwidth among multiple users. Normal telephone voice-grade lines use
frequency-division multiplexing (FDM) to divide the bandwidth among sub-
scribers so that each has a certain frequency or channel for the duration of the
communication session. For example, with a T1 line, the total bandwidth or
frequency range of the copper wire is divided among the 24 possible users as
voice-grade lines.

FDM is inefficient because in most cases, many of the subscribers sharing a line
aren’t using it. Think right now of what your home phone line is doing. Of
course, you’re not talking while you’re reading, but how about while you’re
working or at school? At any given instant, much of the bandwidth isn’t being
used. Even in a normal telephone conversation or Internet session, the band-
width is effectively wasted when you’re not talking or sending data.

A better way of dividing bandwidth might be based on time instead of fre-
quency. You could allow each user the entire bandwidth but just for small
amounts of time. By managing this process, each user could have an effective
speed that exceeds the speed achieved with FDM. This technique is called time-
division multiplexing (TDM). Figure 4-7 compares how bandwidth is shared by
FDM and TDM.

FDM (frequency-division
multiplexing) – A technique
for combining many signals
on a single circuit by divid-
ing available transmission
bandwidth by frequency
into narrower bands, each
used for a separate commu-
nication channel

TDM (time-division multi-
plexing) – A technique for
combining many signals on
a single circuit by allocating
each signal a fixed amount
of time but allowing each
signal the full bandwidth
during an allotted time

Figure 4-7, FDM and TDM

fr
eq

u
en

cy
 (

H
z)

900
0 5 10 15

time (microseconds)
20 25 30

950

1000

1050

1100

channel 1

FDM

channel 2

channel 3

channel 4

fr
eq

u
en

cy
 (

H
z)

900
0 5

time
slot
1

time
slot
2

time
slot
3

time
slot
4

time
slot
5

time
slot
6

time
slot
7

10 15
time (microseconds)

20 25 30 35

950

1000

1050

1100

TDM

DSL (digital subscriber line) –
A method of sending and
receiving data over regular
phone lines, using a combi-
nation of FDM and TDM

DSL
Many homes and businesses use a high-speed Internet connection called digital
subscriber line (DSL). DSL is a combination of FDM and TDM, incorporating
the best features of both. In DSL, the total bandwidth of the copper phone
wire is divided into 247 different frequency bands. Your voice travels over the
lower 4 KHz band, and the remaining bands are used in various combinations
for uploading and downloading data. DSL uses a special “modem” to place

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

4

voice communication into the frequency band reserved for it and data in the
area above the voice band. This composite signal is then digitized and com-
bined with signals from other customers using TDM, placed on a high-speed
medium, and sent to the central office (telephone switching station) to be redi-
rected to its final destination. These techniques allow DSL speeds to range from
256 Kbps to 1.5 Mbps, and upload speeds and download speeds can differ.
Because of attenuation, a DSL subscriber is required to be no more than
18,000 feet away from the nearest telephone switching station. Much effort,
however, is being put into developing new DSL techniques that can overcome
this distance barrier.

cable modems
Another popular method of implementing a WAN, especially for home Internet
connections, is through a cable modem. The coax cable that comes into a home
for cable television (CATV) can carry hundreds of channels. Each channel is
allocated a 6 MHz bandwidth. One or more of the channels is reserved for data
transmission, although these channels might not be used if you use only cable
TV. When you subscribe to a cable Internet service, the cable company con-
nects your computer’s Ethernet connector to a cable modem, which is
connected to the CATV cable. Downstream from each home is a device that
takes the signals from all nearby homes and uses TDM to combine them into
one signal for transmission to the Internet provider. Cable modems are
capable of speeds up to 42 Mbps, but normally, the provider limits speeds to
less than 1 Mbps. This limitation allows more customers to share a single cable
line. Cable modems also allow different upload and download speeds.

wireless technologies
Most cell phone providers now offer wireless broadband capabilities with
smartphones and other portable devices. Technologies such as EDGE, EVDO,
and 3G allow people to have high-speed Internet access wherever there’s cell
phone coverage. As these technologies mature, they might become the standard
method of wireless networking.

satellite technologies
Wireless WAN technologies are becoming more widely used as the technology
improves and the price comes down. Some homes and businesses are restricted
to dial-up connections because they’re located out of range of DSL, cable, and
other wired or short-range wireless technologies. One of the few alternatives is a
satellite connection. The same satellite dish used for TV broadcasts or one

networks 159

when is a modem not a
modem?

The DSL modem isn’t really a
modem; it’s a transceiver. It

doesn’t modulate the signal from
analog to digital and vice versa,

as a regular dial-up modem does.

cable modem – A type of
digital modem that con-
nects to a local cable TV
line to provide a continuous
connection to the Internet

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

160 chapter four

much like it is placed outside to receive and send signals to an orbiting satellite.
As unguided media improve, they might surpass guided media, especially cop-
per cable, as the most widely used transmission media.

one last thought
As networks become more tightly integrated with computers and computing,
computer scientists will have a greater need to program for and interact with
networks and to understand networking topologies and protocols. The list of
key terms in this chapter is long, but it barely scratches the surface. There are
many textbooks much thicker than this one that examine just a single network-
ing topic. The IEEE specifications for the 802.11a wireless protocol alone
consist of 91 pages! There’s a lot to learn, but this chapter should serve as a
good foundation for your future networking and computing studies.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

• Networking is essential to modern computing.

• Networking requires a transmission medium to carry information from one
computer device to another.

• Transmission media are rated in terms of their bandwidth, signal-to-noise
ratio, bit error rate, and attenuation.

• Copper wire has been the most widely used network conductor, primarily in
the form of coaxial and twisted pair cable.

• Fiber-optic cable has a much higher bandwidth than copper conductors.

• Cat 5 is a twisted pair copper cable used most commonly in Ethernet net-
works; it has a transmission speed of up to 100 Mbps.

• Wireless technologies allow networking to be conducted by using
electromagnetic waves or light.

• The IEEE 802.11 family of standards applies to wireless networking.

• A protocol is a set of rules designed to facilitate communication and is
essential to networking.

• The OSI model defines a set of protocols necessary for data communication;
the seven protocol layers are (1) Physical, (2) Data Link, (3) Network,
(4) Transport, (5) Session, (6) Presentation, and (7) Application.

• The main network types are WAN, LAN, and WLAN.

• LAN topologies are ring, star, and bus.

• The most popular LAN technology is Ethernet, and token ring is another
LAN technology.

• Various hardware devices are used in networking, such as NICs, repeaters,
hubs, switches, bridges, gateways, routers, and firewalls.

• Voice telephone service is widely used to extend networks, and modems
handle the conversion from digital binary to analog audio to make using voice
networks possible.

• Transmission media are shared among users by using FDM and TDM
techniques.

• DSL, cable modems, and satellite are popular broadband WAN solutions.

4

networks 161

c h a p t e r s u m m a r y

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

162 chapter four

10BaseT (140)

100BaseT (141)

10GBaseT (141)

802.11 (144)

AM (amplitude modulation) (155)

ATM (Asynchronous Transfer
Mode) (152)

attenuation (138)

bandwidth (138)

bit error rate (138)

Bluetooth (144)

bridge (153)

cable modem (159)

Cat 5 (141)

CCITT (Comité Consultatif
International Téléphonique et
Télégraphique) (147)

coaxial (139)

datagram (147)

DSL (digital subscriber line) (158)

Ethernet (152)

FDDI (Fibre Distributed Data Interface)
(152)

FDM (frequency-division multiplexing)
(158)

fiber optic (141)

firewall (154)

FM (frequency modulation) (155)

gateway (154)

guided media (139)

k e y t e r m s

hub (153)

IEEE (Institute of Electrical and
Electronics Engineers) (142)

impedance (140)

inductance (140)

ISO (International Organization for
Standardization) (146)

ISO OSI reference model (147)

LAN (149)

modem (155)

network interface card (NIC) (153)

network topology (150)

node (150)

PDU (protocol data unit) (148)

PM (phase modulation) (155)

protocol (144)

repeater (153)

router (154)

signal-to-noise ratio (138)

switch (153)

T1 line (157)

TDM (time-division multiplexing)
(158)

token ring (152)

transmission medium (138)

twisted pair (139)

unguided media (139)

WAN (wide area network) (149)

WLAN (wireless LAN) (149)

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

4

networks 163

1. What are the two general types of transmission media?

2. What are the four ways to rate transmission media?

3. What are the two basic copper wire formats?

4. What is the maximum frequency of Cat 5 cable?

5. What are examples of networking protocols?

6. How many layers are in the OSI model?

7. What is a WAN?

8. What are the three LAN topologies?

9. Which of the three LAN topologies has emerged as the most popular?

10. What is a NIC?

11. Which network device can interpret and translate different network
protocols?

12. What is the difference between a hub and a switch?

13. Which network device is designed to prevent damage to an inside network
from an outside source?

14. What frequency range are voice-grade telephone lines designed to carry?

15. What is the speed range of DSL?

16. What is bandwidth?

17. How does a WLAN differ from a LAN?

18. What is the difference between AM and FM?

19. How many standard voice lines are equivalent to a T1 line?

20. Which type of multiplexing combines signals on a circuit by dividing
available transmission bandwidth into narrower bands?

1. Which is a better signal-to-noise ratio?

a. High
b. Low
c. Guided
d. Unguided

t e s t y o u r s e l f

p r a c t i c e e x e r c i s e s

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

164 chapter four

2. Fiber-optic cable is made of:

a. Glass
b. Nylon
c. Braided copper
d. Copper

3. Which is a faster networking cable?

a. 10BaseT
b. 100BaseT

4. Which of the following standards is used in wireless networking?

a. Cat 5
b. ISO OSI
c. 802.11
d. TCP

5. Which of the following is not one of the OSI model layers?

a. Physical
b. Wireless
c. Transport
d. Application

6. Which of the OSI layers is responsible for guaranteed delivery of data?

a. Transport
b. Network
c. Data Link
d. Presentation

7. Which of the OSI layers is involved with a network’s electrical
specifications?

a. Physical
b. Network
c. Session
d. Transport

8. Which of the following is a LAN topology?

a. Cat 5
b. Coaxial
c. Star
d. Repeater

9. A hub has a single input and a single output.

a. True
b. False

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

4

networks 165

10. Normal speeds of a cable modem are approximately:

a. 56 KHz
b. 1 Mbps
c. 10 Mbps
d. 100 Mbps

11. DSL speeds range from:

a. 256 Kbps to 1.5 Mbps
b. 256 Mbps to 15 Mbps
c. 56 Kbps to 256 Kbps
d. 100 Kbps to 156 Kbps

12. Standard voice-grade lines are designed to carry frequencies in the range of:

a. 1.5 MHz to 15 MHz
b. 500 MHz to 1 MHz
c. 56 KHz to 100 KHz
d. 300 Hz to 3300 Hz

13. Modems convert binary digits into sounds by modulating tones.

a. True
b. False

14. Which of the following is not a network device?

a. Router
b. Gateway
c. Ramp
d. Hub

15. Which of the following is used to connect a computer to a network?

a. Gateway
b. NIC
c. Ramp
d. Router

16. What factor reduces the strength of an electrical signal as it travels along a
transmission medium?

a. Bandwidth
b. Signal-to-noise ratio
c. Bit error rate
d. Attenuation

17. Which of the following is the most commonly used twisted pair cable
category?

a. Cat 1
b. Cat 5
c. 10Base2
d. 10Base5

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

166 chapter four

18. Which type of guided medium is the least susceptible to attenuation and
inductance?

a. Coaxial cable
b. Twisted pair cable
c. Fiber-optic cable
d. They are all the same

19. Which topology has become more popular with the advent of the Internet
and home networking?

a. Token ring
b. Star
c. Bus
d. Loop

20. DSL is a combination of what two types of multiplexing?

a. FDM and TDM
b. FDM and FM
c. AM and TDM
d. AM and FM

1. What is a TCP packet? How is it used? What does it look like?

2. How many of the seven OSI layers are used in the TCP/IP protocol suite?

3. What is a connection-oriented protocol?

4. How can a bus topology handle more than one computer transmitting at
the same time?

5. What are the characteristics of each IEEE 802.11 wireless standard?

1. What are the advantages of wireless networking? What are the
disadvantages?

2. What are examples of protocols in your everyday life?

3. Why is it necessary for a computer scientist to have a knowledge of
networking?

4. What are the advantages of using twisted pair cable for networking?
What are the disadvantages?

5. How do you think the OSI model helped further networking progress?

d i g g i n g d e e p e r

d i s c u s s i o n t o p i c s

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

4

networks 167

1. What other standards have the ISO, IEEE, and CCITT groups
formulated?

2. Where is the ISO standards group located, and who are the members of
the group?

3. What are the costs of setting up a wireless home network compared with a
wired home network?

4. What types of jobs are available in the field of networking?

5. Explain the history and evolution of the ring, star, and bus network
topologies.

I n t e r n e t r e s e a r c h

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

c h a p t e rc h a p t e r

the In ternet

5

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

i n t h i s c h a p t e r y o u w i l l :

• Learn what the Internet really is

• Become familiar with the architecture of the Internet

• Become familiar with Internet-related protocols

• Understand how TCP/IP protocols relate to the Internet

• Learn how IP addresses identify devices connected to the Internet

• Learn how DHCP can be used to assign IP addresses

• Learn how routers are used throughout the Internet

• Learn how a DNS server translates a URL into an IP address

• Learn how port numbers are used with IP addresses to expand Internet capabilities

• Learn how NAT is used in networking

• Learn how to determine your own TCP/IP configuration

• Learn how HTML and XML are used with the World Wide Web

• Learn how to develop a simple Web page by using HTML

• Learn how search engines make the World Wide Web more usable

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

170 chapter f ive

The power went out not too long ago. Because my family lives on such a reliable (and by “reliable,” I mean
completely unreliable) power grid, we’re experts at dealing with power outages. We simply lit the 450 scented

candles located throughout the house, compliments of my mom. Soon the house was
well lit and smelling very good.

The real crisis came when my parents, who were fixing dinner when the power went out, tried to finish cooking.
Fortunately, we have a gas range that isn’t dependent on electricity. However, nobody could remember how

they heated a can of refried beans before microwaves were invented.

I can remember buying our first microwave oven. It was the size of a small Buick and a little bit heavier. Little
did I know that 20 years later as a college student, I would depend on the microwave to do what

little cooking Taco Bell and McDonald’s didn’t do for me.

Luckily, we got dinner figured out eventually, but I realized how many things I depend on every day that have
been invented during my lifetime. I can remember my family getting our first VCR, camcorder, video game

(Pong), and cell phone, to name a few.

I can also remember logging on to the Internet for the first time. Talk about a life-changing event! Little did I
know then that if somebody told me I had to choose between losing the Internet or one of my kidneys,

I would have to say, “Let me think about it.”

A good chunk of my online time is spent shopping on eBay, which is way more fun than normal shopping. It’s
like shopping mixed with cage fighting. Right after I signed up, I bid on a set of golf clubs. I had

responsibly set a personal bidding limit of $200.

With only a minute to go and winning the bid, I noticed someone had outbid me. Now I was really mad.
“I’ll show you!” I threatened. I bid and was almost immediately outbid. I bid again, and the

bids flew back and forth until the time expired.

I stared at the screen as it refreshed for the last time, holding my breath in anticipation. Suddenly the words
I had been waiting for appeared on the screen: “You have won the item!” “Yes!” I yelled. “Take that,

suckers!” I was extremely excited—until I realized I’d gone $25 over my responsibly set limit.

In summary, I don’t know how I’m going to survive if the power goes out and I can’t use the Internet.
I guess it’s time to buy a generator. Maybe I can find one on eBay.

the lighter side of the lab
by spencer

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

the In ternet 171

why you need to know about...

t h e I n t e r n e t
why you need to know about...

You might have heard of the Industrial Revolution in your history classes. The world was forever

altered by the invention of powered machinery and mass production. The computer revolution

has also changed the world. Nearly everything you use is in some way related to computers. Either

it has a computer embedded in it, like your car, or its design was made possible by computers.

You’re now living through one of the world’s greatest technological revolutions, one that’s

changing the way we think and act. Computers and the Internet are changing the face of

nearly every industry. In the past, all workers had to be located at their place of business. Now

workers in many fields can perform their jobs from home just as easily as at the office or

plant. Education is certainly benefiting from this revolution. It might be that you’re reading

this textbook as part of an online course, where all your interaction with the instructor and

other students is via the Internet.

Perhaps the biggest change is in the areas of knowledge and learning. People with access to

a computer have nearly all the world’s knowledge at their disposal, and in much of the world

that’s nearly everyone because Internet-connected computers are available in homes, work-

places, libraries, and public Internet centers. Cell phones also provide access to the Internet.

You can be almost anywhere and check the news and weather, compare prices, and shop on-

line. You can do your banking, renew your car registration, and apply for a student loan. You

probably registered for your college courses online.

In your studies, you’re required to do a lot of research on various topics. Although you

probably spend time in the library, much of your research takes place online (or online at the

library). This chapter shows you how the Internet can help you to do research.

The field of computing is heavily involved in all aspects of the Internet revolution. Nearly all

networks, protocols, and server and client programs have been programmed and are main-

tained by computer professionals. That’s why the focus of this chapter is on helping you gain

a basic understanding of not only how the Internet works, but also of the technologies

involved in its everyday use. You, as a computing specialist, are on the leading edge of the

knowledge and information revolution. You might be involved with formulating new uses for

the Internet and perhaps with regulating and providing ways to limit misuse.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

172 chapter f ive

ISP (Internet service
provider) – A company that
provides access to the
Internet and other related
services, such as Web site
building and virtual hosting

POP (point of presence) –
An access point to the
Internet

NBP (national backbone
provider) – A provider of
high-speed network com-
munication lines for use by
ISPs

n o t e

what is the Internet?
In Chapter 4, you learned about LANs and WANs. The Internet is actually just
a collection of LANs and WANs connected to form a giant WAN. When you
connect your computer to your Internet service provider (ISP), you become part
of this WAN. You have already learned much of the history of the Internet.
From small beginnings, the Internet has evolved into a massive network that
involves nearly every computer in the world.

You might be surprised to learn that the Internet is not just one thing;
rather, it’s a collection of many things. You might also be surprised to know
that nobody owns the Internet. A few groups propose rules for the Internet
and other organizations manage the way it works, but no one owns the
whole Internet. Everyone who is connected to, or provides communication
to, other computers on the Internet owns a part of it. What’s interesting
about the Internet is that everyone who gets involved in it is doing so for his
or her own purposes but still benefits many others. For example, companies
providing communication lines or companies providing content on the
Internet do it for profit, but they still benefit everyone by playing a role in
disseminating information.

It’s estimated that there are more than a billion Internet users in the world.

Understanding the Internet requires understanding many of the technologies
that make up the whole. These technologies build on one another in such a
way that they’re best discussed in sequential fashion, starting with the general
structure or architecture of the Internet.

the architecture of the Internet
Your computer might be part of an existing LAN, or it might be a stand-alone
computer. Either way, it’s likely connected to the Internet. Your LAN is con-
nected to the Internet through communication lines, normally leased from the
phone company to an ISP. You might also be connected to a LAN via a wireless
access point, a wireless router connected via wire to a LAN. If you connect with
a cable modem, you’re connecting to your ISP through the cable TV system.
Your Internet provider maintains a switching center called a point of presence
(POP). This POP might be connected to a larger ISP with a larger POP and
connections to communication lines with much higher speeds. This larger ISP
is probably connected to national or international ISPs that are often called
national backbone providers (NBPs), as shown in Figure 5-1. All these ISPs,

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

the In ternet 173

5

from large to small, have network-switching circuitry, such as routers and
gateways, and are eventually connected to optical cables capable of transmitting
many billions of bits per second.

After reading Chapter 4, you have an understanding of LANs and WANs and
the specialized equipment, such as NICs, routers, gateways, and firewalls, used
to control the flow of information between computers on a network. The com-
ponents you have already read about are what make up the hardware of the
Internet. To understand how the Internet works at a hardware level, you need
to learn a little more about these pieces of equipment. However, before you can
understand these specialized network devices, you need to know about proto-
cols and addressing.

protocols
Hardware is only part of what makes the Internet work. As you have learned,
a protocol is a set of rules established to facilitate communication. In the con-
text of the Internet, the importance of protocols can’t be overstated. There are
many protocols involved with the Internet. You have probably typed HTTP
at the beginning of a Web address many times. HTTP stands for Hypertext
Transfer Protocol. You’ve certainly used e-mail, which uses SMTP (Simple
Mail Transfer Protocol). You might also have sent or received a file via FTP

(File Transfer Protocol). Computing in general, and networking in particular,
is made possible by protocols.

A more thorough explanation of protocols is in Chapter 4, “Networks.”

Figure 5-1, Internet data can pass through several levels of ISPs

national backbone provider

regional ISP

local ISP

national backbone provider

regional ISP

local ISP

HTTP (Hypertext Transfer
Protocol) – A protocol de-
signed for transferring files
(primarily content files) on
the World Wide Web

SMTP (Simple Mail Transfer
Protocol) – A TCP/IP-related,
high-level protocol used in
sending e-mail

FTP (File Transfer Protocol) –
A protocol designed to
exchange text and binary
files via the Internet

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

TCP/IP (Transmission Control
Protocol/Internet Protocol) –
The suite of communication
protocols used to connect
hosts on the Internet

TCP (Transmission Control
Protocol) – An OSI
Transport layer, connection-
oriented protocol designed
to exchange messages be-
tween network devices

IP (Internet Protocol) – The
protocol that provides for
addressing and routing
Internet packets from one
computer to another

174 chapter f ive

TCP and IP
The basic networking protocols for the Internet are a pair of protocols that
work together to deliver binary information from one computer to another.
This protocol pair is called TCP/IP. The first protocol, TCP (Transmission
Control Protocol), is responsible for the reliable delivery of data from one com-
puter to another. It accomplishes this task by separating data into manageable,
fixed-size packets, and then establishing a virtual circuit with the destination
computer to transmit them. TCP also manages the sequencing of each packet
and handles retransmitting packets received in error. Each data segment is ap-
pended to a header containing information about the total packet, including
the sequence number and a checksum for detecting errors in the packet’s trans-
mission. Table 5-1 lists the sections of a TCP header, which is at the beginning
of every TCP data packet. Although it’s not necessary for you to know all the
details of a TCP header, a few of these fields are used in the explanations that
follow.

Table 5-1, TCP header fields

header field size in bits

source port 16

destination port 16

sequence number 32

acknowledgment (ACK) number 32

data offset 4

reserved 6

flags 6

window 16

checksum 16

urgent pointer 16

options 32

TCP ensures reliable delivery of packets, but it has no provision for addressing
packets to ensure that they get to the correct place. This is the job of Internet
Protocol (IP). TCP packets are sent to the IP software, where another header is
added containing addressing information. Table 5-2 shows the fields in an IP
header. As with the TCP header, you don’t need to be concerned with all the
details of the header.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

the In ternet 175

5

IP address – A unique
32-bit number assigned to
network devices that use
Internet Protocol

IPv4 – Version 4 of Internet
Protocol, the most widely
used version of IP

IPv6 – Version 6 of Internet
Protocol has more capabili-
ties than IPv4, including
providing for far more IP
addresses

Table 5-2, IPv4 header fields

header field size in bits

version 4

header length 4

type of service 8

total length of data packet 16

packet identification 16

flags 4

fragment offset 12

time to live (TTL) 8

protocol number 8

header checksum 16

source IP address 32

destination IP address 32

IP options 32

IP addresses

Central to the operation of Internet Protocol is the IP address of both the
source and destination. During the design of Internet Protocol, it was estab-
lished that every computer (or device) attached to the Internet would have a
unique identifying number. This number, or address, is a 32-bit binary value.
Having a 32-bit address allows 4,294,967,296 (2^32) different addresses. You’d
think this number would be plenty, but the addresses are in danger of running
out. The most widespread version of IP, IPv4, uses 32-bit addresses. A new ver-
sion of IP (IPv6) has been designed and has 128-bit addresses, allowing 2^128
possible addresses. Considering that the world has around 6.7 billion people,
there should be plenty of addresses to spare with IPv6. Converting every device
to support this new version will take some time, but eventually all devices
connected to the Internet will support it.

It’s difficult for humans to deal with the 32-bit binary numbers that
computer equipment uses, so an IP address is normally represented as a set of
four decimal numbers, separated by periods. A typical IP address looks like this:
192.168.0.12. Each decimal number in an IP address represents 8 bits (an octet)
of the overall 32-bit address, so each decimal value can range from 0 to 255.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

176 chapter f ive

There are some special reserved addresses:

• Address 0.0.0.0 is reserved for the default network.
• Address 127.0.0.1 is used for testing as a loopback address (the local

computer).
• Address 255.255.255.255 is reserved for network broadcasts (sending the

same data to every computer on the network).
• Address range 10.0.0.0 to 10.255.255.255 is reserved for private networks.
• Address range 172.16.0.0 to 172.31.255.255 is reserved for private

networks.
• Address range 192.168.0.0 to 192.168.255.255 is reserved for private

networks.

Looking at the IP address classes shown in Figure 5-2, you can see how the
range of IP addresses has been divided. A host corresponds to a corporation,
university, or some other entity that needs IP addresses. Nodes are the number
of devices with unique IP addresses that each host can have. Notice that Class
A addresses are designed for large entities that need up to 16 million nodes,

For example, 192.168.0.12 is actually 11000000101010000000000000001100
in binary. See how much easier it is to remember a decimal address than a long
binary number?

The total pool of IPv4 addresses is separated into groups called classes,
designated by the letters A, B, C, D, and E (see Figure 5-2). The idea behind
classes is that some entities, such as large corporations and universities, need to
have and manage more IP addresses than small companies do. The first group of
bits of the IP address identifies the network class, the next group of bits identi-
fies the host on the network, and the final group of bits identifies the node
connected to the host.

Figure 5-2, IP address classes

bits

0 7
1
5

2
3

3
1

0
hosts (126 possible)
first number 1–126

nodes (16,777,214 possible)

hosts (16,382 possible)
first number 128–191

nodes (65,534 possible)

hosts (2,097,150 possible)
first number 192–223

nodes (254 possible)

broadcast

future use

10

110

1110

11110

class
type

class
A

class
B

class
C

class
D

class
E

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

the In ternet 177

5

but only 126 entities in the entire world can have a Class A network. An
entity with a Class B license can have up to 65,534 IP addresses for its nodes,
and there’s room for only 16,382 Class B hosts in the world. More than
two million Class C hosts are possible, but each can have only up to
254 nodes.

You can tell from the first number of your IP address what class of license your
institution has. At home, you get the node part of your IP address from your
ISP, which in turn might get it from a larger ISP or NBP.

So who is in charge of allocating these addresses? The IANA (Internet Assigned
Numbers Authority) maintains a high-level registry of IP addresses for the en-
tire world, but IP addresses are actually assigned by regional agencies. ARIN

(American Registry for Internet Numbers) is a nonprofit agency that allocates
IP addresses in the United States, among other areas.

IP addresses are the key part of Internet Protocol. If a computer “knows” the IP
address of another computer, components of the network, from computer to
router to router to computer, can respond to the address and direct the packet
to the correct communication line.

IP addressing also supports the concept of a subnet, which consists of a block
of IP addresses that form a separate network from a routing standpoint.
Subnets are defined with a subnet mask that looks much like an IP address.
For example, the subnet mask 255.255.255.0 defines a subnet in which all
devices have the same first three parts of the IP address. The zero in the last
position of the subnet mask indicates that each device has a different last
number in the range 0 to 255.

DHCP
Another protocol that’s a key part of the Internet is DHCP (Dynamic Host
Configuration Protocol), which is used between a computer and a router.
Usually, institutions are given a block of IP addresses they can use for their own
networking purposes. They could configure each computer and set an IP ad-
dress manually for each computer. DHCP, however, allows assigning each
computer an IP address automatically every time it’s started. This dynamic allo-
cation of IP addresses saves network administrators time. Each computer
configured for DHCP uses this protocol to communicate with the router and
get an IP address. That way, the network administrator has to set up only the
DHCP server to allocate a block of addresses. After the server is configured,
nodes can be moved around and new computers can be added without having
to determine what IP addresses are available.

IANA (Internet Assigned
Numbers Authority) – The
organization under contract
with the U.S. government
to oversee allocating IP
addresses to ISPs

ARIN (American Registry of
Internet Numbers) – The
U.S. organization that
assigns IP address numbers
for the country and its
territories

subnet – A portion of a net-
work that shares part of an
address with other portions
of the network and is dis-
tinguished by a subnet
number

DHCP (Dynamic Host
Configuration Protocol) – A
communication protocol
that automates assigning IP
addresses in an organiz-
ation’s network

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

178 chapter f ive

routers
The network hardware component that makes the Internet work is the
router. The key to the Internet is that IP packets can be routed to the correct
destination via a number of different routes. The Internet was originally de-
signed to be immune to problems on a particular network. With routers, a
packet can be sent on another line if the original line is damaged or busy
(see Figure 5-3).

hold that address

Static (fixed) IP addresses are
often used in addition to DHCP to

ensure that a particular network
device, such as a printer, is always

accessible by the same address.

router – A device or soft-
ware in a computer that
determines the next
network point to which a
packet should be
forwarded

Figure 5-3, Routers provide many alternative routes for packets

home
computerWeb server

routers

F G

A B

EDC

A router is actually a specialized computer connected to many different com-
munication lines and is programmed to examine the packets it receives on one
line and route them to the communication line that can get each packet closer
to its final destination. Routers are used to join networks. The Internet, as men-
tioned, is a collection of many different networks. Routers, therefore, make the
Internet possible by connecting all these networks and forwarding IP packets to
other routers or to their final destination.

n o t e The Internet would not exist without the capability of routers.

Routers work in a manner similar to the way mail is delivered. Consider a
package with the address:

Cengage Learning
20 Channel Center Street
Boston, MA 02210

The postal service examines the zip code and puts the package on a truck that
takes it to another truck or the airport. The postal workers, or machines in
some cases, do what’s necessary to get the package closer to its ultimate

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

the In ternet 179

5

destination. Along the trip to Boston, various workers examine the zip code
and place the package on some type of transportation that gets it closer to its
destination. When the package arrives at the post office in Boston, another
worker places the package on a truck that’s driven to the street address for final
delivery.

Now consider the IP address 69.32.142.109, which is the IP address for the
Cengage Learning Web site. If you’re sending some data to this IP address from
your home computer, the first packet that leaves your computer is sent to a
router at your ISP. The router examines the destination address in the packet
header to see whether the address is within your ISP’s LAN. If so, it forwards
your data packet on a communication line that takes it to the computer within
the ISP. Because your computer is probably on a different LAN from Cengage
Learning, the router checks its internal tables (called a “table lookup”) and
places the packet on a communication line that takes it to another router that’s
closer to the ultimate destination.

When the next router gets the packet, it follows the same process. First, it
examines the address to see whether it’s part of the LAN to which the router is
connected. If not, a table lookup is done again, and the packet is placed on
another communication line that takes it to another router that’s even closer to
the specified address.

Finally, the packet is forwarded to a router on the Cengage Learning LAN. This
router notes that the destination address is within the LAN and places the
packet on the communication line connected to the specified computer.

Each packet that makes up your message is sent in this same manner, and not
all packets take the same path. Routers can communicate with each other by
using another special protocol. They share information about the amount of
traffic on the lines to which they’re connected. If the communication line the
router normally uses is down or heavily congested, the router sends the packet
out on another line, usually one that’s still close to the destination specified by
the IP address.

So that packets don’t keep bouncing from router to router forever, the time

to live (TTL) field in the IP packet header is initialized to a value (normally
40 to 60). Each time a packet passes through a router, the field is decre-
mented by one. When the count reaches zero, the packet is discarded.

If packets can be discarded and some might never reach the specified des-
tination, how can you be certain the data you sent is received just as you sent
it? Also, because of the way routers work, the packets that make up your com-
plete message might take many different routes to the final destination. How
can you guarantee that your packets are received in the correct order? As men-
tioned, TCP ensures reliable delivery of data from one computer to another and
checks that the data received in the packet is identical to the data that was sent.

how much is that router?

Prices of routers vary widely.
Large commercial routers can cost

more than $100,000; small
routers for home use can sell for

less than $50.

time to live (TTL) – A field
in the IP header that
enables routers to discard
packets that have been
traversing the network for
too long

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

180 chapter f ive

TCP also includes information about the order in which packets were originally
sent and uses these sequence numbers to order packets after it has received all
of them. If any packet is missing, the receiving TCP software sends a message
back to the sending TCP software, requesting a retransmission of the missing
packet. Any packets containing data errors are also requested for retransmission.
Errors are detected when the receiving side detects that the checksum doesn’t
match the sent packet.

The combination of TCP and IP ensures that data sent from one computer to
another gets there in a fast, orderly, and reliable manner. Without TCP/IP and
routers, there would be no Internet.

high- level protocols
In Chapter 4, you learned about the OSI networking model and its seven lay-
ers of protocols. The suite of protocols that work with TCP/IP can be
compared with the OSI layers (see Figure 5-4). TCP and IP span the Session,

UDP

UDP (User Datagram Protocol) is
another protocol that works with
IP to broadcast data. UDP differs
from TCP in that it doesn’t have

the capability to guarantee deliv-
ery or recover from errors in

transmission. UDP is often used
for streaming audio or video.

Figure 5-4, TCP/IP protocols compared with the OSI model

network user

OSI model TCP/IP protocol

7 Application layer

type of communication:
e-mail, file transfer, Web page

6 Presentation layer

encryption, data format conversions

5 Session layer

starts or stops session;
maintains order

4 Transport layer

ensures delivery of entire file
or message

3 Network layer

routes data to different LANs and
WANs based on network address

2 Data Link (MAC) layer

transmits packets from node to
node based on station address

1 Physical layer

electrical signals and cabling

FTP

SMTP

HTTP

Telnet

TCP (delivery ensured)

IP

UDP (delivery not
ensured)

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

the In ternet 181

5

POP3 (Post Office Protocol
version 3) – The most
recent version of a standard
protocol for receiving
e-mail from a mail server

IMAP (Internet Message
Access Protocol) – A stan-
dard protocol for accessing
e-mail from a mail server

Transport, and Network layers. SMTP, HTTP, FTP, and Telnet are called
“high-level protocols” because they’re “above” TCP and IP in the networking
model. Remember that these high-level protocols use TCP/IP over the Internet
to accomplish their tasks. Messages are passed from a high-level protocol to
the TCP layer, which splits them into packets (if necessary), adds TCP
headers, and forwards them down to the IP layer for addressing. From there,
packets are sent down to the Data Link and Physical layers for transmission
across the communication medium. These high-level protocols can also be
used in environments other than the Internet. In that case, messages from
these protocols are passed down to a lower protocol for transmission and error
detection and correction.

SMTP
Simple Mail Transfer Protocol is used to send e-mail messages over the
Internet. This protocol establishes a link from an e-mail client, such as
Microsoft Outlook, to a mail server, such as Microsoft Exchange, and then
transfers a message according to the protocol’s rules. This protocol, like all
others, exchanges a series of messages, called handshaking, to establish the
parameters of the intended communication of data. Receipt of e-mail is han-
dled by another protocol, POP3 (Post Office Protocol version 3) or IMAP

(Internet Message Access Protocol).

FTP
File Transfer Protocol is used for reliable and efficient transmission of data files,
especially large files. FTP has been in use for many years. As with SMTP, it
requires both a client program and a server program to transfer files. Most oper-
ating systems include a default command-line FTP client. In Windows, you
can get to the command-line client by opening a command prompt window
and typing FTP at the prompt. You can also use a Web browser to connect to
an FTP server by entering the server’s address in the address bar. For example,
you could enter ftp://ftp.aol.com to connect to the AOL FTP site, as shown in
Figure 5-5.

FTP clients are an important tool for computing specialists, as described in
the online chapter “Software Tools for Techies.”

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

182 chapter f ive

SSH
Secure Shell (SSH) is another network protocol used primarily with Linux and
UNIX operating systems. It was designed as a secure replacement for Telnet, an
early data exchange protocol. SSH enables users to connect to a remote host
computer to issue commands and transfer data. Numerous SSH clients are
available for download or purchase.

HTTP
Although all the protocols discussed so far are widely used with the Internet,
Hypertext Transfer Protocol is the protocol that makes the Web possible. In
the early days of the Internet, files were transferred between computers by us-
ing FTP and other older protocols. Researchers and scientists wanted a better
way to transmit data, so in 1990, Tim Berners-Lee came up with the idea of
the World Wide Web and built the first rudimentary browser program.
Central to the idea of the World Wide Web was a Web server, a Web browser,
and a protocol that allowed the two to communicate. HTTP is the protocol
that allows Web browsers and Web servers to “talk” to each other. When you
type in a Web address, such as http://www.cengage.com, the http tells the
browser you’re using Hypertext Transfer Protocol to get the Web page you’re
looking for.

Figure 5-5, Command-line FTP session

Secure HTTP (S-HTTP)

A Web address that begins with
https instead of http indicates a

secure Web site capable of send-
ing Web pages back in an
encrypted format. Internet

Explorer and Firefox show a small
closed padlock icon in the status

bar to indicate that a page is
secure. If the padlock is open,

the page is not secure.

SSH (Secure Shell) – A
network protocol for secure
data exchange between
two networked devices,
usually in a Linux
environment.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.cengage.com
http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

the In ternet 183

5

URLs and DNS
Trying to remember the IP address of every Web site you would like to visit is
difficult. When there were only a few computers on the Internet, Web pages
were accessed by IP addresses. As the Internet grew, the problem of having to re-
member IP addresses was solved by allowing Web servers to have domain names

and by developing Domain Name System (DNS). To locate a Web page or send
an e-mail message, you use a Uniform Resource Locator (URL), which consists of
the domain name followed by specific folder names and filenames, as shown in
Figure 5-6. Domain names are mapped to IP addresses by a special computer
called a DNS server. This computer’s job is to translate domain names from
URLs into IP addresses.

Figure 5-6, Structure of a URL

http://www.cengage.com/myfolder/myfile.html

protocol network
name

hostname

domain name folder

filename

domain name – A name
used to locate the IP address
of an organization or other
entity on the Internet, such
as www.cengage.com

DNS (Domain Name
System) – A method of
translating Internet domain
names into IP addresses;
DNS servers are servers used
in this process

URL (Uniform Resource
Locator) – The English-like
address of a file accessible
on the Internet

If there were only one DNS server for the entire Internet, it would get over-
whelmed quickly. Instead, there are many thousands of DNS servers distributed
throughout the Internet. Your ISP maintains a DNS server, but it doesn’t have
to contain every domain in the world. Instead, each DNS server is responsible
for just a portion of the world’s domains.

A domain has levels (listed in Table 5-3). You’re probably familiar with the orig-
inal top-level domains (TLDs) of .com, .edu, .gov, .net, .org, and .mil. You
might have also heard of some newer ones, such as .biz and .info. There are also
top-level, two-character domains for every country and a top-level DNS server
for each top-level domain. Each of these servers has information about all the
DNS servers in that domain.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

www.cengage.com
http://www.cengage.com/myfolder/myfile.html
http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

184 chapter f ive

Table 5-3, Top-level domains on the Internet

TLD meaning

.aero air-transport industry

.arpa Address and Routing Parameter Area

.biz business

.com commercial

.coop cooperative

.edu U.S. educational

.gov U.S. government

.info information

.int international organization

.mil U.S. military

.museum museum

.name individuals, by name

.net network

.org organization

.pro profession

.ca, .mx Canada, Mexico, and other countries are
represented by two-letter codes

For example, there’s a top-level .edu server. This server has information on the
IP addresses of all the lower-level servers managing domains within .edu. An
educational institution, such as Weber State University, has a domain server
containing information on all domains under weber.edu. There might be addi-
tional servers under this domain, such as faculty.weber.edu. The server at each
level has knowledge of a lower-level server that might have better knowledge of
the IP address you’re looking for.

When you type a URL in a browser’s address bar, you send a DNS lookup
request to the DNS server at your ISP. If the URL is outside your ISP’s domain,
the DNS server contacts a top-level DNS server. This server might then give
the address of another DNS server, and that server might give another address,
until your ISP’s DNS server has contacted the DNS server that knows the

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

the In ternet 185

5

port number – An address-
ing mechanism used in
TCP/IP as a way for a client
program to specify a partic-
ular server program on a
network computer and to
facilitate Network Address
Translation

n o t e

correct IP address and can return it to your browser. After the DNS server at
your ISP has located an IP address for a URL, it saves, or caches, the address in
case there’s another request for the same URL.

DNS servers are smart, in that they can communicate (using a protocol,
of course) with other DNS servers and stay updated with the correct IP
address for any URL. Each DNS server is maintained by the network adminis-
trators of that domain. This is another example of how people acting for their
own purposes on the Internet actually benefit all.

PING is a commonly used command-line utility for resolving IP addresses

from domain names and testing communication between two IP devices.

port numbers
Another problem in the early days of the Internet was that one computer with
one IP address needed to be able to use multiple protocols at the same time.
In addition, people wanted to be able to have multiple browsers open simulta-
neously, much like having multiple chat windows open so that you can chat
with a dozen of your closest friends at once.

To solve this problem, the concept of a port number was established. With
TCP, you can go beyond specifying an IP address by specifying a unique
port number (sometimes just called a port) for each application and for the
sending and receiving computers in the TCP header. The combination of IP
address and port number is much like a street address and apartment num-
ber. The street address gets you to the building, and the apartment number
takes you to the correct apartment. Similarly, the IP address gets you to
the computer, and the port number gets you to the specific program or
window.

Most protocols have a standard port number. The standard port number for
HTTP is 80, and for FTP, it’s 21. There are 65,636 possible port numbers
that can be used with each IP address. You can specify a port by appending a
colon and port number following the domain or IP address. For example,
http://192.168.2.33:8080 specifies the IP address 192.168.2.33 and the port
number 8080. Only the specific program set to “listen” on port 8080 can
respond to the IP packets coming in to this address. Table 5-4 lists some
commonly used port numbers.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

186 chapter f ive

NAT (Network Address
Translation) – Used to trans-
late an inside IP address to
an outside IP address; NAT
is often used to allow mul-
tiple computers to share
one Internet connection

Table 5-4, Commonly used TCP/IP port number assignments

port number protocol

21 FTP (File Transfer Protocol)

22 SSH (Secure Shell)

25 SMTP (Simple Mail Transfer Protocol)

53 DNS (Domain Name System)

68 DHCP (Dynamic Host Configuration Protocol)

80 HTTP (Hypertext Transfer Protocol)

110 POP3 (Post Office Protocol version 3)

139 NetBIOS

NAT
Now that you have an understanding of how TCP/IP, routers, and port
numbers work, you’re ready to learn a new term: NAT (Network Address
Translation). If you set up a home network, you might use a wireless router
with NAT. Your school labs probably use routers and NAT, too. With NAT,
multiple computers can share one Internet connection.

NAT depends on DHCP and port numbers. A range of IP addresses reserved
for internal LAN use is 192.168.0.0 to 192.168.255.255 (subnet mask
255.255.0.0). This IP address range is often used for internal LANs connected
to a DHCP router. On the Internet side of a router, one IP address is presented
to the Internet. That way, many computers can share one IP address. Because
the 192.168 subnet is never presented to the outside Internet, all LANs can use
the same addresses if they are behind a DHCP NAT router.

All computers using DHCP-assigned IP addresses can share the same Internet
connection through one IP address because of ports. Each internal IP address is
assigned a port number to be used with the main IP address. When HTTP or
other messages come to the router from the Internet, TCP routes them to the
computer with the corresponding port number.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

the In ternet 187

5
IPCONFIG – A Windows
command-line utility that
can be used to display cur-
rently assigned network
settings

checking your configurat ion
You can check your computer’s network configuration in Windows by using
the IPCONFIG command-line utility. To do this, click Start, Programs,
Accessories, Command Prompt. At the command prompt, type IPCONFIG
and press Enter. Your current IP address, subnet mask, and address of your
gateway to the Internet are then displayed onscreen. The IP address is the one
assigned to your computer by your network administrator or ISP. The subnet
mask is a set of numbers used to identify the subnet to which you’re con-
nected. The gateway address is the IP address of a computer or router that
serves as your gateway to the next level in the Internet. Figure 5-7 shows the
result of typing the IPCONFIG command. You can get even more informa-
tion about your network connections by typing IPCONFIG /ALL at the
command prompt.

Figure 5-7, Results of using the IPCONFIG command

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\Windows>IPCONFIG

Windows IP Configuration

Ethernet adapter Belkin Connect Ethernet:

 Connection-specific DNS Suffix . :
 IP Address. : 192.168.0.33
 Subnet Mask : 255.255.255.0
 Default Gateway : 192.168.0.1

C:\Windows>

n o t e You can get help on all available IPCONFIG options by entering

IPCONFIG /H at the command prompt.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

188 chapter f ive

www

The www (for World Wide Web)
in front of many domain names is

part of the URL. The URLs
www.foxnews.com and

foxnews.com are not necessarily
the same. Web site URLs aren’t

required to start with “www.”

Web server – A program
running on a computer that
responds to HTTP requests
for Web pages and returns
the pages to the requesting
client

HTML (Hypertext Markup
Language) – Markup
symbols or codes inserted in
a file that specify how the
material is displayed on a
Web page

n o t e

HTML
You have discovered the network aspects of what goes on when you type a URL
in a browser’s address bar, but you might still have the question “What exactly
is a Web page?”

When you type http://www.cengage.com in your browser’s address bar, what hap-
pens? As described previously, first the URL is sent to your ISP’s DNS server,
and you receive the actual IP address corresponding to the domain you entered.
Your browser then sends an HTTP request to this IP address. When the
HTTP request gets through all the routers to the Web server you addressed, the
Web server, which is just a computer programmed to respond to HTTP re-
quests, sends back the requested Web page. In this case, only a domain was
specified, so the server sends back a default page. Default pages typically have
names such as index.htm or default.htm. The person responsible for the Web
server, sometimes referred to as the Webmaster, can specify the default Web
page.

What is a Web page? There are a few possible answers to this question, but
most Web pages are simply text files containing the page’s text information and
HTML (Hypertext Markup Language) tags. HTML tags are formatting com-
mands that enable the browser to display the page content in a graphical,
easy-to-read format. Table 5-5 lists some commonly used HTML tags.

HTML tags are enclosed in less-than signs (,) and greater-than signs (.),

and most tags come in pairs, with an opening and closing tag.

Table 5-5, Common HTML tags

tag purpose

,HTML. ,/HTML. Used to provide a boundary for the HTML docu-
ment; everything between ,HTML. and
,/HTML. is considered part of the Web page.

,HEAD. ,/HEAD. The ,HEAD. tags are placed inside the ,HTML.

tags; they provide a boundary for items that aren’t
part of the document but are used to direct the
browser to do certain things, such as displaying a
page title in the title bar.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

www.foxnews.com
http://www.cengage.com
http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

the In ternet 189

5

Table 5-5, Common HTML tags (continued)

tag purpose

,TITLE. ,/TITLE. The ,TITLE. tags surround the Web document’s
title, which appears in the browser’s title bar when
the page is displayed. The ,TITLE. tags go inside
the ,HEAD. tags.

,BODY. ,/BODY. The ,BODY. tags enclose the part of the Web
page document that’s displayed in the browser;
they’re placed inside the ,HTML. tags but not
inside the ,HEAD. tags.

,BR /.
 forces the browser display area to go to a
new line. Note that there’s no closing tag.

,P. ,/P. The ,P. tags define a paragraph in the Web
document and cause a paragraph break.

,SPAN.,/SPAN. The tags replaced a number of formatting
tags. They define an area of the document and
specify the way this area should be formatted.

,A. ,/A. The ,A. tags specify a link to another Web page
or a specific location on the current page; the
opening ,A. tag has arguments that reference
the linked page or position.

,IMG /. The ,IMG. tag is used to insert an image in the
document; it has arguments for specifying the loca-
tion and size of the image.

,FORM. ,/FORM. The ,FORM. tags provide the boundaries for an
input form on the Web page; other tags are placed
inside the ,FORM. tags to create items such as
input boxes and buttons on the Web page.

,INPUT /. The ,INPUT. tag specifies data input objects in-
side the ,FORM. tags; this tag allows users to
enter data on a Web page.

,TABLE. ,/TABLE. The ,TABLE. tags define an area on the Web page
that displays data in rows and columns.

,TR. ,/TR. The ,TR. tags are placed inside the ,TABLE. tags
to signify the start of a table row.

,TD. ,/TD. The ,TD. tags are placed inside the ,TR. tags
to define a column in a table row.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

190 chapter f ive

Many more HTML tags are available. If you’re going to design Web pages, you
need to know how to use HTML, even if you use a Web page design tool, such
as Adobe Dreamweaver or Mozilla SeaMonkey.

creating a simple Web page
You can create a simple Web page on your own computer and test it with your
browser. Others won’t be able to get to your Web page because your computer
is probably not set up to be a Web server, but you can test Web pages you cre-
ate without having a Web server. Simply start Notepad and type the HTML
document shown in Figure 5-8. After you have entered the HTML tags exactly
as shown, save the file to your hard drive or other storage media. HTML files
should normally have the file extension .htm or .html. Then use Windows
Explorer to find the document where you saved it. Double-click the file to
open your browser and display the document with the formatting your HTML
code specified (see Figure 5-9).

HTML requirements

These eight HTML tags are
required for every Web page:

,HTML.

,HEAD.

,TITLE.

,/TITLE.

,/HEAD.

,BODY.

,/BODY.

,/HTML.

Figure 5-8, HTML tags for a simple Web page

<html>
<head>
<title>My First Web Page</title>
</head>
<body>
<p>My First Web Text

My First Table

</p>
<table width="30%" border="1">
 <tr>
 <td>Protocol</td><td>Purpose</td>
 </tr>
 <tr>
 <td>TCP</td><td>Reliable Delivery</td>
 </tr>
 <tr>
 <td>IP</td><td>Addressing</td>
 </tr>
 <tr>
 <td>HTTP</td><td>Web Pages</td>
 </tr>
</table>
</body>
</html>

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

the In ternet 191

5

Figure 5-9, Simple Web page displayed in a browser

the In ternet 191

HTML is not case sensitive. Even though Table 5-5 shows tags in uppercase,
the browser accepts them as uppercase or lowercase. Note that HTML ignores
white space, too, such as excess spaces, tabs, or lines. The HTML tags in
Figure 5-8 could all be on the same line, and the browser would still display
the page correctly. However, formatting HTML tags as shown in the example
makes it easier for you, as an HTML developer, to create and maintain
the page.

Creating Web pages in HTML is tedious, so most Web designers don’t create
Web pages by using straight HTML. They create pages visually with a Web
design tool. You need to know HTML, however, because many times design
tools don’t do exactly what you want, and you have to go into the HTML code
to fix it.

hyperlinks

One of the most powerful aspects of the Web and HTML is the ability to
provide links to other pages. The HTML ,A.,/A. tags are used for this
purpose. The format of the hyperlink tag pair is shown in Figure 5-10, and its
result in a browser window is shown in Figure 5-11. The user can click the
underlined hyperlinks to be taken to the specified URL.

hyperlink – A link that
allows users to select a con-
nection from one word,
picture, or information
object to another

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

192 chapter f ive

Figure 5-10, Using the ,A. tag to create hyperlinks in a Web document

<html>
<head>
<title>My Second Web Page</title>
</head>
<body>
<p>My Set of Hyperlinks to News Sources

 CNN

 FOX NEWS

 NBC

 ABC

 CBS</p>
</body>
</html>

Figure 5-11, Browser view of the sample hyperlink Web page

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

the In ternet 193

5

Web server programs

HTML is the language Web browsers use to display Web pages. Normally,
HTML pages are static; they never change from one request to another. To
make information on a Web page dynamic—that is, have it be different each
time it’s accessed—you need a technology with more programming capabili-
ties than the simple formatting available in standard HTML.

Web browsers allow dynamic Web pages in the form of DHTML (Dynamic
HTML), which provides Web page animation and more responsive user in-
teractions. Therefore, both HTML and DHTML allow including scripting
code, such as JavaScript or VBScript. With these scripting languages, Web
page developers can include dynamic properties, such as changes to an area
of the Web page based on keystrokes, mouse movement or clicks, and
timers. The Web page is still static, in that the page stored on the Web server
doesn’t change between accesses, but when it’s displayed in the browser,
items can be altered dynamically in response to various events.

For a Web page to be completely dynamic—to be different each time it’s
accessed—it has to be created at the time it’s accessed. There are Web server
technologies that allow this capability. CGI is an older technology that allows
using older programming languages, such as Perl, to create Web pages
dynamically as they’re requested. CGI/Perl is being replaced by newer
technologies, such as ASP, JSP, PHP, and Python. These new technologies
perform the same function: They are used to create programs stored on a
Web server, and when they’re accessed via HTTP and a browser, they create
an HTML or DHTML Web page dynamically and return it to the browser
as though it were a static page.

Server-side Web technologies are used heavily on the Internet now for every-
thing from Internet banking and shopping to television program guides. If you
choose a career in computer programming, you’ll probably be doing server-side
dynamic Web page programming.

DHTML (Dynamic HTML) –
An extension to HTML tags
and options for producing
Web pages that are respon-
sive to user interaction

JavaScript – An interpreted
programming or script lan-
guage from Netscape;
somewhat similar in capa-
bility to Microsoft VBScript

VBScript – An interpreted
script language from
Microsoft that’s a subset of
the Visual Basic program-
ming language; often used
by Web browsers and
Active Server Pages (ASP)
servers

CGI (Common Gateway
Interface) – An older Web
server technology used for
dynamic Web page creation

Perl – A script programming
language similar in syntax
to the C language; often
used to develop CGI
dynamic Web pages

ASP (Active Server Pages) –
A Web server technology
that combines features of
HTML and JavaScript or
VBScript programming code;
used on a Web server to cre-
ate Web pages dynamically

JSP (Java Server Pages) –
Comparable with Microsoft’s
ASP technology, except it runs
only programs written in Java

PHP – In Web program-
ming, a free script
language and interpreter
used primarily on Linux
Web servers

Python – An interpreted,
object-oriented program-
ming language similar to
Perl that has gained popu-
larity in recent years

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

194 chapter f ive

Web services

An outgrowth of dynamic server-side Web page programming is a fairly
new technology called Web services. A Web service is a server-based Web
program containing data to be used by other programs or Web pages, instead
of being viewed. Web services are becoming popular in business to provide
information, such as stock quotes, to other programs. For example,
Amazon.com provides Web services that allow other Web sites to include
information from Amazon.com. Web services have expanded to include
“cloud computing,” which is used to provide entire applications as a service
on the Web.

XML
The original specification for HTML was derived from a document specifica-
tion for SGML (Standard Generalized Markup Language). SGML is not a
markup language like HTML; rather, it’s a specification for what a markup
language should consist of. HTML has been enormously popular because it
enables people to format Web pages in appealing ways. However, HTML deals
only with the form of a Web page, not its content.

Another implementation of SGML that has become popular is XML

(Extensible Markup Language). XML is similar to HTML in structure, but it
serves a different purpose. HTML is used only to format content for display
in a browser. XML goes beyond that and provides data and information
about that data; this information is called metadata. XML can be used to dis-
play Web pages, but its capability to transfer data is more useful. XML has
become the standard for transferring data via the Internet. Figure 5-12 shows
an example of an XML data document. You can see its similarities to HTML.
The main difference is that HTML is used to format the output of a text doc-
ument, whereas XML is used to transfer data via the Web. XHTML is HTML
that conforms to XML syntax restrictions.

XML (Extensible Markup
Language) – A markup lan-
guage designed to create
common information for-
mats and share the format
and data on the World
Wide Web

metadata – In XML and in
database systems, informa-
tion about characteristics of
the data in a file; some-
times called “data about
data”

Web service – Programming
and data on a Web server
designed to make data
available to other Web
programs

SGML (Standard
Generalized Markup
Language) – A standard for
how to specify a document
markup language or tag set

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

the In ternet 195

5

using the Internet
While you’re in school, you often need to research assigned topics. The Internet
has become a tremendous resource for this task. Spending time developing skills
in searching the Internet can aid you in all your educational pursuits. In the
early days of the Internet, newsgroups were the primary method of research.

The widespread use of the Internet has opened up many new security con-
cerns and ethical issues, covered in Chapter 2, “Computing Security and
Ethics.”

search engines
The World Wide Web has hundreds of millions of Web pages. Many are useless
for research, but many others are relevant and accurate. As the number of pages
on the Internet has grown, it has become obvious that there’s a need to search
the Web for information. Many indexing methods have been tried, but the
search engine has emerged as the preferred method for finding information on
the Web. Figure 5-13 shows an example of the Bing search engine in Internet
Explorer.

Figure 5-12, An example of an XML data document

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="sample.xsl"?>
<dvd_library>
 <dvd>
 <id>D0146</id>
 <title>The Lord of the Rings: The Return of the King</title>
 <rating>PG-13</rating>
 <price>24.95</price>
 <review>****</review>
 </dvd>
 <dvd>
 <id>D3218</id>
 <title>Dumb and Dumber</title>
 <rating>PG-13</rating>
 <price>14.95</price>
 <review>****</review>
 </dvd>
 <dvd>
 <id>D4482</id>
 <title>Mom and Dad Save The World</title>
 <rating>PG</rating>
 <price>8.95</price>
 <review>*****</review>
 </dvd>
</dvd_library>

search engine – A program,
usually accessed on the
Web, that gathers and re-
ports information available
on the Internet

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

196 chapter f ive

Search engines use many different methods to build a database of Web sites
that people can search, but probably the most widely used method is “crawl-
ing.” Crawling makes use of a special program called a bot (for robot) or a
spider. A bot starts with a few Web pages that have been submitted for index-
ing, and then scans these pages for links to other Web pages. The program
then follows the links to these Web pages and repeats the process for every
page it finds.

As the program identifies each page, it retrieves relevant words on the page and
uses them to create an index to each page, based on words on the page and a
special section of the HTML header called the ,META. tag. This tag
contains keywords that describe the Web page’s content.

Most search engines make use of crawlers; others consist of human-created
directories. Some search engines, such as Dogpile.com, aren’t actually search
engines but compilations of results from other search engines in a relevant
format. Table 5-6 lists some popular search engines.

bot – A small program, also
called a spider or crawler,
that accesses Web sites to
gather their content for
search engine indexes

spider – Also called a bot or
crawler, a program that visits
Web sites and reads their
pages and other information
to create entries for a search
engine index

Figure 5-13, A search engine provides capabilities for Web searching

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

the In ternet 197

5

Table 5-6, Some popular Web search engines

search engine URL

Google www.google.com

AlltheWeb www.alltheweb.com

Yahoo! www.yahoo.com

Bing www.bing.com

Ask www.ask.com

As you might imagine, search engines get millions of hits per day. Therefore,
search sites have to be well designed from the standpoint of both hardware and
software to maintain quick response with such a high hit rate. All aspects of de-
signing and maintaining a search site require high technical skills of the type
learned in a computer science program.

As a computing student and as a professional, you’ll have many opportunities
to benefit from the power of search engines. You would do well to spend some
time learning how to enter keywords for searches so that you can maximize
your productivity when using search engines.

one last thought
From a humble start, the Internet has grown into perhaps the most widely used
medium for information gathering. From research to entertainment, the
Internet has become part of nearly everyone’s life. Even third-world countries
are beginning to use and benefit from the Internet and its resources. Many
good things have come about as a result of the Internet’s growth and accep-
tance; however, there are also problems with the Internet.

Perhaps the biggest problem with the Internet is its anonymity. When you
go to a Web page, you don’t know where it is. When you type your user ID,
account number, or password in an input field on a Web form, you can’t be
completely sure where you’re sending it. It’s difficult to tell whether the in-
formation on a page is reliable. Identity theft and virus replication are just
two of the many ethical and societal problems related to Internet use.

New technologies related to the Internet are described in the online chapter
“Emerging Technologies.”

One thing is certain—the Internet is here to stay. As time goes on, the Internet
will become more a part of everyday life. As the Internet grows in use, com-
puting professionals will be required to develop and use new Internet-related
technologies continually.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

www.google.com
www.alltheweb.com
www.yahoo.com
www.bing.com
www.ask.com
http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

198 chapter f ive

• The Internet has revolutionized the world.

• The Internet is just a giant collection of LANs and WANs.

• The Internet is not owned by any single person or entity.

• You connect to the Internet through ISPs and NBPs.

• Protocols are vital to the operation of the Internet.

• TCP/IP is the protocol set that makes the Internet possible.

• TCP is used for accurate delivery of data packets.

• Every device connected to the Internet has a unique IP address.

• IP is used for addressing and routing data packets.

• IP addresses are organized into classes for block allocation.

• DHCP is a protocol for assigning IP addresses to devices automatically.

• Internet networks are organized into subnets.

• Routers are key to the operation of the Internet.

• SMTP, POP3, and IMAP are protocols for sending and receiving e-mail.

• FTP is widely used to send and receive files of various types.

• HTTP is the protocol for sending and receiving data on the Web.

• A URL is translated into an IP address by DNS.

• Port numbers are used to extend the capability of IP addressing.

• NAT is often used to allow multiple computers to share an Internet
connection.

• You can check your computer configuration with the IPCONFIG command.

• HTML is the language of the World Wide Web.

• XML is a markup language used to create common information formats.

• Web pages consist of information surrounded by HTML formatting tags.

• Scripting languages can be used on Web pages to make them dynamic.

• Hyperlinks are used on Web pages to connect to other pages.

• Web services make data available to other programs.

• Search engines are used to find Web pages on the Internet.

c h a p t e r s u m m a r y

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

the In ternet 199

5

1. The Internet is a collection of ____________ and _______________.

2. What does the acronym ISP stand for?

ARIN (177)

ASP (193)

bot (196)

CGI (193)

DHCP (177)

DHTML (193)

DNS (183)

domain name (183)

FTP (173)

HTML (188)

HTTP (173)

hyperlink (191)

IANA (177)

IMAP (181)

IP (174)

IP address (175)

IPCONFIG (187)

IPv4 (175)

IPv6 (175)

ISP (172)

JavaScript (193)

JSP (193)

metadata (194)

k e y t e r m s

NAT (186)

NBP (172)

Perl (193)

PHP (193)

POP (172)

POP3 (181)

port number (185)

Python (193)

router (178)

search engine (195)

SGML (194)

SMTP (173)

spider (196)

SSH (182)

subnet (177)

TCP (174)

TCP/IP (174)

time to live (TTL) (179)

URL (183)

VBScript (193)

Web server (188)

Web service (194)

XML (194)

t e s t y o u r s e l f

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

200 chapter f ive

3. What is an NBP?

4. What is the protocol SMTP used for?

5. Which Internet protocol is responsible for reliable delivery of data from
one computer to another?

6. Which Internet protocol manages sequencing data packets?

7. Which Internet protocol maintains port information?

8. What is the size, in bits, of an IPv4 address?

9. Which IPv4 class allows the greatest number of hosts?

10. What is the IP address 255.255.255.255 reserved for?

11. What is the regional agency that assigns IP addresses for the United States
and its territories?

12. What is the function of DHCP in networking?

13. What is a router?

14. What prevents TCP/IP packets from bouncing from router to router
forever?

15. What is the purpose of FTP?

16. Which network device is used to resolve domain names into IP addresses?

17. What is the Windows command-line utility to check your computer’s
network configuration?

18. What is the language of the World Wide Web?

19. What programs are used to “crawl” the Web?

1. The Internet is owned by:

a. ARIN
b. The FCC
c. The United Nations
d. None of the above

2. Internet providers maintain a switching center called a:

a. Point of presence
b. Backbone
c. Router
d. None of the above

p r a c t i c e e x e r c i s e s

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

the In ternet 201

5

3. The purpose of HTTP is to:

a. Format Web pages
b. Transfer Web pages
c. Route addresses
d. None of the above

4. Which of the following is not an Internet-related protocol?

a. HTTP
b. HTML
c. TCP
d. FTP

5. How many possible ports are allowed in TCP?

a. 8
b. 16
c. 65,536
d. 16,137,285

6. Which portion of the TCP/IP protocol suite provides error detection and
correction?

a. TCP
b. IP
c. Both
d. Neither

7. How many different hosts can be granted a Class A IP address allocation?

a. 16,137,285
b. 65,536
c. 16,382
d. 126

8. Which Internet protocol is used to assign IP addresses dynamically?

a. TCP
b. DHCP
c. HTTP
d. DNS

9. Routers are critical to the operation of the Internet.

a. True
b. False

10. Which Internet component is responsible for decrementing the TTL field?

a. Router
b. Switch
c. DNS
d. Packet

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

202 chapter f ive

11. Which of the following is an example of a high-level protocol?

a. TCP
b. IP
c. DHCP
d. SMTP

12. Which of the following protocols makes the Web possible?

a. FTP
b. Telnet
c. HTTP
d. None of the above

13. Which of the following is an example of a URL?

a. www.cengage.com
b. 192.168.0.22
c. 1110111010111010110101
d. HTTP

14. How many DNS servers does the Internet have?

a. 1
b. 2
c. Thousands
d. Millions

15. What is the standard port number for HTTP?

a. 1
b. 21
c. 50
d. 80

16. How many IP addresses are presented to the Internet when NAT is used?

a. 1
b. 21
c. Thousands
d. Unlimited

17. Which of the following is an example of an HTML tag?

a. ,HTTP.
b. ,HTML.
c. ,TCP.
d. ,DHCP.

18. Which HTML tag is used to provide links to other pages?

a. ,HTTP.
b. ,LINK.
c. ,A.
d. ,P.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

www.cengage.com
http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

the In ternet 203

5

19. XML is just another name for HTML.

a. True
b. False

20. Bots are used by ______________ to crawl the World Wide Web.

a. Routers
b. Search engines
c. XML
d. TCP/IP

1. What is the purpose of each field in a TCP packet header?

2. What is the purpose of each field in an IP packet header?

3. How are routers programmed?

4. What is the difference between a router, a gateway, and a switch, as applied
to the Internet?

5. What is the process for obtaining a block of IP addresses for your business?

1. In what ways has the Internet affected society?

2. What is meant by the term “digital divide”?

3. What are the security issues related to the Internet, and how are they being
addressed?

4. What are the steps involved in an HTTP request?

5. How does your school’s computer lab connect to the Internet?

d i g g i n g d e e p e r

d i s c u s s i o n t o p i c s

1. What are the major search engines, and what are the strengths of each?

2. Find a map of Internet backbone communication lines. Where are the
main lines located?

3. What are the major Web browsers? What are their strengths and weaknesses?

4. What is the membership makeup of ARIN?

5. Research some domain names of your choosing to see whether they’re available.

I n t e r n e t r e s e a r c h

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

c h a p t e r

da tabase fundamenta ls

6

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

i n t h i s c h a p t e r y o u w i l l :

• Consider the widespread use of databases

• Take a brief tour of database development history

• Learn basic database concepts

• Be introduced to popular database management software

• See how normalization makes your data more organized

• Explore the database design process

• Understand data relationships

• Gain an understanding of Structured Query Language (SQL)

• Learn some common SQL commands

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

the lighter side of the lab
by spencer

206 chapter six

I don’t know any two words that make me cringe more than the words “corrupted data.” I’ve spent the past
four years working in technical support for a local software company. If you haven’t had the opportunity to

work in technical support, here’s a sample of a typical call:

ME: Hi, you’ve reached technical support. This is Spencer. CUSTOMER: Hi. I got an error message yesterday when
I did something in the program. What do I do to fix it?

ME: All right. Do you remember what the message said? CUSTOMER: No.

ME: Do you remember what you were doing when you got the error message? CUSTOMER: Who am I, Einstein?

ME: Okay, try opening the program. CUSTOMER: Oh, here we go! It says the data is corrupted.
What do I click?

ME (cringing): We’ll need to restore from one of your backups. CUSTOMER: Okay. Is that something
I need to order?

(Brief pause) ME: Backups. You know—the thing you’re supposed to do every time you leave the program.
CUSTOMER: Oh, yeah! That message is so annoying. It comes up every time I close. I always just click No.

Is there any way to turn that message off?

(Brief pause) ME: All right, let’s search your computer to see whether we can find a recent backup. Click Start.
CUSTOMER: Is that a right-click or left-click?

ME: Left-click. Now click Search. CUSTOMER: Is that a right-click or a left-click?
ME: Left-click. It will always be a left-click unless I say it’s a right-click. CUSTOMER: Got it.

ME: Now click All Files and Folders. CUSTOMER: That’s a left-click, right?
ME: Yes! Now, do you see where it says “All or part of file name”? CUSTOMER: My computer doesn’t have that.

ME: Okay, it should be the first thing on the Search screen. CUSTOMER: No, it’s not here.

(Brief pause) ME: Okay, it has to be there somewhere. CUSTOMER: Nope . . . nope . . . oh, wait! You mean right
here in the middle of the screen? ME: (Sigh)

And so it goes for the next hour. The good news is that I’ve discovered my head actually supports bus
mastering. My mouth handles the technical support with absolutely no communication to or from my brain! I

sometimes catch myself 20 minutes into a call not remembering a word anybody has said. This is good because
it frees up brain cycles to think about more important things—like the day I won’t have to take

another support call.

the lighter side of the lab
by spencer

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

database fundamenta ls 207

database appl icat ions
Data that has been organized and logically related to allow access, retrieval, and
use of that data is called a database. A database is a storage mechanism that
enables you to relate data logically so that you can extract it later with little
effort and even “query” the data to create new information.

Many software applications use some type of database as the data repository.
Think of what would happen if applications had no way to track information.
How could a bank keep track of your account? How could a healthcare
provider keep track of your medical history? How could the government keep
track of criminals? Without a database, most applications would be useless and

why you need to know about...

d a t a b a s e s

Can you imagine a world where no data was organized? How could a baseball announcer

know that the batter hits .357 every other Thursday against this right-handed pitcher when

the temperature is below 60 degrees, the moon is full, and the umpire ate tacos for dinner?

Who would ever think to relate this information to listeners? Baseball announcers have a

multitude of facts at their fingertips because someone has entered information into a

database, allowing announcers to extract it based on any criteria they want.

Without databases, how could a shopper find that rare DVD of Godzilla Versus the Centrino

Processor with so many other DVDs to choose from? It would be like finding a needle in

a haystack! Instead of searching through all DVD titles by name, you would have to start at

the first DVD offered for sale and scan through each item one at a time, hoping you find the

DVD you want.

To be an effective computer professional, you must know the correct way to design data-

bases. Designing a database begins with analyzing the information that needs to be stored.

At the end of the design phase is a process called normalization, which ensures that the

database is accurate and reliable. You should also know the basics of how information is

retrieved from relational databases with statements called Structured Query Language

(SQL, pronounced “sequel” or sometimes S-Q-L) and be familiar with the major players in

the database management software arena.

database – Data that has
been logically related and
organized into a file or set
of files to allow access and
use

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

208 chapter six

send the technical world spiraling back decades into the past. The paper trails
would be endless, and trees all over the world would have shivers of fright run-
ning up their bark. It’s amazing to think of all the places databases are being
used and how they make your life simpler.

What type of database applications have you seen today? If you can’t think of
any, reflect on the last time you went to the grocery store. Information about
all the food items is stored in a database. How else would the store know how
much to charge for an item? At the same time you’re purchasing the item, a
“Quantity” column in the food item database is probably being updated auto-
matically in a database file. As another common example, where did that
telemarketer get your phone number? It was probably purchased from a ven-
dor who supplied a database including your name, phone number, address,
and other pertinent information. Here are other examples of activities that use
database applications:

• Student grading
• Library inventory
• Genealogy studies
• Social Security payments
• Real estate sales
• Video store rentals
• Retail sales
• Space shuttle missions

Database applications are everywhere, so database development is an essential
part of your daily life. As a computer professional, working with databases
will likely be an important part of your career. Before diving into the funda-
mentals of databases and the systems developed to manage them, take a short
historical tour.

brief history of database
management systems
Back in the mid-1970s, kids were frantically searching neighborhoods for
empty pop bottles. Each unbroken bottle meant a nice return of at least five
cents that could be applied toward a pack of baseball cards. Although the
hard stick of bubble gum that came with the card lost its flavor within
minutes, kids spent hours reading the information on the cards and sorting
them in different orders. Some liked their cards sorted by team name, and
others sorted the cards by position. Some cards were even sorted by team,
position, and name or by card number. In other words, the information
could be sorted in many different ways, with each owner determining the
sort order.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

database fundamenta ls 209

6

Structured Query Language
(SQL) – A special language
used to maintain database
structure and modify, query,
and extract information

database management
system (DBMS) – A program
for managing storage,
access, and modifications
to a database

n o t e

A more recent craze is sharing music files over the Internet. People organize
their music files by artist, song title, music category, or other attributes. Like
baseball card collectors, music lovers spend hours organizing their music files.
Whether it’s baseball cards or music files, things are collected and organized
according to personal preferences.

So what do these crazes have to do with databases? In the early 1970s, while
many thoughts turned to impeachment of Richard Nixon, the end of the
Cold War, and the movie The Exorcist, E. F. Codd and C. J. Date were hard
at work for IBM creating a theoretical model for designing data structures.
This model became the foundation on which database applications have been
designed for almost the past three decades. Believe it or not, kids collecting
and sorting baseball cards and people collecting and sorting music files were
putting into practice some of the database theories Codd and Date conceived.

The development of software for organizing and sorting large amounts of data
began with two mainframe products: System R by IBM and Ingres, created at
the University of California, Berkeley. Both systems used Structured Query

Language (SQL) to query or extract information from databases. This language
became a standard database feature. As PCs became more popular in businesses,
users clamored for the type of software packages they were accustomed to using
on large mainframes. Therefore, the road was paved for other software vendors
to create database management system (DBMS) packages.

In 1978, while working for Martin Marietta and managing the database for
the Viking spacecraft ground support system, C. Wayne Ratliff developed a
database program called Vulcan. In 1980, the program was renamed dBASE II
and was marketed for PCs by Ashton-Tate. (There never was a dBASE I, but
the name dBASE II was chosen to give consumers more confidence in a prod-
uct that seemed to have been tested already.) dBASE II was such a success that
soon Ashton-Tate dominated the PC DBMS market. The popularity of
dBASE opened the door for other companies to market PC database products,
such as Paradox, Microsoft Access, and FoxPro, trying to include features
dBASE II lacked or improve on weaknesses in dBASE II.

In 1991, Borland Software Corporation acquired Ashton-Tate and its

dBASE products. Today, dBASE is not a serious contender in the PC

database market.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

210 chapter six

distributed data

Databases were originally created
to act as a central data repository,

but today, a database might be
stored on several computers that
can be in different physical loca-

tions. This arrangement is called a
distributed database. The main

advantages of a distributed data-
base are flexibility, reliability,
expandability, and efficiency.
Disadvantages are cost and

complexity.

n o t e

As mainframe database systems, such as System R and Ingres, and PC systems,
such as dBASE, became widespread, it became evident just how powerful data-
bases were in providing essential information for corporate decision making and
enhancing almost all business systems, from inventory management to customer
support. Since then, databases have become an essential and critical part of
business and, therefore, of software development.

In today’s computer industry, every company that wants to use a database
must decide which DBMS package to use. There’s a wide variety of databases
on the market (see a sample in Table 6-1), each with its own strengths and
weaknesses.

Table 6-1, Popular database management systems

DMBS name vendor computer type

Access Microsoft PC, server, PDA

DB2 IBM PC, mid-range server,
mainframe

InterBase Embarcadero PC, server
Technologies

MySQL MySQL AB PC, mid-range server
(public domain)

Oracle Oracle PC, mid-range server,
mainframe, PDA

Paradox Corel PC, server

SQL Server Microsoft server

Sybase Sybase PC, mid-range server, PDA

Microsoft Access was developed in the early 1990s and is included in the

Microsoft Office Professional suite.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

database fundamenta ls 211

take a test drive

As a computer professional, you
might have to recommend a spe-

cific DBMS to use as the company
standard. What will you recom-

mend? If you look at
advertisements and product litera-

ture, all DBMSs look good. One
thing you can do now to prepare
is to start learning popular DBMS

packages. Take them for a test spin
and formulate your own opinions

as to what you like and dislike
about the products. Many data-
base vendors have trial versions

you can download and test to see
whether you like what the pack-

age has to offer.

table or entity – Data
arranged in rows and
columns, much like a
spreadsheet

column, field, or attribute –
A specific piece of informa-
tion in a table row

row, record, or tuple –
A collection of columns

6

n o t e

n o t e

MySQL is one of the most popular open-source databases, often used on

Web sites.

database management system
fundamentals
A DBMS helps manage data and extract information from a database by using
a query language. It also manages the database structure and controls access
to data stored in the database, thus guaranteeing data integrity and data
consistency.

The main functions of a DBMS are the following:

• Manage database security.
• Manage multiple users’ access to the database.
• Manage database backup and recovery.
• Ensure data integrity.
• Provide an end-user interface to the database.
• Provide a query language that allows users to modify and view

database information easily.

The person who maintains the database in a company is called the

database administrator (DBA).

database concepts
To understand the functionality of a DBMS, you must first understand the
basic elements of a database. A database can contain one or more tables. Each
table or entity is divided into rows and columns, much like a spreadsheet.
Figure 6-1 shows a database table with information about a music collection.
Each column (also called a field or an attribute) represents a specific piece of
information (Song_Name, Track_Num, Album_Num, Album_Name, and so
on), and a row (record or tuple) represents a collection of columns. Each
song is considered a record or row in the database and contains information
that can be arranged in columns describing the row.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

212 chapter six

the real stuff

Many companies have one data-
base for their real, working data

and another database with a sim-
ilar structure and hypothetical

data for their test environment.
This way, developers and end
users can test programs and

queries that access the database
without risking the possibility of

damaging actual live data or
affecting its performance.

Figure 6-1, A database table consists of rows and columns

column

row

domain – Set of possible
values for a column

n o t e

The set of possible values for each column is called the domain. For instance,
the domain for the column labeled Genre_Code in Figure 6-1 is as follows:

• ALT—Alternative
• BLU—Blues
• CLA—Classic Rock
• CW—Country Western
• EL—Easy Listening
• GOS—Gospel
• HR—Hard Rock
• JAZ—Jazz
• NW—New Wave
• POP—Pop
• RAP—Rap
• RB—R & B

Sometimes a program developer designs software so that a drop-down list

box displays all the domain values users can select. This feature helps

keep data consistent and prevent user entry errors.

As mentioned, a collection of columns referring to one item is called a row or
tuple. A collection of rows forms the table’s contents, and a collection of one or
more tables makes up a database. A database can contain one or more tables
that are related through columns designated as key columns. This organized
structure gives software developers and end users easy access. The information
in each table can be accessed more quickly by using indexes, discussed next.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

database fundamenta ls 213

tables versus databases

How do tables and databases
relate to each other? In most
database packages, the terms

database and table are not syn-
onymous. Database refers to the

file that stores information about
the tables; table is the data file

with rows and columns of
information.

more’s company

A company can (and usually does)
have many databases, with each

database acting as a virtual filing
cabinet for related information.

index – A special file that
occupies its own space and
specifies one or more
columns that determine
how information stored in
the table can be accessed
more efficiently 6

n o t e

indexes

An index is a special file that occupies its own space and specifies one or more
columns that determine how information stored in a table can be accessed
more efficiently. For example, a table consisting of rows and columns can
represent music in your music database. The rows represent songs, and the
columns contain more detailed information, such as Song _Name,
Track_Num, and Album_Num. Many different types of information you
encounter every day are accessed with an index. Can you imagine a phone
book with the information ordered sequentially? In other words, new phone
numbers are placed at the end of the phone book. You would have to search
for hours to find the phone number you want. Instead, information in a table
(or phone book) is organized into an index or order by choosing specific
columns. For instance, the Last Name and First Name columns organize the
phone book so that you can retrieve phone numbers simply by knowing
the alphabet.

Think of all of the MP3 files stored on your favorite music Web site. What if
the songs were stored in a random order? Would you want to spend all night
searching row by row, trying to find a song? Definitely not! You have better
things to do, such as reading this textbook and excelling in your computer
courses.

The primary advantage of using an index is being able to find data in a

table without scanning the entire table.

By using an index, you can access all songs in columns that have been indexed
more quickly. For instance, you can sort songs by artist in ascending order, with
As at the top, or you can sort songs alphabetically in descending order, with Zs
at the top. You could even sort songs by using a combination of two columns,
such as artist and song title. Using indexes with these sorts can speed up access
time dramatically. The disadvantage of using indexes is that they require more
storage space in the database, and operations for updating data take a little
longer because the indexes must also be updated.

Every table in a database should have some type of index defined to make
searching quicker and data retrieval more organized.

an example of indexing

Imagine you’re walking down the aisle in a grocery store, pushing the cart
with wobbly wheels. The cart acts like a database because it holds the food
items you want to purchase and store at your home. As you pass the frozen

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

214 chapter six

Each row in the database has similar attributes that might have different infor-
mation describing the product. Notice that each food item purchased has
information that’s shared by other food items, such as brand name, amount,
description, and price.

As stated earlier, columns can be specified as an index for quicker access when
rows are sorted. When columns are used to determine the sort order of infor-
mation, they are called sort keys. There can be one key or a combination of
keys determining the sort order.

The information stored in a database is kept in natural or sequential order, so
the first record you see in the database is the first record you created and stored
in the database file. Using keys to sort database information allows you to view

foods section, you open one of the freezer doors and grab the cheap one-item
frozen pizza with simulated cheese (an essential substance for serious database
developers). You take note of the UPC, brand name, amount, description,
and price and throw it in your cart. You push your wobbly cart over to the
drinks aisle and pick up a six-pack of your favorite beverage loaded with
caffeine so that you can finish your projects on time. Again, you notice the
UPC, brand name, amount, description, and price and add it to your cart.
The process of gathering food items continues until your cart is full or you
have bought all the food items on your list. You might not have realized it,
but you have created your own database by placing food items in your shop-
ping cart. Your database of food items is compared against the store’s database
when you go through the checkout stand. Each item can be related to a row
in the database. Figure 6-2 shows how some items purchased at the grocery
might appear in a database.

Figure 6-2, You use database concepts in your everyday life

sort key – In a database
table, one or more columns
used to determine the
data’s sort order

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

database fundamenta ls 215

You can also combine sort keys to further organize the data. For example,
Figure 6-4 shows data ordered by Brand_Name and Description. That is, first
it’s sorted by Brand_Name, and then it’s sorted by Description, in ascending
alphabetical order.

6

the data in any order you want. To see how keys are used to determine sort
order, refer to the shopping cart data in Figure 6-2. The order in which records
are displayed is the order in which they were entered. For example, if the UPC
column is the sort key, records in the database are sorted in ascending order,
using the value stored in the UPC column. The view of the database is then
the same as in Figure 6-3.

Figure 6-3, Database records sorted by using the UPC column as a key

Figure 6-4, Database records sorted by Brand_Name and Description

All the information for the database is kept in the database file. This file acts as
a repository of information and can be viewed or manipulated with a wide vari-
ety of media, such as reports, forms, labels, low-level file I/O, and source code,
to name a few.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

216 chapter six

normalization – A database
design process that struc-
tures tables to eliminate
duplication and inconsisten-
cies in the data structure

don’t forget
end users

When designing a database, you
should always consider end users’
needs. In fact, end users can help
design the database and reports.
They know the type of data that

needs to be collected and how
that data will be used to help

them do their jobs. The more you
include end users in the database
design, the more likely the project

will succeed.

n o t e

normalizat ion
With all the information being stored around the world, a set of database stan-
dards has evolved to ensure that information is retrieved and stored correctly.
The set of rules that dictates how databases are designed is called normalization.
Normalization is the process of structuring tables to eliminate duplication and
inconsistencies in the data structure. In plain language, normalization tells you
how to organize data stored in the database so that the application functions
correctly, and the amount of duplicate and unwanted information stored is
minimized. The process of normalization works in stages called normal forms,
such as first normal form, second normal form, and third normal form. From a
database design point of view, second normal form is better than first normal
form, and third normal form is better than second normal form. There are five
normal forms (or six, if you count a refinement called Boyce-Codd normal form,
BCNF), but for most database applications, third normal form is as high as you
need to go.

The rules of normalization have been standardized and accepted by the

computer industry. By following existing standards, the database work

that computer professionals perform is consistent, no matter what the

company or project is.

Normalization solves three problems that often occur when designing databases.
First, if a database isn’t normalized correctly, it can’t represent certain real-world
information items. Second, a database can contain redundancies (repetitions) in
data, which wastes time and storage space. Third, important information might
have been excluded during the design of data structures. By following the rules
of normalization, you can make sure your tables are defined accurately to
ensure the integrity and stability of your database application.

preparing for normalization: gathering columns
Before you begin creating a database and following the normalization process,
you need to make a list of all pertinent fields (columns or attributes) you think
are needed in the database application. Often you can create this list by looking
at reports end users have given you, such as the Song inventory report shown in
Figure 6-5.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

database fundamenta ls 217

Often each field in a report is a field or column in a table or consists of one or
more combined table fields. Write these fields in your column list and continue
this process for each report supplied by end users.

The next step is to review the input forms users have specified. Each field in an
input form used in an application (see Figure 6-6) should be a column in a
table. Add these columns to your master column list and continue the process
for each form in the program you’re creating.

Figure 6-5, End-user report with table columns highlighted

Figure 6-6, Additional table columns can be gleaned from input forms

6

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

218 chapter six

All these fields relate to each other and describe song files. Continue this pro-
cess until all the columns/fields have been assigned to one table. With all the
fields defined and placed in one table, you’re ready to begin the normalization
process of refining your database design.

f irst normal form
After you have data in column and row format, you have what’s known as an
unnormalized table. At this point, you could define a database table based on
this design, but redundancies and dependencies can cause problems when the
table is in use. The table needs to be normalized to a stable state to prevent
these problems.

The first step in the normalization process is to modify tables’ rows and
columns to ensure that each row-column intersection has only one value. As
each new row is created to accommodate repeating groups, cell data from the
original row needs to be copied into each column.

In the unnormalized table of Figure 6-8, the Song_Name column has two
values in the first row. Note that some columns of the first row have one
value and some have two values. To put the table into first normal form

(1NF), any columns containing two values need to be separated into two
rows. The columns that didn’t originally have two values are duplicated in
the new row.

The next step is to review all documentation for any fields that aren’t in the
end-user reports or forms. After gathering and documenting all the columns on
your master column list, you’re ready to move to the next step: creating tables
of columns by combining associated fields. For this task, you logically group
information that depends on other information, such as information pertaining
to an artist and all his or her song files. To create the music database, you need
to gather all the data for the rows and columns that relate to each other, such as
the ones in Figure 6-7.

getting ready for
normalization

1. Create a list of all columns or
fields you need in the database
application by reviewing the
specifications and forms supplied
by end users.

2. Create tables of columns
by grouping associated fields
logically.

3. Continue grouping fields until
all the columns have been
assigned to one big table.

first normal form (1NF) –
Eliminating repeating fields
or groups of fields from the
table and confirming that
every column has only one
value by creating a new
record in the table

Figure 6-7, Columns relating to song files are placed in one table

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

database fundamenta ls 219

You can see that the Songs table in Figure 6-8 is not in first normal
form because the Album_Num, Album_Name, Artist_Code, Artist_Name,
Media_Type, and Genre_Code columns contain multiple values in a row-
column intersection. First normal form requires that columns contain only
single values, as shown in Figure 6-9. To solve this problem, create a new record
for the duplicated column values and then fill in the blanks so that every
column in the record has a value.

6

Figure 6-8, Columns with duplicate data need to be simplified

first normal form

Eliminate repeated column values
by making a new row in the table
and copying the common data to

the column values.

Figure 6-9, Songs table in 1NF

Notice that there’s still redundant (repeated) data in some columns. This prob-
lem is addressed during a later stage of normalization.

second normal form
The next step is assigning a primary key to the table and identifying the func-
tional dependencies in the table. A primary key (PK) is simply a column or
combination of columns that uniquely identifies a row in a table. For instance,
for all the students in your computer science course, the primary key could be

primary key (PK) – A col-
umn or combination of
columns that uniquely iden-
tifies a row in a table

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

220 chapter six

determinant – In a data-
base, any column you can
use to determine the value
assigned to another column
in the same row

second normal form

Apply 2NF to tables with multiple
keys to eliminate redundant data.

second normal form (2NF) –
First normal form has al-
ready been applied to the
table, and every column
that isn’t part of the pri-
mary key is fully dependent
on the primary key

functional dependency – A
column’s value is depen-
dent on another column’s
value

composite key – A primary
key made up of more than
one column

n o t e

the Student ID because there are no repeating IDs in the school. Every student
has a unique number that identifies him or her. Other examples of primary
keys that make a record unique are the following:

• Car VIN (vehicle identification number)
• SSN (Social Security number)
• Driver’s license number
• Purchase order number
• Tax ID
• Bank account number

Before you learn the second step to normalization, you need to understand
the concept of a determinant. A determinant in a database is any column
you can use to determine the value assigned to another column in the same
row. In simpler terms, the Artist_Code column is a determinant for the
Artist_Name column. The value PG determines that the Artist_Name is
Peter Gabriel.

By default, a primary key is a determinant.

A functional dependency is the combination of a determinant and the columns
it determines. For example, the Artist_Name column is functionally dependent
on the Artist_Code column. The artist name “Peter Gabriel” is dependent on
the code PG.

Still confused? Here’s another example. You probably have a student ID
number. In a database, your ID number can be used to determine your
name, address, and other information. Your name, however, couldn’t be used
to determine your student ID because other students might have the
same name.

A table is in second normal form (2NF) if it’s already in first normal form and
every column that isn’t part of the primary key is fully dependent on the
primary key. This concept is called functional dependency. A column is func-
tionally dependent on another column if for each value of the first column,
there’s only one value for the second column.

Note that the primary key for the Songs table in Figure 6-9 is a composite
key of Artist_Code, Song_Name, and Album_Num. These three fields
combined account for unique song records because the song title could be
duplicated by multiple artists, but adding Album_Num makes each record
unique. This type of combined key is called a composite key because more
than one column makes up the primary key. To put a table in second normal
form, you must determine which columns in the table aren’t dependent on
the entire primary key.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

database fundamenta ls 221

Figure 6-10, 2NF: Remove any columns that aren’t dependent on the composite primary key and create a new table

n o t e

6

If a 1NF table does not have a composite key, by default, it’s in second

normal form.

For example, the Track_Num column is dependent on the Song_Name,
Artist_Code, and Album_Num columns because there’s only one track number
for a specific combination of song, artist, and album. On the other hand, the
Album_Name column is not dependent on the composite primary key, so these
types of values should be removed to a separate table. Figure 6-10 shows how
the Songs table is split into three tables: a Songs table with Album_Num de-
pendent on the Song_Name and Artist_Code PKs; an Album table with
Album_Name dependent on the primary key Album_Num; and an Artist table,
where Artist_Name is not dependent on the entire primary key. Artist_Name
was also removed from the Songs table and put into its own table, using
Artist_Code as the primary key and Artist_Name as a dependent column.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

222 chapter six

There are many advantages in placing a table into second normal form. The
main advantage is that it eliminates repetition of data, which can result in a lot
of wasted disk space.

third normal form
Third normal form (3NF) eliminates columns that aren’t dependent on only
the primary key. In database parlance, putting a database in 3NF eliminates
transitive dependencies. A transitive dependency exists when one column is
dependent on another column that isn’t the primary key.

To show transitive dependency, a new column called Genre_Desc has been
added to the Songs table, as shown in Figure 6-11. This column describes the
Genre_Code column.

third normal form (3NF) –
Eliminate columns that are
not dependent on only the
primary key

transitive dependency –
One column is dependent
on another column that
isn’t a primary key

third normal form

Eliminate columns that aren’t
dependent on only the primary

key. 3NF is the same concept as
2NF, but it applies only to tables

having single primary keys.

Figure 6-11, Songs table with the Genre_Desc column added

Each column that isn’t part of the primary key should be a fact about the
primary key. For example, the Genre_Desc column is dependent on the
Genre_Code column, which is not part of the primary key for the Songs table.
In this case, Genre_Desc isn’t dependent on the Songs table’s primary key.
Instead, it depends on the Genre_Code column.

To put the Songs table into third normal form, you create a Genre table con-
taining the Genre_Code and Genre_Desc columns, with Genre_Code as the
primary key, as shown in Figure 6-12.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

database fundamenta ls 223

6

Figure 6-12, Songs and Genre tables in 3NF

n o t e

As shown in Figure 6-13, putting the database in 3NF eliminates the repetition
of the Genre_Desc, Artist_Name, and Album_Name columns in the Songs
table, which saves disk space.

The fourth and fifth normalization forms break data down into smaller

pieces to eliminate redundancy. These forms apply only in rare situations

and are not used often.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

the database design process
Trying to understand the normal forms and then normalizing the tables you
have designed can be quite cumbersome. However, your goal in normalization
should be moderation: to reach a balance between redundant data and redun-
dant keys. There are six steps you can follow to make designing data structures
easier while adhering to the basic normalization forms. The following sections
use an example of the database design and normalization process based on
creating a student-grading system.

step 1: investigate and define
The first step in the database design process is to investigate and research the
information you plan to model. Define the purpose of the database and how
it will be used. Use any documents end users use to perform their jobs. These
documents can be a basis for defining the database and tables needed to

224 chapter six

Figure 6-13, Eliminating repetition saves storage space

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

database fundamenta ls 225

6

create forms and reports. The more you involve end users, the better your
chances of designing the database accurately. The student-grading system is
based on a course syllabus that defines all items for which students can
receive grades.

step 2: make a master column list
Create a list of all fields where you need to store information along with their
properties. The properties might include such items as the following:

• Field name
• Data type (char, varchar, number, date, and so on)
• Length
• Number of decimal places (if any)

Again, review the users’ documents. Forms and reports are good indicators of
fields you need so that you can manipulate and manage data. For this example,
you might have fields such as Student ID, First Name, Last Name, E-Mail,
Grade Level, Grade Level Description, Homework Average, Quiz Average, Test
Average, Final Exam, Final Grade, Letter Grade, Course ID, and Course
Description.

step 3: create the tables
After all the fields or columns have been defined, it’s time to group them into
tables logically. This step is the heart of the design process and relies heavily on
normalization rules. The main rules in database design are the first through
third normal forms. After a table is in 3NF, for the most part, it has been accu-
rately defined.

The task of normalizing databases can be compared with cleaning up a toy
closet. At first, the job looks monumental, but if you take one shelf at a time,
the project’s mammoth scope dwindles. Organize the toy shelves by first clean-
ing out the closet into one big pile of toys. Then decide which types of toys go
on which shelves. Now you’re ready to begin placing one toy at a time on the
right shelf.

This process applies to database design. Logically organize the columns into
the right “shelves.” As you’re organizing columns, look for any duplicates or
ways you can save “shelf ” space. Why keep two games that are the same when
both have all their pieces? You can only play one game at a time, so get rid of
one and keep the other on the toy shelf. Similarly, why keep two copies of the
same column when both represent the same data? Get rid of one and keep the
other in the table. Figure 6-14 shows the tables created for the student-grading
system.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

step 4: work on relationships
After the database is normalized, it’s time to finalize the relationships you have
observed during the design and normalization process. As in your everyday life, a
relationship defines how one entity works with or relates to another. If you don’t
work on your personal relationships, your life will likely be a mess. Likewise, if
you don’t spend time working on table relationships, your database design will be
a mess.

In database design, a relationship defines how one table works with another.
Two types of relationships are discussed in this chapter:

• One-to-many (1:M)
• One-to-one (1:1)

Each relationship determines what type of data is stored in each table.
Relationships need to have primary and foreign keys defined in each table.
The primary key was discussed earlier in this chapter. A foreign key (FK) is
a column in one table that relates to the primary key in another table.

226 chapter six

Figure 6-14, Tables created for the student-grading system

relationship – How one
entity or table works with
another

foreign key (FK) – A column
in one table that relates to
a primary key in another
table

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

database fundamenta ls 227

6

For instance, the Genre_Code column in the Genre table (refer back to
Figure 6-12) is the primary key in the Genre table, so it’s considered a foreign
key in the Songs table. The same applies to Artist_Code and Album_Num.
Both are considered foreign keys in the Songs table because they relate to
primary keys in other tables.

The following sections show how primary keys and foreign keys function in
table relationships.

one-to-many relationship

A one-to-many (1:M) relationship is the most common relationship and states
that each record in Table A (the Student table in Figure 6-15) relates to zero
to many records in Table B (the Course Grade table). In other words, for
each student (the 1 part of 1:M), there can be zero to many grades (the M
part of 1:M).

Figure 6-15, The relationship of Student to Course Grade is
one-to-many (1:M)

Student

Course Grade

Course Grade

Course Grade

one-to-many (1:M)
relationship – One instance
of an entity (parent table)
is associated with zero to
many instances of another
table (child table)

A one-to-many relationship requires that foreign key columns in the
“many” table have a value that refers to the primary key column in the
“one” table. Referring back to Figure 6-14, you can see that the Student_ID
column is a foreign key in the Grades table and a primary key in the
Student table.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

The first thing you should consider if you find a 1:1 relationship is whether
you can combine these tables into one table. Although a 1:1 relationship
should exist in some situations, normally the two tables can be combined into
one table.

step 5: analyze the design
With all the data pieces in place, it’s time to analyze the work you’ve completed.
Search for design errors and refine the tables as needed. Follow the normaliza-
tion forms (ideally to third normal form) and correct any violations that might
hamper the database’s performance.

ER modeling

At this point, creating a data model is helpful to give a visual representation of
how all the tables or entities interact and relate to each other in the database.
This model is called an entity relationship (ER) model.

An ER model is composed of entities (tables) and relationships. Entities repre-
sent the database tables, and relationships show how each table relates to
another table. The model can also include cardinality to show the type of rela-
tionship between tables. Cardinality shows the numeric occurrences between
entities in an ER model. The different types of cardinality, along with their
standard notations, include the following:

• 0..1, 0:1 (zero to one)
• 0..M, 0:N, 0..*, 0..n (zero to many)
• 1..1, 1:1 (one to one)

228 chapter six

Figure 6-16, The relationship of Student to Grade Level is
one-to-one (1:1)

entity relationship (ER)
model – A data model that
represents how all tables
interact and relate to each
other in the database

cardinality – Shows the nu-
meric occurrences between
entities in an ER model

M:M

Although some consider it poor
data design, another relationship

is a many-to-many (M:M)
relationship, in which Table A
can have more than one match-

ing record in Table B, and Table B
can have more than one

matching record in Table A.
Many-to-many relationships can
often be broken down into sev-
eral one-to-many relationships.

many-to-many (M:M)
relationship – Many
instances of one entity or
table (parent table) are
associated with many
instances of another entity
(child table)

one-to-one (1:1)
relationship – One instance
of an entity (parent table)
is associated with only one
instance of another entity
(child table)

one-to-one relationship

A one-to-one (1:1) relationship dictates that for every record in Table A, there
can be only one matching record in Table B (see Figure 6-16). This type of rela-
tionship is quite unusual and often indicates that the two records actually
belong in the same table.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

database fundamenta ls 229

6

• 1..M, 1:M, 1:N, 1..*, 1..n (one to many)
• M..1, M:1, N:1, *..1, n..1 (many to one)
• M..M, M:M, N:N, *..*, n..n (many to many)

For example, an ER model for the student-grading system shows the four tables
(Student, Grades, Grade_Level, and Courses) and how they relate to each other
(see Figure 6-17).

Figure 6-17, The student-grading system ER model in Visio

ER tools

There are many data-diagramming
tools you can use to create an ER

model, such as CA, Inc.’s ERwin
and Microsoft Visio.

the first ER model

Dr. Peter Chen, recognized as a
software pioneer, derived the

mathematical formulations and
graphical notations to build ER

diagrams and introduced
ER modeling in 1976.

The PK and FK labels in Figure 6-17 represent the defined primary and foreign
keys in each table. The numbers next to the foreign key are created by
Microsoft Visio and simply indicate that one foreign key is different from
another in that table.

step 6: reevaluate
Reevaluate database performance and ensure that it meets all your reporting
and form needs. Include end users and explain each table and field being used.
Make sure fields have been defined to address end users’ requirements. You’ve
probably played the gossip game, in which one person starts a rumor and
whispers it to the next person. If so, you know that by the time the rumor
reaches the last person, it isn’t even close to the original. Similarly, end users’
requirements might get altered during the design process, so reevaluating and
checking with end users is always a good idea to make sure the database design
meets their goals.

If you find your database “toy closet” can’t hold all the toys, you have to leave
some toys out of the closet or stuff in as many toys as possible, which results in
a mess. In other words, spend the time and effort to get the database design
right the first time so that you don’t have to backtrack to get your design
process on the right road.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

230 chapter six

n o t e

After designing a database, you need to modify the data structure. You do this
by using SQL commands.

Structured Query Language (SQL)
As mentioned, Structured Query Language (SQL) is a powerful database lan-
guage for defining, querying, modifying, and controlling data in a database.
With SQL, you have a way to do the following:

• Manipulate data
• Define data
• Administer data

Manipulating data involves retrieving and modifying data. For this task, you
use SQL statements that become part of a query, with the intent to search a
database and retrieve information.

Many different “dialects” of SQL are available, but after you learn the basic
statements in one version, you can usually transfer this knowledge to other
SQL versions.

Only the basics of SQL are discussed in this chapter. For more information

on SQL, you can review the many available book options from Course

Technology at http://cengage.com/coursetechnology/.

SQL offers the following advantages:

• Reduces training time—Because SQL is English based, it’s easy to understand
and learn.

• Makes applications portable—SQL is standardized and works similarly on
many different databases. So after you learn SQL and move to a different
database, you should still be able to use your SQL knowledge.

• Reduces the amount of data being transferred—Instead of transferring all data
stored in the table, SQL deals with only the data you want to see, thus reduc-
ing how much data is sent to users.

• Increases application speed—SQL sends you only the data you want to see
instead of sending the entire set of data, which results in faster transfer of
information.

SQL isn’t a hard language to learn because it uses simple descriptive state-
ments, such as CREATE TABLE, INSERT INTO, and SELECT. For
example, Figure 6-18 shows a SQL statement that produces a list of all
songs in your music database that are in the NW (New Wave) category.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

database fundamenta ls 231

6

The following sections show the basic SQL commands for creating tables,
adding (inserting) rows of data, and querying the table to select certain
information.

CREATE TABLE statement
An advantage of SQL is that the statements are fairly easy to figure out. For
instance, the CREATE TABLE statement is used to—you guessed it—create
a table! This statement uses the following syntax:

CREATE TABLE table_name

(column_name datatype [NULL | NOT NULL]

[, column_name datatype [NULL | NOT NULL] . . .);

The CREATE TABLE statement is straightforward. Its job is to create a new
table in a database. The table_name is the name of the table you want to create.
Make sure this name describes the data being stored. For example, you could
name a table of information about songs in your music database “Songs.”

The next line, beginning with a parenthesis, is the clause for defining the table’s
columns/fields. Again, make sure you use descriptive names that represent the
data. Type the name of the first column in the table (for example, Song_Name),
followed by a space and the data type: int (integer), char (character), currency,
date, and so on. Some data types, such as char, need a length specified inside
parentheses, such as char(10). Table 6-2 describes some data types you can use in
a CREATE TABLE statement.

Figure 6-18, A sample SQL statement and results

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

232 chapter six

Table 6-2, Common SQL data types

type description

char fixed number of characters

int whole numbers

varchar variable number of characters

date calendar dates

number numbers that include decimals; must specify the field’s total
length and the number of decimal positions

Anything declared with square brackets is considered optional. The square
brackets are not part of the statement you enter. For example, the keywords
NULL and NOT NULL in the CREATE TABLE syntax are optional and indi-
cate whether data is required for the specified column. The vertical bar
separating them means you can use one or the other.

The third line of the statement is also optional, meaning that you can have a
table with only one column. If there are more columns, continue adding their
names, separating each column with a comma. The last thing to do when writ-
ing a SQL statement is make sure you end it with a semicolon (;) to tell the
database system the statement is complete.

The following SQL statement creates a table called Songs with six columns:
Song_Name, Album_Num, Artist_Code, Track_Num, Media_Type, and
Genre_Code. Some columns require data (NOT NULL), and others do not
(NULL). Note that SQL commands can be uppercase or lowercase, but the
convention is to use uppercase for SQL keywords.

CREATE TABLE Songs

(Song_Name char(50) NOT NULL,

Album_Num number NOT NULL,

Track_Num number NULL,

Media_Type char(5) NULL,

Artist_Code char(5) NOT NULL,

Genre_Code char(5) NOT NULL

);

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

database fundamenta ls 233

6
SQL scripts

SQL statements are often stored
in a text file that can be used to

run a series of SQL statements as
a script. Scripts save a lot of time

when you need to regenerate
table structures or modify data

because you don’t have to retype
all the statements. Simply create

a text file in Notepad and type or
paste in your SQL

commands.

Figure 6-19, SQL INSERT INTO statement to add a record to the Songs table and its result

n o t e Some database developers like to place a table specifier before each

column name. For example, in the preceding statement, you could include

an “s” to represent the Songs table, as in s_Song_Name char(50)

NOT NULL. When you’re creating several tables, this method makes it

easier to see which table a column is in.

INSERT INTO statement
The INSERT INTO statement is used to add new rows of data to the table and
follows this syntax:

INSERT INTO table_name [(column1, column2, . . .)]

VALUES (constant1, constant2, . . .)

The syntax for the INSERT INTO statement requires a table name so that the
system knows into which table to insert data. If you aren’t entering data for
every column in the table, you need to specify which columns are receiving
data. The square brackets indicate that the column listings (column1, column2,
and so on) are optional.

The only fields required to have data in the Songs table are Song _Name,
Album_Num, Artist_Code, and Genre_Code because they were declared as
NOT NULL in the CREATE TABLE statement. The rest of the fields aren’t
required to have data when you add a new record to the table. To add informa-
tion about the song “Where the Streets Have No Name” by U2, you use the
statement shown in Figure 6-19.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

234 chapter six

n o t e

You don’t have to put each column and column value on a separate line, but
many developers do so to make statements more readable and easier to main-
tain. Also, note that not every column needs to be “initialized” with data
(which means including it in the INSERT INTO statement). Columns defined
as NULL, such as Track_Num, could be omitted in both the column list and
value list.

If you don’t supply column names, SQL assumes you’re inserting a row into the
table, using the order of the columns as defined in the table structure, as shown
in this example:

INSERT INTO Songs

VALUES (

'Where the Streets Have No Name',

146,

NULL,

NULL,

'U2',

'POP');

If you don’t specify the column list, you must enter data for columns defined as
NULL to gain access to the NOT NULL columns that follow the NULL col-
umn. The preceding SQL statement implies there are two fields in front of the
field receiving the U2 Artist_Code data. The previous SQL statement that
listed columns didn’t need to specify NULL values because it listed each
column receiving data.

Make sure you know the table’s format, which means you need to know

the order of columns.

SELECT statement
The SELECT statement is the most commonly used SQL statement and is
responsible for retrieving data from tables in a database. The syntax for this
statement is as follows:

SELECT [DISTINCT] column_list

FROM table_name

[WHERE search_condition]

[ORDER BY order_list]

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

database fundamenta ls 235

6

For example, Figure 6-20 shows the statement to select the Song_Name,
Media_Type, and Track_Num fields from the Songs table and the results in
Microsoft Access.

Figure 6-20, SQL SELECT statement to return the name, media type, and track
number for songs

Looking at Figure 6-20, notice that the columns being selected are separated
with commas, and the statement ends with a semicolon. The order of fields
doesn’t have to match the order in the defined table structure. The order you
specify in the SELECT statement determines the order in which data is
retrieved and displayed.

WHERE clause
The WHERE clause in a SQL SELECT statement specifies additional criteria for
retrieving data from a table. Think of it as being the search criteria, in that you can
exclude or include specific rows depending on their column values. Figure 6-21
shows a SQL SELECT statement with a WHERE clause that searches for and
retrieves Song_Name and Track_Num for songs with the Media_Type CD.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

236 chapter six

Figure 6-22, More descriptive SQL SELECT statement with a WHERE clause

Figure 6-21, SQL SELECT statement with a WHERE clause and the results

Notice that the Media_Type column doesn’t have to be specified as part of the
SELECT column list. When you’re using a field in a WHERE clause, however,
including it in the SELECT statement’s column list is best to make sure the
data retrieved is accurate. Figure 6-22 shows a more descriptive version of the
SELECT statement in Figure 6-21.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

database fundamenta ls 237

6

You can also specify more than one search criterion by using the AND and OR
keywords. AND indicates that all criteria must be met; OR is more flexible,
indicating only one criterion needs to be met. Try this next query. What do you
think the results will be?

SELECT Song_Name, Media_Type, Track_Num

FROM Songs

WHERE Media_Type 5 'CD' AND

Track_Num . 6 ;

If you guessed that the results would be the rows “Only a Lad,” “Big Time,”
and “One Tree Hill,” you were right: The Media_Type for all these songs is CD
AND the Track_Num is greater than 6. Now what do you think the results of
the following SELECT statement will be?

SELECT Song_Name, Media_Type, Track_Num

FROM Songs

WHERE(Media_Type 5 'CD' OR Media_Type 5 'MP3')

AND

Track_Num . 6 ;

Figure 6-23 shows the results of these two SELECT statements, one using AND
and one using OR. As you can see, the OR result contains more entries because
it selects songs that are CD or MP3 and have a track number greater than 6.

Figure 6-23, SQL SELECT statement with a WHERE clause and AND versus OR

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

The first time these commands were run without the ORDER BY clause (refer
back to Figure 6-23), the results were a little different. The same number of rec-
ords was returned, but they were in a different order. The first record was “One
Tree Hill,” which means that of the four records returned, it was the first record
entered in the table that satisfied the search criteria. Adding the ORDER BY
clause allows the data to be rearranged and displayed in a more meaningful
order. Now the first record you see is “Big Time” because the results are in
alphabetical order by song title.

ORDER BY clause
Now that you have seen how to specify search criteria, you’re ready to specify
the order in which the rows of data are returned.

The ORDER BY clause enables you to change how data is returned from the
SELECT statement. By default, data is returned in sequential order, meaning
rows are kept in the order in which they’re entered. Therefore, the first row of
data returned is the first record that matches the search criteria and the first
record entered in the table.

If you want to arrange the data more meaningfully, you can specify the
ORDER BY column names. For example, Figure 6-24 shows the SQL state-
ment to select songs with a track number greater than 6, arranged in order by
Song_Name and then by Track_Num, and the results.

238 chapter six

Figure 6-24, SQL SELECT statement with an ORDER BY clause and the results

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

database fundamenta ls 239

6

n o t e Notice that when you have multiple fields in the ORDER BY clause, they

are separated by commas.

The ORDER BY clause also allows the SQL statement to return data in
ascending (default) or descending order. Figure 6-25 shows a SQL SELECT
statement that displays Song_Name and Track_Num for all Media_Type
columns that are CD or MP3 and have Track_Num column values
greater than 6. The information is in ascending order by Track_Num and
Song_Name, with the smallest Track_Num value at the top of the list and the
largest value at the bottom of the list. Because ascending is the default order,
you don’t have to use a special keyword to specify this order.

Figure 6-25, SQL SELECT statement, using an ORDER BY clause with the default
ascending option

If you want data returned in descending order, you simply place the keyword
DESC next to the column in the ORDER BY clause. Figure 6-26 shows the
SQL statement to order songs by Track_Num and Song_Name, using
Track_Num in descending order, and the results.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

240 chapter six

You have barely scratched the surface of SQL’s power. Many more options for
the SELECT statement are available for using more specific search criteria or
being more specific about the format of the returned results. Also, there are
many SQL commands for maintaining, defining, and administering the data in
a database.

one last thought
A database that isn’t organized well can be more of a hindrance than a benefit.
You have to carefully plan how data will be structured and stored, apply
normalization rules, and use the right SQL statements to extract the kind of
information you want. With these structures, a database becomes a powerful
tool used in many areas, including business and computing.

Figure 6-26 SQL SELECT statement, using an ORDER BY clause with the DESC option

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

database fundamenta ls 241

• A database is a collection of logically related information used in an applica-
tion to create meaningful output for end users.

• Normalization is the process of structuring tables to eliminate unwanted
redundancies and dependencies.

• Database information is kept in sequential order, but you can view the order
of records in different formats by creating indexes and assigning sort keys.

• Primary keys are used to uniquely identify table entries; foreign keys are
columns in one table that reference a primary key in another table.

• The manner in which one table relates to another table is called a relationship.

• The three types of relationships discussed are one-to-one (1:1), one-to-many
(1:M), and many-to-many (M:M).

• First normal form eliminates repeated fields.

• Second normal form dictates that every column that isn’t part of the primary
key is fully dependent on the primary key.

• Third normal form states that no column can depend on any other column
than the primary key.

• Fourth and fifth normal forms are rarely used but further break down tables
into nondependent, nonredundant forms.

• The six steps for designing a database are investigate, create a master column
list, create the tables, assess the relationships, analyze the design, and reevaluate.

• Structured Query Language (SQL) is a powerful database language for
defining, maintaining, querying, and administering data.

cardinality (228)

column (field or attribute) (211)

composite key (220)

database (207)

database management system
(DBMS) (209)

determinant (220)

domain (212)

entity relationship (ER) model (228)

first normal form (1NF) (218)

foreign key (FK) (226)

functional dependency (220)

index (213)

many-to-many (M:M) relationship
(228)

normalization (216)

one-to-many (1:M) relationship
(227)

one-to-one (1:1) relationship (228)

primary key (PK) (219)

c h a p t e r s u m m a r y

k e y t e r m s

6

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

242 chapter six

relationship (226)

row (record or tuple) (211)

second normal form (2NF) (220)

sort key (214)

Structured Query Language (SQL) (209)

table (or entity) (211)

third normal form (3NF) (222)

transitive dependency (222)

1. What is a database? Give an example of a database in current use that af-
fects you.

Use the following table for Questions 2–7:

record # team wins losses

1 Anteaters 10 2

2 Byrds 8 0

3 Monkeys 6 6

4 Admirals 10 2

5 Sapsuckers 5 7

2. The table is listed in what order (primary key)?

3. Write a SQL SELECT statement to list the table’s contents in order of
wins.

4. Write a SQL SELECT statement to list the table’s contents in order of
wins and team.

5. Write a SQL INSERT INTO statement to add the team Bears. The Bears
have 3 wins and 9 losses.

6. Write a SQL INSERT INTO statement to add the team Lions. The Lions
have 9 wins and 3 losses.

7. Write a SQL SELECT statement to list all the table’s contents.

8. What is normalization, and what problems does it solve?

9. Explain the first three normalization forms.

10. List and explain the six steps for designing a database.

11. Create a normalized database to support a space shuttle launching applica-
tion. The government wants to keep track of astronauts, space shuttles, and
launch history. Define the tables, primary and foreign keys, and indexes.
Make sure the tables are finalized in the third normalized state.

t e s t y o u r s e l f

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

6

database fundamenta ls 243

12. Draw an ER model to represent the space shuttle launching application de-
signed in Question 11. Make sure you show the relationships, label the
cardinality, and show primary and foreign keys.

Use the following table for Questions 13–20:

field name field size field type sample data

Error_Log_Date Date 12/15/2010

Error_Log_Time Time 2:24:32 PM

User_Code 8 Text KATIE

User_First 15 Text KAYTLEN

User_Last 25 Text ANDERSON

Error_Code 4 Text LOG

Error_Code_Desc 40 Text INCORRECT LOGIN

User_Password 10 Text MONK

Error_Log_Desc 80 Text USER INPUT WAS BAD

Error_Status_Code 1 if Text Yes/No or Text C—Completed,
U—Unresolved,
I—In process of being
fixed

Error_Priority_Code Number Can contain a number
from 1 to 5:
1—Very high
2—High
3—Medium
4—Low
5—Very low

13. Using the fields listed, normalize the data by organizing the fields into
tables. Hint : You should end up with at least three tables.

14. Write a SQL CREATE statement to create each table. Make sure you
identify which fields you think should or should not allow NULL
values.

15. Write a SQL INSERT INTO statement to add at least three records to
each table you created.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

244 chapter six

16. Using the normalized tables, write a SQL SELECT statement to show all
users (User_Code, User_First, and User_Last). Sort the information by the
User_Last and User_First columns.

17. Using the normalized tables, write a SQL SELECT statement to show
all errors (Error_Log_Date, Error_Log_Time, Error_Code,
Error_Status_Code, Error_Priority_Code, Error_Code_Desc, and
Error_Log_Desc). Sort the information by the Error_Log_Date and
Error_Log_Time columns.

18. Using the normalized tables, write a SQL SELECT statement to show
all information on each error along with the first and last name of the user
who created the error.

19. Review the Error_Status_Code column in the normalized tables. The user
wants to see the description displayed for the Error_Status_Code column.
This description will also be used in a drop-down list box when the user is
entering information for the error. What can you, as the database designer,
do to enhance the tables’ current design and make the database structure
more flexible so that more Error_Status_Codes can be added to the system?

20. Review the Error_Priority_Code column in the normalized tables. The user
wants to see the description displayed for the Error_Priority_Code column.
This description will also be used in a drop-down list box when the user is
entering information for the error. What can you, as the database designer,
do to enhance the tables’ current design and make the database structure
more flexible so that more Error_Priority_Codes can be added to the
system?

1. Which of the following is not a valid DBMS?

a. SQL Server
b. C++
c. Oracle
d. DB2

2. A table is divided into databases.

a. True
b. False

3. A column is divided into tables.

a. True
b. False

p r a c t i c e e x e r c i s e s

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

database fundamenta ls 245

4. What is the set of possible values for a column?

a. Domain
b. Table
c. SQL
d. Index

5. What specifies how the information in an entity is organized?

a. Domain
b. Table
c. SQL
d. Sort key

6. First normal form says:

a. No nonkey columns depend on another nonkey column.
b. Every column that’s not part of the primary key is fully dependent on the

primary key.
c. Eliminate repeated fields.
d. None of the above

7. Second normal form says:

a. No nonkey columns depend on another nonkey column.
b. Every column that’s not part of the primary key is fully dependent on the

primary key.
c. Eliminate repeated fields.
d. None of the above

8. Third normal form says:

a. No nonkey columns depend on another nonkey column.
b. Every column that’s not part of the primary key is fully dependent on the

primary key.
c. Eliminate repeated fields.
d. None of the above

9. What uniquely identifies a row in a table?

a. Index
b. Column
c. Primary key
d. Tuple

10. A composite key is a column containing unique information.

a. True
b. False

11. Which is not a step of the database design process?

a. Create the tables
b. Create the relationships
c. Investigate
d. Add the data

6

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

246 chapter six

12. When creating a table in SQL, you must specify whether the column is
NULL or NOT NULL.

a. True
b. False

13. The SQL INSERT INTO statement allows adding multiple records in one
statement.

a. True
b. False

14. By default, data returned by the SQL SELECT statement is in descending
order.

a. True
b. False

15. Which of the following SQL SELECT options is used to organize the data
being returned?

a. ORDER BY
b. SORT BY
c. WHERE
d. None of the above

1. Talk to at least three different companies that use databases and find out
which DBMS packages they use. Ask them why they selected those partic-
ular DBMSs and report your findings.

2. List at least five SQL statements that haven’t been discussed in this chapter.
Describe what they do and give an example of each.

3. Research the fourth and fifth normal forms. Describe them and demon-
strate in examples how they’re applied to a database.

4. Are there any other database relationships besides 1:M and 1:1? If so,
describe the relationship and use tables you have defined to show how it’s
implemented.

5. What are the advantages and disadvantages of using Oracle versus SQL
Server?

1. When have you encountered databases being used?

2. If you could create a database to make some aspect of your life easier, what
type of information would it contain?

d i g g i n g d e e p e r

d i s c u s s i o n t o p i c s

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

6

database fundamenta ls 247

3. If you were creating a registration database system for your university, what
tables would it contain? What columns would be in the tables?

4. If you were creating a database system to hold all your music files, what
tables would it contain? What columns would be in the tables?

5. What are some possible negative effects on privacy and citizens’ rights that
the use of databases might involve?

1. List and describe at least five Web sites that give SQL tutorials. Share this
information with your class.

2. Choose a particular database format (such as Oracle, SQL Server, or
another product) and research the following information: current version,
current price, training options, available certifications, company informa-
tion, and company stock price. Create a spreadsheet or table to display
your results.

3. What types of computer jobs require knowledge of a DBMS package?
Search the Internet, using sites such as Dice, Monster, CareerBuilder, and
so on, and write down the jobs, types of DBMS packages, and
required tasks or skills.

4. List at least five Web sites that use databases to store information. Describe
the information they are storing, and try to identify some tables they might
have created to use on their Web sites.

5. Identify the advantages and disadvantages of the DBMS packages listed in this
chapter. Use the Internet to search for opinions, reviews, and other articles.

6. List and describe three tools (other than Microsoft Visio) for creating ER
models.

I n t e r n e t r e s e a r c h

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

c h a p t e r

number ing sys tems and data
representa t ions

7

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

i n t h i s c h a p t e r y o u w i l l :

• Learn why numbering systems are important to understand

• Refresh your knowledge of powers of numbers

• Learn how numbering systems are used to count

• Understand the significance of positional value in a numbering system

• Learn the differences and similarities between numbering system bases

• Learn how to convert numbers between bases

• Learn how to do binary and hexadecimal math

• Learn how data is represented as binary in a computer

• Learn how images and sounds are stored in a computer

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

the lighter side of the lab
by spencer

250 chapter seven

the lighter side of the lab
by spencer

250 chapter seven

the lighter side of the lab
by spencer

The term “numbering systems” is an excellent example of why computer geeks have a hard time getting dates
(until they graduate and become gazillionaires). I guess a more boring term could be used in place of “number-

ing systems,” such as “quantitative analysis protocols” or maybe “algorithmic processes for deriving alternative
radix notation.” (If your eyes are lighting up and you’re saying, “Yeah, they should use these terms instead!”

please seek professional help.)

Why not just say “different ways of counting things”? Or better yet, “different ways to count doughnuts”?
Imagine you had opened this book to Chapter 7 to see the title “Different Ways to Count Doughnuts.” Now

that’s a chapter you’re going to read!

Sesame Street understands this principle. You never heard a conversation like this between Maria and Big Bird:

Big Bird: “Hi, Maria. What are you doing?”

Maria: “Hi, Big Bird. I’m just executing conversions between numbering systems.”

Big Bird: “Huh?”

Maria: “I’m converting this series of digits from the binary base 2 numbering system to the decimal base 10
numbering system by multiplying each digit’s value in base 2 by its positional value in base 10 and

calculating the total sum of all values.”

Big Bird (running away): “Snuffyyyyyyy!”

No, Sesame Street uses fun terms to teach. Everyone remembers the Count. (“One! One ball! Ah, ah, ah!”) Give
the Count 5 minutes and a dozen doughnuts, and he’d have the entire class counting in hexadecimal:

“C! C doughnuts! Ah, ah, ah!”

In conclusion, don’t be intimidated by terms such as “numbering systems” and “positional value.” They’re
just really, really boring terms for stuff that’s actually interesting. If computer geeks who make up terms

such as “numbering systems” took a lesson from the Count, they might be saying “One! One Friday night
spent with someone whose name isn’t Pentium! Ah, ah, ah!”

I’m just giving you a hard time, computer geeks. Remember that if Bill Gates had a dollar for every
time someone made a joke about him . . . Oh, wait—he does. Ah, ah, ah!

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

number ing sys tems and data representa t ions 251

why you need to know about...

Every computer game, program, picture, or sound is stored in the computer as a series of

binary digits. Because humans don’t normally talk binary, if you want to be better at telling a

computer what to do, you must learn to understand binary and hexadecimal.

Terms such as “data representation,” “numbering systems,” and “hexadecimal” might seem

intimidating; however, as with anything new you learn, you just have to become familiar

with these terms to understand them. Most people are born with 10 fingers and 10 toes, so

it’s no accident that people are most familiar with the base 10 numbering system. You proba-

bly learned it from watching Sesame Street and then again in elementary school. You might

have counted on your fingers and even your toes. (Then again, you might still be counting

on your fingers and toes.) If people were born with only two fingers and two toes, maybe

this computer binary thing would be easier to understand. In any case, understanding num-

bering systems is quite simple if you just take a deep breath, relax, and go through it one step

at a time.

Understanding numbering systems and data representations will help you be more comfort-

able as you interact with computers in later computing courses and throughout your career.

Many times, you’ll need to be able to read displays containing the contents of a computer’s

memory or hard disk, often referred to as hexadecimal memory dumps. You have probably

seen the dreaded “blue screen” fatal error message, which looks something like this:

an exception OE has occurred 0028:CICA38F1 in VXD MXECPV (02) 100000251.

This was called from 0028:C02A50EE in VXD VWIN32(05) 100001F16.

The hexadecimal numbers in this error message probably don’t mean anything to you now,

but as you continue your studies in computer science, you’ll learn what these numbers mean

and how they can be used to explain computer errors.

n u m b e r i n g s y s t e m s

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

252 chapter seven

negative powers

In case you’ve forgotten, here’s
an example of how a negative

power is calculated:

2-3 5 .125

is

1 / (2 * 2 * 2) 5 .125

n o t e

powers of numbers: a refresher
Before you get into numbering systems and data representations, think back to a
concept you learned in elementary school: powers of numbers.

You might remember that 2 squared equals 4 and is displayed with the power as a
superscript, as 22. Remember that raising a number to a positive power simply
means multiplying that number by itself the number of times specified by the
power indicator (often called an exponent). The number 23, for example, is just
2 * 2 * 2. The number 2 is multiplied by itself 3 times, giving a value of 8.
In working with computers, multiplication is represented with an asterisk (*).

That’s all there is to positive powers, with the exception of two special cases:
the exponents (powers) 0 and 1. First, raising a number to the 0 power always
results in 1, no matter what the original number was. The number 100

is 1. The number 20 is also 1. Second, raising a number to the 1 power always
results in the number itself. So 21 is always 2, and 161 is always 16.

An important mathematical concept is that any nonzero number raised to

the 0 power gives a value of 1.

Try practicing with base 10 numbers by raising 10 to the fourth power. The
number 104 is just 10 * 10 * 10 * 10, or 10,000. The number 102 is 10 * 10,
which equals 100.

Numbers can also be raised to negative powers, which are used to represent
fractional portions of numbers. Raising a number to a negative power is similar
to raising it to a positive power, with one final step. After you multiply the
number as many times as specified by the exponent, you divide that result into
1. The number 2-3 is 1 divided by 2 cubed (2 * 2 * 2) and is equivalent to .125.
For 10-4, the calculation is 1 / (10 * 10 * 10 * 10), or .00001. In other words,
you multiply 10 by itself 4 times, which gives you 10,000. Then divide that
value into 1.

Understanding powers of numbers is handy when you start to learn more about
numbering systems.

counting things
In essence, numbers are used to count things. Whether you’re dealing with
money or miles, numbers are used to count how many things are represented.
Whether numbers are negative, positive, whole numbers, or fractions, they’re
used to count. If your tuition is $2395, it means that attending school costs you

positive powers

Here’s how a positive power is
calculated:

23 5 8

is

2*2*2 5 8

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

number ing sys tems and data representa t ions 253

who’s on base?

The base of a numbering system
is the number of digits in that

system.

Base 10 (decimal) has 10 digits,
0–9.

Base 2 (binary) has 2 digits,
0 and 1.

Base 16 (hexadecimal) has 16
digits, 0–F.

binary – Numbering system
with two digits, 0 and 1;
also known as base 2 and is
the basis for modern
computer systems

hexadecimal (hex) –
Numbering system with 16
digits, 0–9 and A–F; also
known as base 16 and
often used as shorthand
for binary (one hex digit 5
four binary digits)

n o t e

two thousand, three hundred, and ninety-five dollar units. You should be
accustomed to this unit of measurement by now. What does it mean, however?
In elementary school, you learned that $2395 is 2 thousands plus 3 hundreds
plus 9 tens and 5 ones, but what does it really mean? The number 2395 really
means (2 * 103) 1 (3 * 102) 1 (9 * 101) 1 (5 * 100).

You’re accustomed to counting in the decimal, or base 10, numbering system.
You can also count in other numbering systems or bases. Computers use a
numbering base of 2, which is called binary. So unlike base 10, which has
10 unique digits—0, 1, 2, 3, 4, 5, 6, 7, 8, and 9—base 2 has only 2 unique
digits, 0 and 1. Hexadecimal has 16 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C,
D, E, and F. A base is identified by the number of digits a numbering system
has, including the digit 0.

When you count in base 10, you start with 0 and count up to 9. Because there
aren’t any more digits after 9, you have to put a 1 in the tens column and then
go back to 0 in the ones column, as shown in the following example:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, . . . , 99, 100

The process of counting in this manner is the same for any base. In base 2, you
start counting at 0 and then go to 1. When you get to 1, you have run out of
digits, as you did at 9 in base 10. So you put a 1 in the twos column and go
back to 0 in the ones column. When you get to 11, you have to go to 100, as
you do with 99 in decimal:

0, 1, 10, 11, 100, 101, 110, 111, 1000

Base 16 (hexadecimal) has more digits than base 2 or base 10. Counting still
starts at 0 and continues in the same column until you reach the highest possi-
ble value, F. Then you put a 1 in the sixteens column and set the ones column
back to 0:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 11,

12, . . . , FF, 100

What’s important is not stressing over counting in other base numbering
systems. Because you already know how to count in base 10, you actually know
how to count in the others.

To help you become familiar with different names for numbering systems,

the following terms are used interchangeably in this chapter: base 10 or

decimal, base 2 or binary, and base 16 or hexadecimal.

7

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

254 chapter seven

positional value
A key principle of numbering systems is positional value. In any number-
ing system, each position or digit in a number has a positional value. You’re
familiar with the base 10 positional values of ones, tens, hundreds, thou-
sands, ten thousands, and so on. This concept exists in all numbering
bases. The value of each position in a number (positional value) is found
by raising the base of the number to the power indicated by the position.
The positions of a number start with a power of 0 in the rightmost place,
and then increase by 1 for each position going left. Negative powers begin
with -1 at the right of the radix point. The term “radix point” is used
instead of decimal point because the number might not be in decimal.
“Radix” is synonymous with “base.”

For the number 436.95, the 4 is in position two, the 3 is in position one, and the
6 is in position zero. To the right of the radix point, the 9 is in position -1, and
the 5 is in position -2.

The positional value of each digit in a number specifies what multiplier the
position gives to the overall number. For example, in the decimal (base 10)
number, 4321, the digit 3 is multiplied by the positional value of the
position it’s in, which is 100 (102). The rest of the digits in the number are
multiplied by their positional values: The 4 is in the thousands position, the
2 is in the tens position, and the 1 is in the ones position. The digit in each
position is multiplied by the value of the position. Then the results of these
multiplications are added, giving you the total number of things being
counted. Figure 7-1 shows how positional values work in base 10 numbers.

Figure 7-1 shows the positional values for the number 3456.123 as a power of 10,
which is the base, and as a number. You can see that 3 thousands, 4 hundreds,
5 tens, and 6 ones precede the radix point. Following the point is 1 tenth,
2 hundredths, and 3 thousandths.

Now consider a base 2 (binary) number, such as 10112. (The subscript 2 in
the number 10112 indicates that the number is in base 2.) With binary num-
bers, each position also has a place value, as in base 10 numbers. Following the
rule established previously, the rightmost position has a positional value of the
base (2) raised to the 0 power. Again, any number raised to the 0 power has a

positional value – The nu-
merical value each position
in a number has; calculated
by raising the base of the
number to the power of
the position

radix point – The point
that divides the fractional
portion from the whole
portion of a number; in the
decimal numbering system,
it’s referred to as a decimal
point

Figure 7-1, Positional values for a base 10 number

3456.1233456.123

100 = 1100 = 1
101 = 10101 = 10
102 = 100102 = 100
103 = 1000103 = 1000

10-1 = .110-1 = .1

10-2 = .0110-2 = .01

10-3 = .00110-3 = .001

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

number ing sys tems and data representa t ions 255

7

value of 1. So the positional value of the rightmost digit is 1. The next posi-
tion has a value of 2 raised to the power of 1. The next position is 2 squared,
and the next is 2 to the third. Figure 7-2 shows the positional values for a base
2 number.

As shown, the positional value of a number is significant because it gives the
weight each digit contributes to the number’s overall value. You have probably
never given this concept much thought, as you have dealt with decimal
numbers all your life. As you begin using numbers from other bases, however,
you have to pay attention to and deal with positional values.

how many things does a number represent?
Positional values are used to calculate how many of something a number repre-
sents. The process is to multiply each digit of the number by its positional value
and then add all those values together. So the number 10012 is equivalent to nine
things. The number 9 is calculated like this: (1 * 20) 1 (0 * 21) 1 (0 * 22) 1
(1 * 23).

With a little practice, you should become comfortable evaluating numbers in
any base by using the following steps:

1. Calculate the value for each position of the number by raising the base
value to the power of the position.

2. Multiply the positional value by the digit in that position.

3. Add all the calculated values together.

Now try applying these steps to a decimal, binary, and hexadecimal number.
Start with the number 234510. Using this process with a base 10 number might
seem a little redundant, but the practice will help when you’re calculating in
other bases.

1. Calculate the value for each position of the number by raising the base
value to the power of the position:

100 5 1 (Any number to the 0 power is 1.)
101 5 10 (Any number to the 1 power is the number itself.)
102 5 100
103 5 1000

Figure 7-2, Positional values for a base 2 number

1011.0111011.011

20 = 120 = 1
21 = 221 = 2
22 = 422 = 4
23 = 823 = 8

2-1 = .52-1 = .5

2-2 = .252-2 = .25

2-3 = .1252-3 = .125

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

256 chapter seven

2. Multiply the positional value by the digit in that position:

1 * 5 5 5
10 * 4 5 40
100 * 3 5 300
1000 * 2 5 2000

3. Add the calculated values together:

5 1 40 1 300 1 2000 5 2345

Calculating the number of things represented by a base 2 number, such as
101001102, is a bit more difficult, but the steps are the same as for a base
10 number.

1. Calculate the value for each position of the number by raising the base
value to the power of the position:

20 5 1
21 5 2
22 5 4
23 5 8
24 5 16
25 5 32
26 5 64
27 5 128

2. Next, multiply the positional value by the digit in that position:

1 * 0 5 0
2 * 1 5 2
4 * 1 5 4
8 * 0 5 0
16 * 0 5 0
32 * 1 5 32
64 * 0 5 0
128 * 1 5 128

3. Finally, add the calculated values together:

0 1 2 1 4 1 0 1 0 1 32 1 0 1 128 5 166

Performing the same process in base 16 (hexadecimal) is more difficult because
the numbers are larger, but it works exactly the same as the others. For the hex
number 567816, the process goes like this:

1. Calculate the value for each position of the number by raising the base
value to the power of the position:

160 5 1
161 5 16
162 5 256
163 5 4096

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

number ing sys tems and data representa t ions 257

7

2. Next, multiply the positional value by the digit in that position:

1 * 8 5 8
16 * 7 5 112
256 * 6 5 1536
4096 * 5 5 20,480

3. Finally, add the calculated values together:

8 1 112 1 1536 1 20,480 5 22,136

Remember that in base 16 (hexadecimal), digits larger than 9 are A–F. These
digits have (decimal) values of 10–15. Otherwise, the process is exactly the
same. For the hex number ABCD16, the process goes like this:

1. Calculate the value for each position of the number by raising the base
value to the power of the position:

160 5 1
161 5 16
162 5 256
163 5 4096

2. Next, multiply the positional value by the digit in that position:

1 * D (13) 5 13
16 * C (12) 5 192
256 * B (11) 5 2816
4096 * A (10) 5 40,960

3. Finally, add the calculated values together:

13 1 192 1 2816 1 40,960 5 43,981

convert ing numbers between bases
Because all numbering system bases are just a way of counting things, it
stands to reason that for any quantity, there’s a number in any base to repre-
sent it. Table 7-1 shows how quantities from 0 to 20 are represented in bases
2, 10, and 16. Note that as you’re counting, when you reach the highest digit
for a base, you must add 1 to the next higher position to the left and return
to 0 in the position you’re working with. For example, base 2 counting starts
with 0, and then goes to 1. Because there are no more digits to work with in
base 2, you add a 1 to the column to the left and return to 0. There wasn’t a
value in the column to the left, so in effect, you added 1 to 0 to get the next
value, 10. Base 10 runs out of digits at 9 and doesn’t need to go to 10 until
then. Base 16 doesn’t run out of digits until F. When F is reached, the next
value is 10.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

258 chapter seven

Table 7-1, Counting in different bases

base 10 base 2 base 16

0 0 0

1 1 1

2 10 2

3 11 3

4 100 4

5 101 5

6 110 6

7 111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

16 10000 10

17 10001 11

18 10010 12

19 10011 13

20 10100 14

If you created a giant counting table going from 0 to a huge number, you could
convert numbers from one base to another by looking up the number for one
base and finding its counterpart in another column. No one wants to carry
around a book containing a table this big, however. Fortunately, there’s an
easier way. You can use some simple mathematics to convert from one base to
another.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

7

number ing sys tems and data representa t ions 259

converting to base 10
Converting to base 10 from any other base makes use of what you have learned
about the positional value of numbers.

You can experiment with a simple conversion from base 2 to base 10. Using
Table 7-1, look down the base 2 column to the value 10011. Remember that
each position in a number has a positional value, which is calculated by raising
the base to the power indicated by the position. The first position on the right
has a positional value of 1 (20). Because a 1 is in that position, the positional
value is multiplied by 1, resulting in 1. The next position has a value of 2 (21)
and is multiplied by the digit 1 in that position. The next two digits are 0s.
These positions could be calculated by using their positional values, but 0s
don’t contribute to the value of a number, so they can be skipped. The final
digit 1 is in position 4. The base of 2 raised to the power of 4 is 16. Because a
1 is in that position, 16 needs to be added to the total. To finish the calcula-
tion, add 16 1 2 1 1, which equals 19. This conversion process calculates the
binary value 10011 to be equivalent to the decimal value 19. Table 7-1
confirms that this calculation is correct.

Converting base 16 (hexadecimal) to base 10 (decimal) follows the same
process. (Remember that hexadecimal has 16 possible digits, 0–F.) The letters
A–F are used in hexadecimal to represent numeric values above 9.

To convert the hexadecimal value 1316 to its decimal counterpart, multiply the
digit in each position by its positional value, and add the results. The first digit
on the right is a 3 and is in position 0. Because position 0 always has a value of
1 in any base (160), the 3 in that position is multiplied by 1, resulting in 3. The
next digit to the left, 1, is in position 1. Raising the base 16 to the power of
1 gives 16. Multiply the positional value of 16 by the digit in that position
(16 * 1 5 16). Adding the calculated values for each position (16 1 3) results
in 19. Refer to Table 7-1 to verify your answer.

Although larger numbers result in larger total values, the process is the same.
Converting from any base to decimal always follow these steps.

converting from base 10
Converting from base 10 to any other base (the target base) is the reverse of con-
verting to base 10. To use this positional value method, follow these general steps:

1. Examine the decimal number to determine which positional value in the
target base is the nearest to or equal in value to the decimal number,
without going over. If the number is less than or equal to the highest value
in the base, it’s the last (rightmost) digit of your converted number.
Otherwise, you go on to Step 2. Example: For the decimal number 2604,
the nearest hexadecimal positional value that isn’t greater than 2064 is 256.
The next hexadecimal positional value, 4096, is greater than 2604.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

260 chapter seven

2. Determine how many times that positional value can be divided into the
decimal number, and write down that value. Example: 256 goes into 2604
10 times, so write down a hexadecimal A, which is the hex equivalent for a
decimal 10.

3. Multiply the number from Step 2 by the associated positional value, and
then subtract the product from the number you chose in Step 1. The result
is the remainder. Example: Subtracting 2560 (10 * 256) from 2604 gives a
remainder of 44.

4. Use the remainder from Step 3 as a new starting value, and repeat Steps 1
through 3 until the Step 1 value is less than or equal to the maximum
value in the target base. Example: Use decimal 44 as the starting point in
repeating Steps 1 to 3.

5. The converted number is the digits you’ve written down, in order from left
to right.

This method might seem confusing, but an example makes it clearer. Try a
small number first, such as converting the decimal number 815 to its
hexadecimal counterpart:

1. Hexadecimal numbers have positional values that are powers of 16:

160 5 1
161 5 16
162 5 256
163 5 4096

The highest positional value (without going over) nearest to 815 is the
256 position, so choose this value.

2. The positional value 256 goes into 815 three times, so write down a 3.

3. Next, multiply the hexadecimal 3 by the positional value 256, which gives
you 768. Subtract this value from 815, resulting in 47, which is the re-
mainder.

4. The remainder from Step 3 becomes the new starting point for repeating
Steps 1 through 3, as shown in the next steps.

5. The highest positional value (without going over) nearest to 47 is the
16 position, so choose this value.

6. The positional value 16 goes into 47 two times, so write down the value 2.

7. Next, multiply the 2 by the positional value 16, which gives you 32.
Subtract this value from 47, resulting in 15 (hex F). The value F is equal
to the highest hexadecimal value (F), so you’re finished with the conversion
process.

8. Finally, write down 32F as the hexadecimal equivalent of the decimal
number 815.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

7
n o t e

number ing sys tems and data representa t ions 261

Figure 7-3, Adding numbers in binary

1100011000

1011
+1101

1011
+1101

11 11 11

1 + 1 = 10
Bring the 0 down
and carry the 1

1 + 1 = 10
Bring the 0 down
and carry the 1

1 + 1 +1 = 11
Bring the 1 down
and carry the 1

1 + 1 +1 = 11
Bring the 1 down
and carry the 1

1 + 0 + 1 = 10
Bring the 0 down
and carry the 1

1 + 0 + 1 = 10
Bring the 0 down
and carry the 1

1 + 1 + 0 = 10
Bring the 0 down
and carry the 1

1 + 1 + 0 = 10
Bring the 0 down
and carry the 1

Working through a few more of these conversions helps you get comfortable
with them. Of course, you can always use a calculator that converts from one
base to another, but knowing how the conversion process works is important.

The Windows calculator (Start, [All] Programs, Accessories) can convert

between hex, binary, and decimal. Try a few examples manually, and then

use the Windows calculator to check your work. Make sure the calculator

is in the Scientific view.

binary and hexadecimal math
You have been adding and subtracting decimal numbers for most of your life
but probably haven’t given much thought to exactly what you’re doing. Try
adding the decimal numbers 685 and 925. Did you get 1610? What process
did you go through to get this result? The process is important because you use
the same process for any base.

You started by adding the rightmost digits of the numbers (5 1 5 5 10).
Because 10 is larger than 9, you put a 0 in that position and carried the 10 as
a 1 to the next position. Then you added the carried 1 to the 8 and 2 in the
next numbers you were adding. Adding 8 1 2 1 1 results in 11, so again a
10 was carried as a 1 to the next position to the left. Finally, 6 and 9 were
added to the carried 1, resulting in 16. The 6 was placed in that position, and
the 10 was carried as 1 to the next position. The result was the number 1610.

Adding numbers in other bases follows nearly the same steps as in decimal num-
bers. The only difference is the carry process. In decimal, you carry 10 to the next
column. What you’re actually doing is carrying the base to the next column. So
when you add numbers in other bases, you still carry the base to the next column.

Figure 7-3 is an example of adding two binary numbers by using the process
described previously. Note that in binary, 1 1 1 doesn’t equal 2. In binary,
there isn’t a digit 2, so 1 1 1 equals 10.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

262 chapter seven

You can also multiply and divide in any base, much as you do with decimal
numbers, but these topics are beyond the scope of this book.

data representation in binary
Remember, computers are capable of storing only binary information. The
transistors that make up a computer can exist in only one of two states: on or
off. So everything that takes place in the computer and is stored in the
computer must be stored as base 2 values. Therefore, you need to understand
binary to examine and analyze the contents of memory, hard disk data, and
Internet packets.

Each 1 and 0 (on and off) in a computer is referred to as a bit (binary digit).
A byte is a group of 8 bits. Computer systems also have larger groups of bits
referred to as words. In addition, half a byte is 4 bits, sometimes referred to as a
nibble (a term no doubt coined by a computer scientist with a sense of humor).

Humans have a difficult time dealing with the large binary numbers that
computers use. To make it easier, computer scientists sometimes use hexadeci-
mal as a shorthand method for representing binary values. Each hexadecimal
digit corresponds to a 4-bit binary pattern. Therefore, a long binary value can
be represented in hexadecimal by using one-fourth as many digits. For exam-
ple, the binary number 1111101011001110 is equivalent to the hexadecimal
number FACE. Test it for yourself by taking the binary number and grouping
the bits into sets of four, beginning on the right. The groups are 1111, 1010,
1100, and 1110. Then check Table 7-1 to get the hexadecimal counterpart of
each 4-bit binary number. When separating these binary digits into groups of

Figure 7-4, Subtraction with base 2 numbers

0110

1011
-0101

0

1 - 1 = 0After the borrow,
the top value is 0:
0 - 0 = 0

0 is less than 1, so 10
is borrowed from the
next column to the left,
reducing it to 0:
10 - 1 = 1

1 - 0 = 1

bit – The abbreviation for
“binary digit”; a bit is a 1
or a 0 and is the smallest
unit of representation in a
computer system

byte – A group of 8 bits
considered as one unit and
used as the basic unit of
measurement in a com-
puter system; memory is
measured in number of
bytes, for example

word – A group of bits in
a computer system; the
number of bits in a word
depends on the machine,
but common word sizes are
16, 32, and 64 bits; a typical
computer system manipu-
lates bits in word
increments

nibble – A term sometimes
used to refer to 4 bits (half
a byte)

Subtraction in other bases follows the same process used in subtracting base 10
numbers. When the top number is smaller than the bottom, you borrow an
amount equal to the base from the column to the left. In decimal, you borrow
10s. In binary, you borrow 2s. Borrowing from the column to the left reduces it
by 1. Figure 7-4 shows an example of subtraction with base 2 numbers.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

number ing sys tems and data representa t ions 263

7

whole (integer)
number – A number (posi-
tive, zero, or negative) that
has no fractional portion

n o t e

four, you must begin grouping on the right. Grouping from the left gives
you an erroneous value if the number of binary digits isn’t an even multiple
of four.

Each hexadecimal digit corresponds to a 4-bit binary pattern. Table 7-1

shows the relationship between hex and binary.

You can also create a binary equivalent for a hexadecimal value by replacing
each hexadecimal digit with its 4-bit counterpart. The hex value C2D4, for ex-
ample, is equivalent to the binary value 1100001011010100. Again, you can
use Table 7-1 to do this conversion.

With this information, you can understand some of what’s displayed in “blue
screen” errors and other messages. The error message shown at the beginning
of this chapter contains hexadecimal values representing the actual binary
information stored in the computer at the time the error occurred. Computer
programmers can use this information to pinpoint the exact location of the error.

Everything that’s stored in or displayed on a computer is in binary. The next
time you play a game on your computer, you might ponder the fact that
everything you’re seeing—and everything the computer is doing that you don’t
see—is the result of little transistors turning on and off to form binary bit
patterns. Or you might concentrate on the game so that you can win!

representing whole numbers
Whole numbers, or integer numbers, can be represented internally in a computer
as simple binary integers, similar to the ones you worked with earlier in the
chapter. These whole numbers are always stored in a fixed number of bits. For
example, the year 2010 is stored as the 16-bit integer value 0000011111011010.
This binary value is displayed as the equivalent hex value 07DA.

Negative numbers need to be represented in a computer, too. The binary
numbering system contains only the value of the number, or its magnitude. It
doesn’t contain the number’s sign, so techniques need to be devised to allow
storing both the sign and magnitude of a number. Various ways of storing
signed numbers in binary have been devised, but the most commonly used is
the twos complement method. In this method, the leftmost bit of the binary
number is reserved as a sign bit: A 0 is used to indicate positive numbers, and
a 1 indicates negative numbers. The remaining bits are used to store the num-
ber’s absolute value, or magnitude. The twos complement method involves
performing a conversion on binary digits if the number is negative. If the
number is positive, it’s left as is.

twos complement – A
method of representing
negative numbers in a com-
puter system; a binary
number is converted to
twos complement format by
flipping, or reversing, the
state of each bit and then
adding 1 to the entire word

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

264 chapter seven

To perform a twos complement operation on a number to store it as a negative
value, the number is first converted from decimal to binary, as described earlier.
Then each bit of the number is reversed, or flipped, to the opposite state.
Finally, a binary 1 is added to the complete binary number (the word).

Say your checkbook has a negative balance of $124. In a 16-bit signed integer
field, this value is represented as 11111111100001002 (FF8416) by using the
following process:

1. Convert the decimal value 124 to binary:

12410 5 1111100

2. Place the binary value into a fixed-length field of 16 bits, extending leading
0s to the left:

0000000001111100

3. Then reverse or flip the bits:

1111111110000011

4. Finally, add a 1 to the entire number, using binary addition:

1111111110000100

The final result containing the twos complement negative binary number can
also be represented in hex as FF84. Figure 7-5 shows the process of converting
both positive and negative numbers to the twos complement format.

Figure 7-5, Storing numbers in a twos complement 8-bit field

1100110000110100

-52+5252 decimal is
equivalent to
binary 110100

52 decimal is
equivalent to
binary 110100

In twos complement,
positive numbers are
simply stored as binary
values, with leading 0s
to fit the field size

Start with 00110100
Flip the bits to get 11001011
Add 1 to get 11001100

Computers distinguish between signed binary numbers and unsigned binary
numbers by examining a number’s first bit. If the first bit is a 1, the number is
treated as a twos complement negative number. If the first bit is 0, the number
is positive and left as it is.

To ensure that the number’s sign is always in the first bit, both signed and un-
signed numbers in a computer are designed to always take up the same number

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

number ing sys tems and data representa t ions 265

7

of bits. Having a 32-bit, signed integer field indicates that a positive or negative
number stored in this field always has 31 bits, with the sign being in the
remaining bit. Positive numbers have leading 0s to fill the 31 bits. Negative
numbers have leading 0s before the twos complement process.

Note that having a fixed number of bits reserved to hold a number also limits
the maximum value the number can represent. A number placed in a
32-bit field can’t exceed the binary value that the 31 available bits can
represent.

representing fractional numbers
In the real world, numbers other than whole integer numbers need to be repre-
sented. For example, if the ATM shows your balance as $1.53, the computer
needs to store the 53 cents somehow. You’ve learned how the computer stores
integers, both positive and negative. How does it store fractional portions of
numbers or numbers to the right of the decimal point? In addition to storing a
fractional number, computers must also be able to store whether the number is
positive or negative.

Computer designers faced the question of how to store fractional numbers years
ago and came up with a technique that the Institute of Electrical and Electronics
Engineers (IEEE) adopted. You might be familiar with this floating-point or
scientific notation of numbers. Perhaps you’ve seen a number such as 1.345E15
on a calculator display. This method of displaying numbers uses a mantissa and
an exponent. The mantissa (1.345) contains the number’s significant digits (that
is, excluding zeros), and the exponent (15) indicates where to place the decimal
point. The E in base 10 notation means “10 to the power of.” The number
1.345E15 means the actual number is 134,500.

The IEEE-754 specification, which dictates how floating-point numbers are stored
in most Intel-based computers, uses binary mantissas and exponents. The details of
the IEEE-754 specification and other floating-point storage techniques will come
later in your studies. For now, you just need to understand that they exist, and you
might have to interpret them at some point in your career.

representing characters
In addition to numbers, computers need to be able to store characters.
Characters have no mathematical relationship between them, however, so the
method of storing them is different from storing numbers.

Early in the history of computers, the American National Standards Institute

(ANSI) met to standardize the way characters are represented in computers. This

floating-point or scientific
notation – A method of
representing numbers
containing fractional values
consistently; uses a mantissa
and an exponent, such as
3.144543E+8

mantissa – In scientific
notation, it contains the
number’s significant digits
and is placed before the
exponent

exponent – In scientific
notation, it's the power of
the base and is multiplied
by the mantissa to give the
actual number

IEEE-754 – A standard for
the binary representation
of floating-point numbers;
it’s the 754th standard
proposed by the IEEE

American National
Standards Institute (ANSI) –
An organization that works
with industry groups to
formulate and publish
standards

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

266 chapter seven

American Standard Code
for Information Interchange
(ASCII) – A standard for
storing text characters in
computers; the ASCII stan-
dard allows representing
128 possible characters with
7 bits

Extended ASCII – A method
for storing characters with
an 8-bit code; adds 128
more characters to the
original 7-bit ASCII code

Unicode – A 16-bit standard
for storing text or script
information; defines 34,168
unique characters and
control codes

group formulated a character set coding scheme of 7-bit patterns as a standard
way of representing characters with specific bit patterns. This scheme is called
American Standard Code for Information Interchange (ASCII).

Table 7-2 shows a partial listing of the ASCII character set. (For a more complete
chart, see Appendix B.) The ASCII character set provides for uppercase and lower-
case English characters, numerals, punctuation, and additional special characters. It
also has bit patterns set aside to represent control characters for video displays and
printers. In total, ASCII provides for 128 (27) different characters.

Table 7-2, Sample standard ASCII characters

decimal hex binary
symbol representation representation representation

space 32 20 00100000

$ 36 24 00100100

1 49 31 00110001

9 57 39 00111001

A 65 41 01000001

Z 90 5A 01011010

a 97 61 01100001

z 122 7A 01111010

} 125 7D 01111101

As computers became used more globally, additional characters needed to be
supported. The original ASCII specification was limited to 128 characters, so a
new character set was defined with 8 bits instead of 7. This new code, Extended

ASCII, allowed for 128 additional characters, bringing the total to 256.

Still, for script languages, such as Arabic and Asian languages, Extended ASCII
didn’t provide for enough characters. Another group met and proposed a new
standard called Unicode. Unicode provides for 34,168 unique characters and
is compatible with ASCII. It’s becoming the standard method of character
representation.

When you’re typing characters into your computer, they’re being stored as
binary patterns in ASCII, Extended ASCII, or Unicode format. All character
data, such as data in databases, is stored on the hard disk in this format, too.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

number ing sys tems and data representa t ions 267

pixel (picture element) –
The basic unit of program-
mable color on a computer
display or in a computer
image; its physical size
depends on the display
device’s resolution

RGB encoding – A method
of defining a pixel’s color
and brightness in terms of
intensity of the colors red,
green, and blue

7

representing images
You’ve learned now that everything going on in a computer is done in binary.
Video displays and printers are no exception.

If you look closely at your computer monitor, you can see that what’s displayed
on the screen is not a solid image. It’s made up of small dots of colored light.
Each dot is referred to as a pixel (picture element), which is the smallest unit
that can be displayed on a computer monitor. Pixels are arranged in rows and
columns. The number of pixels in each row and column defines the display
device’s resolution. A common resolution on a PC monitor is 1024 3 768,
which means the monitor is displaying 768 rows with 1024 dots, or pixels, in
each row. As the resolution numbers get larger, the size of each pixel gets
smaller.

As you might have guessed, each pixel is stored in the computer as a
binary pattern containing information about its color and brightness. This
binary pattern can be 8 bits and allow up to 256 different levels of color
and brightness, or, it might be 24 bits per pixel, allowing more than
16 million different colors. One common way of encoding pixel informa-
tion is assigning a value to each of the colors red, green, and blue, with each
color using 8 of the 24 bits. This method is referred to as RGB encoding. If
all 24 bits are 1s, the pixel is displayed as bright white. If all the bits are 0s,
the pixel is displayed as black. Values other than all 0s or all 1s are perceived
as colors made up of the amount of red, green, and blue specified in each
8-bit section.

Images, such as photos, can also be stored in the same manner. When a pattern
of bits is stored for each pixel, these bitmap (BMP) files can be very large.
A photo with 1024 3 768 resolution consists of 786,432 pixels. If each pixel
uses 24 bits to store color information, the file size is more than 2 million bytes
(2 MB). Large image files can be slow to send over the Internet, so compression
techniques have been devised to allow storing the same image information in a
smaller file. JPG and GIF are examples of compressed image formats. The com-
pression techniques used in these formats take advantage of repeating patterns
and colors to replace the pixels they consist of with special codes.

Moving images are stored in a similar manner. Movies on DVDs, for example,
are just series of still images displayed one after another at a rate of nearly
30 images per second. Compression is essential to store and display images at
this rate. Examples of video compression formats are MPEG (MPG),
QuickTime (MOV), and Windows Media Video (WMV).

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

268 chapter seven

representing sounds
Sounds are stored in the computer in a manner similar to images. A sound
consists of a waveform with amplitude (volume) and frequency (pitch). The
computer samples sounds at fixed intervals, and each sample is assigned a
binary value, according to its amplitude (see Figure 7-6). The number of bits
used for each sample determines how many unique amplitude levels can be
represented. You might have noticed that an audio file’s properties contain
information about the file’s sampling rate and size. To achieve CD-quality
audio, the sound must be sampled more than 44,000 times a second, and each
sample must be 16 bits, allowing more than 65,000 different amplitudes.

Raw audio samples are often stored in uncompressed file formats, such as WAV

files. Sound files can also be quite large, so compression techniques, such as
MP3, are useful.

Representing sounds and images is an evolving science. Computer scientists are
constantly striving to make sound and image files smaller. Perhaps you’ll come
up with a new method of compression that will revolutionize the multimedia
industry. If you’re interested, you can find more detailed information about
image and sound formats on the Internet.

one last thought
Understanding number conversions and data representations is vital to excelling
in the computer field. Because everything that’s stored in or takes place on a
computer is ultimately done in binary, being able to “talk” binary is necessary
to create new ways of executing instructions and storing data.

WAV – An audio file format
that has become a standard
for everything from PC
system and game sounds to
CD-quality audio

MP3 (MPEG-1 Audio
Layer-3) – A standard
technology and format for
compressing a sound
sequence into a small file,
compared with an
uncompressed sound file,
such as a WAV file

Figure 7-6, Digital sampling of a sound wave

timetime

am
p

lit
u

d
e

am
p

lit
u

d
e

frequencyfrequency

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

number ing sys tems and data representa t ions 269

7

Although learning to program or to manage a database without understanding
binary and hexadecimal is possible, having this understanding gives you a better
foundation than others who don’t have it. Computer professionals who have a
strong understanding of the concepts in this chapter are better at whatever they
specialize in. For this reason, they’re usually more essential in their organiza-
tions. Typically, they’re the last ones to go when there are layoffs, and they’re
more likely to find new employment soon. Wouldn’t you want to be this type
of person?

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

• The powers of a number can be calculated by multiplying the base, or radix,
by the exponent.

• Numbering systems are used to count things.

• The positional value of each digit in a number can be calculated by raising the
base of the number to the power indicated by the position.

• Numbers in one numbering system can be converted to any other numbering
system.

• Converting to and from base 10 and any other base follows a set procedure.

• The hexadecimal numbering system is used as a shorthand for binary values.

• Whole numbers can be represented in binary by using signed or unsigned
techniques.

• Fractional numbers can also be represented in binary.

• Binary values are also used to represent characters, images, and sounds.

American National Standards Institute
(ANSI) (265)

American Standard Code for Information
Interchange (ASCII) (266)

binary (253)

bit (262)

byte (262)

exponent (265)

Extended ASCII (266)

floating-point or scientific notation (265)

hexadecimal (hex) (253)

IEEE-754 (265)

integer number (263)

c h a p t e r s u m m a r y

k e y t e r m s

270 chapter seven

mantissa (265)

MP3 (268)

nibble (262)

pixel (267)

positional value (254)

radix point (254)

RGB encoding (267)

twos complement (263)

Unicode (266)

WAV (268)

whole number (263)

word (262)

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

7

number ing sys tems and data representa t ions 271

1. What does the subscript 10 indicate in the number 345610?

2. What does the superscript 10 indicate in the number 210?

3. What is the value of 28?

4. What is the positional value of the first digit on the left of the binary num-
ber 10110?

5. What is the largest number of items that can be represented with 4 binary
bits?

6. What is the positional value of the A in the hexadecimal number CAFE?

7. What numeric value in base 10 does the binary number 10101010 repre-
sent?

8. What is the binary equivalent of the decimal number 345?

9. What base 10 value is equivalent to 1C4B16?

10. What base 16 value is equivalent to 257610?

11. What numeric value in hexadecimal is equivalent to the binary number
1011111010101101?

12. What binary value is equivalent to the hexadecimal number C43A?

13. What is the binary result of adding the binary numbers 1001 1 1111?

14. What is the twos complement value of the binary number 01110110?

15. How many unique characters does Extended ASCII allow?

16. How many pixels is a computer monitor with a resolution of 1024 3 768
capable of displaying?

17. What is the ASCII code (in hex) for the uppercase letter A?

18. How many different colors can be represented with a 24-bit pixel?

19. Which of these image formats—BMP, JPG, GIF—is not compressed?

20. Any number raised to the 0 power returns a value of what?

t e s t y o u r s e l f

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

1. What does the subscript 16 indicate in the number C4A616?

a. An exponent of 16
b. A positional value of 16
c. A base 16 number
d. None of the above

2. What does the superscript 3 indicate in the number 163?

a. An exponent of 3
b. A positional value of 3
c. A base 3 number
d. None of the above

3. What is the value of 163?

a. 163
b. 48
c. 4096
d. 256

4. What is the positional value of the 1 in the binary number 100000?

a. 64
b. 32
c. 16
d. 8

5. What is the largest number of items that can be represented with four
hexadecimal digits?

a. 4096
b. 40,960
c. 65,536
d. None of the above

6. What is the positional value of the A in the hexadecimal number BEAD?

a. 2
b. 10
c. 16
d. 32

7. What numeric value in base 10 does the binary number 10000001
represent?

a. 129
b. 10,000,001
c. 65
d. None of the above

p r a c t i c e e x e r c i s e s

272 chapter seven

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

number ing sys tems and data representa t ions 273

7

8. What is the binary equivalent of the decimal number 543?

a. 11111011110111
b. 101100111
c. 1011010011
d. 1000011111

9. What base 10 value is equivalent to 3C0D16?

a. 15,373
b. 32,767
c. 68,536
d. 10,125

10. What base 16 value is equivalent to 123410?

a. ABC
b. 4D2
c. C34
d. A65

11. What numeric value in hexadecimal is equivalent to the binary number
1101111010101101?

a. BCAF
b. BE6C
c. 6FAD
d. DEAD

12. What binary value is equivalent to the hex number C43A?

a. 1100100100010110
b. 1100110101111010
c. 1100010000111010
d. 1100001101011101

13. What is the binary result of adding the binary numbers 0110 1 1101?

a. 10011
b. 1111
c. 01101101
d. 101001

14. What is the twos complement value of the binary number 010100110?

a. 101011001
b. 101011010
c. 010100111
d. None of the above

15. How many unique characters does ASCII allow?

a. 16
b. 32
c. 128
d. 255

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

16. How many total bits are required to store 24-bit color information for a
1024 3 768 display?

a. 18,874,368
b. 786,432
c. 1024
d. 24

17. What is the ASCII code (in hex) for the lowercase letter z?

a. 7A
b. 80
c. 32
d. AB

18. What is the minimum number of bits required to represent 256 colors?

a. 4
b. 8
c. 16
d. 32

19. What color is represented if all the pixel bits are 1s?

a. Red
b. Black
c. Cyan
d. White

20. Any number except 0 raised to the power of 1 is what?

a. 1
b. The positional value times the digit
c. The number itself
d. None of the above

1. Can all numbering system bases be used as shorthand for binary? If not all
bases, which bases can?

2. What other image formats are there, besides JPG, BMP, and GIF? What
are the strengths and weaknesses of each?

3. How would you calculate the value of a number with a fractional power?

4. What are some alternative methods of converting from base 10 to other
numbering system bases?

5. What is the purpose of the ASCII codes 010 to 2610?

d i g g i n g d e e p e r

274 chapter seven

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

7

number ing sys tems and data representa t ions 275

1. What are possible implications for computing if a transistor-type device
could be created with 10 stable states?

2. In working with computers, what types of situations require knowledge of
numbering systems?

3. What types of compression techniques can be used to make image and
sound files smaller?

4. What are the word sizes in the most widely used computer systems? What’s
the significance of a word size?

5. How can a hex editor be used to examine the contents of memory and
disks?

1. Where are standards, such as IEEE-754, available on the Internet?

2. What is the history of numbering systems?

3. What are some examples of Web pages and downloadable programs that
can convert between different forms of data representations and numbering
systems?

4. What are the advantages and disadvantages of each image and sound
format discussed in the chapter?

5. What do the hexadecimal values in a typical “blue screen” fatal error
message represent?

d i s c u s s i o n t o p i c s

I n t e r n e t r e s e a r c h

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

c h a p t e r

da ta s truc tures

8

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

i n t h i s c h a p t e r y o u w i l l :

• Learn what a data structure is and how it’s used

• Learn about single-dimensional and multidimensional arrays and how they work

• Learn what a pointer is and how it’s used in data structures

• Learn that a linked list allows you to work with dynamic information

• Understand that a stack is a linked list and how it’s used

• Learn that a queue is another form of a linked list and how it’s used

• Learn that a binary tree is a data structure that stores information in a hierarchical order

• See an overview of several sorting routines

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

As soon as you flip the page, you’re going to be bombarded with a list of words you’re probably not
familiar with, such as “pointers,” “arrays,” “stacks,” and “queues.” Don’t stress out! Calmly pick up your

book, slowly walk to the nearest open window, gently hurl the book through the open window,
and change your major to art. I’m kidding, of course. Change it to sociology.

Actually, these concepts aren’t as complicated as they seem at first. There are examples all around you. You see
an example of a pointer when you attend a commencement and somebody in the audience uses a laser pen to

point out to the rest of the audience where the
speaker’s forehead is.

Arrays can be extremely useful for keeping track of large quantities of information when all the entries are of
the same type. This technology has given NASA scientists the ability to keep track of Brangelina’s kids.

Stacks are found everywhere, too. In fact, I was near the bottom of a stack the other day. This stack consisted
of my two cousins, my three brothers, and myself and was created when my brother initialized the stack

with the command “Doggypile!” NOTE: FIFO doesn’t work with doggypile stacks, as demonstrated by my
cracked ribs. (Feel free to return and laugh at this statement after you’ve read the chapter.)

Most of us stand in at least one queue (or “line,” as it’s called in the United States) on a daily basis, whether it’s
in the supermarket, at a restaurant, or for the shower in the morning when all your roommates and you try to

get ready for school at the same time. In fact, I almost had a little “buffer overflow” as I stood in the
extremely long queue for the restroom at a football game recently.

You see, data structures aren’t that difficult. When these technical terms are applied to aspects of everyday
life, learning these principles becomes easy enough that anybody can do it—even an art major.

the lighter side of the lab
by spencer

278 chapter eight

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

data s truc tures 279

d a t a s t r u c t u r e s

A doctor, an engineer, and a computer scientist were discussing which of their professions

had been around the longest. The doctor said, “In the beginning, there was Adam and Eve.

Someone had to know medicine to create Adam and Eve.” The engineer turned to the doc-

tor and said, “Before Adam and Eve could live on the earth, it had to be created. Someone

had to know engineering to create the earth.” The computer scientist just laughed and said,

“You’re both wrong! In the beginning, there was chaos. Who do you think created all that

chaos?”

For a computer to be effective, there must be some type of organization. Without it, chaos

would run rampant. The computer couldn’t access and retrieve memory effectively, and system

response time would be unbearably slow. In fact, computers would perform so horribly that

they would be worthless. Data structures organize data in a computer and make it possible to

access and process data in an efficient and meaningful way.

All programs use some form of data, and to be able to write effective computer programs,

you must understand the basics of a data structure and how it’s used. As you learn more

about programming and begin writing computer programs, you’ll find many occasions for

using the kinds of data structures introduced in this chapter.

data structures
Why worry about organizing data on your computer? Think of your bedroom.
How hard is it to find something you’re looking for? If your room is organized
and clean, finding an item is a lot easier and quicker. If it’s messy and disorga-
nized, you have to look through everything to try to find an item, which takes
time and energy.

A data structure can be defined as a way of organizing data. There are different
types of data structures in memory, such as arrays, lists, stacks, queues, and
trees. There are also ways of organizing data on storage media, such as file
structures.

Chapter 10 focuses on file structures, and this chapter focuses on memory
structures.

data structure – A way of
organizing data in memory,
such as arrays, lists, stacks,
queues, and trees

why you need to know about...

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

280 chapter eight

Luckily for you, data structures make it possible to use a computer without
having to worry about the details of how information is stored in consecutive
memory locations. The most common data structures are arrays and lists.

arrays
An array is the simplest memory data structure and consists of a set of contigu-
ous memory cells that must store the same type of data. So if the first memory
cell contains a number, all memory cells associated with the array must also
contain numbers.

Arrays are used for storing similar kinds of information in memory. This
information can then be sorted or left in the order it was entered in the array.
Arrays can be used to store student grades, book titles, names of college
courses, a space shuttle launch checklist, and so on. As long as the informa-
tion is of the same type and you want to store it in memory, an array is the
data structure to use.

For example, if you want to write a computer program that asks users to enter
five different numbers, prints them onscreen in reverse order, and then calcu-
lates the sum of the numbers, you can create an array of five positions to hold
the number values temporarily. The number values can be accessed by using the

A computer’s memory is organized into cells. Each memory cell has a memory
address through which the cell’s contents can be accessed. As shown in Figure 8-1,
memory addresses are organized consecutively: If the first memory cell has an
address of 0, the next memory cell has an address of 1.

Figure 8-1, Consecutive memory locations

Mercury0

Venus1

Earth2

Mars3

Jupiter4

valueposition

array – A set of contiguous
memory cells used for stor-
ing the same type of data

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

data s truc tures 281

how an array works
When an array is first defined, you must tell the computer what type of data to
store and how many memory cells to use. For example, in the Java program-
ming language, you create a new array and specify its type and size by using the
“new” keyword. You also specify a name for the array, which is used to access
the contents of the array’s cells. Take a look at this statement, and then read the
following explanation:

int[] aGrades = new int[5];

• The int[] part of the statement tells the computer that the array will hold
integer (numeric) values. If you want the array to hold character values,
char[] is used.

• The word “aGrades” is the array’s name, the name by which memory
contents are accessed.

• The “new” keyword tells the computer that a new array is being created.
• The int[5] part of the statement, for specifying array type and size, tells the

computer to reserve five memory locations to store numeric (int) values for
the array.

8Figure 8-2, Arrays make program logic easier to understand and use

950

881

922

783

854

valueposition

aNumbersarray name:

95Variable1

88Variable2

92Variable3

78Variable4

85Variable5

0

1

2

3

4

value

array. As shown in Figure 8-2, if you didn’t use an array, you would have to
create five different holding areas or variable names, with each area having its
own name. Using an array makes program logic easier to understand and use.
Instead of having to worry about five different memory variables or names,
using an array requires you to remember only the array name.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

282 chapter eight

Think of a single-dimensional array as a row of mailboxes on a street (see
Figure 8-4). Each mailbox has an address associated with it. For this example,
the street name is aGrades. There are five property locations on the street, each
with its own unique mailing address. All the mailboxes are lined up in a row on
the street so that the postal carrier can organize and deliver the mail easily. Also,

• The = sign (equal sign, called an assignment operator) takes the newly
created array of five memory cells and assigns aGrades as the “manager” of
these memory cells.

• The ; (semicolon) tells the computer that the end of the statement has been
reached.

Note that the array name includes a lowercase “a” in front of “Grades.” This
convention is called Hungarian notation, a variable-naming standard devised to
make a program’s statements more readable.

The five contiguous memory cells are reserved in memory and can be referenced
by using the word that has been set up as the manager—in this case, aGrades.
The aGrades array is considered a single-dimensional array because it contains
only one row or column of elements (see Figure 8-3). (An element is another
name for a memory cell in an array.) An array’s dimension is how many levels
are created to hold the array elements.

Hungarian notation

In this convention, the first letter
of a variable name represents the

type of data being stored. For
example, an integer variable

name is preceded with the letter
“i,” as in “iGrade.” This way of

naming variables is not a require-
ment of programming languages
and doesn’t affect how the com-
puter deals with variables, but it

helps programmers see what type
of data should be found in a

memory location.

Figure 8-3, Five contiguous memory cells managed by aGrades in a
single-dimensional array

950

881

922

783

854

value one row of memory locationsposition

aGradesarray name:

element – A memory cell in
an array

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

data s truc tures 283

there are strict rules for the postal carrier. The only type of items that can be
delivered to mailboxes must be defined when the mailboxes are first built. In
this example, the mailboxes allow receipt of only letters containing numbers. As
the postal carrier drives up to the mailboxes, the address on each letter deter-
mines which mailbox receives the information being mailed.

So how is the process of putting values into an array’s cells accomplished in a
computer? The first address or position in the array starts with 0. Arrays start at
element 0 because they’re implemented by using memory addresses. When you
create a new array and assign it a name, the computer reserves some memory
locations to accommodate the array’s size. The name is actually assigned the
memory location where the array begins in memory. This memory location is
used just as a postal carrier uses an address to find a specific mailbox. After the
memory location (or mailbox) is found, the computer knows that the next
element in the array is one position, or offset, over from the starting address.
The offset specifies the distance between memory locations. The computer has
been told that to locate the next element in the array, it must use the array’s
starting memory location, stored in the first position of the array, and then
move over the number of offsets representing different positions in the array.

For example, the array’s first position, referenced as position 0, can be found
by using the starting memory location of the array plus zero offsets. In other
words, it’s equal to the array’s starting position. The next position of the array,
referenced as position 1, is found by using the starting memory location plus
one offset. The third position of the array, referenced as position 2, is found by
using the starting memory location plus two offsets (see Figure 8-5).

8

Figure 8-4, A row of mailboxes is similar to a row of contiguous memory cells (an array)

aGrades

95
0

88
1

92
2

78
3

85
4

offset – Used to specify the
distance between memory
locations

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

284 chapter eight

To make using an array easier, an index or a subscript is used. It tells the computer
which memory cell to access in the array by looking at the element’s position. The
index is placed between square brackets ([]) after the array name. To store a value
of 50 in the first element, you use this statement:

aGrades[0] = 50;

When the array was created, it was specified with five contiguous memory
locations. The preceding statement places the value 50 in the first position.
Remember that position 0 is the first position, so when an array has positions
0 to 4, there are actually five memory cells, or addresses. If you want to store a
value in the fifth element, you need to access position 4, as shown:

aGrades[4] = 100;

If you store a value in every element of the array, as shown in the following
code lines, it might look like Figure 8-6:

aGrades[0] = 50;

aGrades[1] = 30;

aGrades[2] = 25;

aGrades[3] = 85;

aGrades[4] = 100;

The upper bound of the array is the element with the highest position (4), and
the lower bound is the lowest position used (0). These bounds can be used with
the array’s length to process through the array element by element, until all ele-
ments have been processed.

Figure 8-5, Arrays start at position 0 and use an offset to know where the next
element is located in memory

95

0

12FF70 + 0 = 12FF70
12FF70 + 4 = 12FF74
12FF70 + 8 = 12FF78

aGradesarray name:

array element:

memory address:

12FF70starting memory address:

4space between addresses:
(also called "offset")

starting
address +
0 offsets

88

1
starting

address +
1 offset

92

2
starting

address +
2 offsets

78

3

85

4

index (subscript) – How an
array accesses each element
stored in its data structure

upper bound – The highest
position in an array

lower bound – The lowest
position in an array

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

data s truc tures 285

multidimensional arrays
Besides single-dimensional arrays, there are multidimensional arrays, which
consist of two or more single-dimensional arrays. In the mailboxes example,
there’s just one row of mailboxes in a single-dimensional array. In a multidimen-
sional array, there are multiple rows of mailboxes stacked on top of each other, as
shown in Figure 8-7. In this example, the apartment building has a mailbox for

8

Figure 8-6, The array with all
elements stored

500

301

252

853

1004

valueposition

Figure 8-7, A multidimensional array is like apartment mailboxes stacked on top of each other

0

1

2

apartment #: 0 1 2 3 4

floor
0

apartment
0

floor
0

apartment
1

floor
1

apartment
1

floor
0

apartment
2

floor
1

apartment
0

floor

floor
2

apartment
0

multidimensional array –
An array consisting of two
or more single-dimensional
arrays

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

286 chapter eight

The tic-tac-toe board array consists of three positions in the first row, three in
the second, and three in the third. The first row contains an array of three posi-
tions, as shown in Figure 8-9. The rows are numbered from 0 to 2, and the
columns are numbered from 0 to 2. All the array elements in the first row have a
row value of 0 with a column value of 0, 1, or 2.

The second and third rows are also arrays (see Figure 8-10). All the array ele-
ments in the second row have a row value of 1 with a column value of 0, 1, or
2, and all the array elements in the third row have a row value of 2 with a
column value of 0, 1, or 2.

each tenant. The building’s floor numbering starts on 0 because it’s ground level.
Each floor is offset by the number of flights of stairs above ground level, so the
second floor is floor 1, or one flight of stairs above ground level (floor 0). The
address of each mailbox is the combination of the floor number plus the apart-
ment number. For example, the first mailbox has the address of floor 0,
apartment number 0. The last mailbox (not numbered in the figure) has the ad-
dress of floor 2, apartment number 4. Each floor has five apartments numbered
0 through 4. The only way the postal carrier knows which apartment receives
the letter is by also knowing the floor.

Are you officially confused? You can make it easier by starting with the simplest
multidimensional array. Almost everyone has played tic-tac-toe. A tic-tac-toe
board (see Figure 8-8) is actually a two-dimensional array—that is, an array
within an array.

Figure 8-8, Tic-tac-toe board

X
X

X
O

O

O

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

data s truc tures 287

Creating the tic-tac-toe board as a multidimensional array in memory is easy.
Using the array syntax defined earlier in the chapter, the statement looks like this:

char[][] aTicTacToe = new char[3][3];

Don’t get confused into thinking you would declare a three-by-three array as
[2][2] because array indexes are zero-based. In declaring an array size, you don’t
need to worry about the fact that arrays start at 0. You just need to remember

8

Figure 8-9, First row of the tic-tac-toe board

0

1

2

column: 0 1 2

row:
row

0

column
0

row
0

column
1

row
0

column
2

Figure 8-10, Second and third rows of the tic-tac-toe board

0

1

2

column: 0 1 2

row:
row

0

column
0

row
0

column
1

row
0

column
2

row
1

column
0

row
1

column
1

row
1

column
2

row
2

column
0

row
2

column
1

row
2

column
2

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

288 chapter eight

Take a look at Figure 8-12, an example of a three-dimensional array. It
can be explained as having three arrays or levels. On each level (array) is a
two-dimensional array containing rows and columns.

Are you ready to try a four-dimensional array? Actually, many programmers
suggest that you go no further than three levels deep on an array because the
more levels you have, the more complicated the array becomes. Remember that
simplicity makes writing and maintaining data structures a lot easier.

that array indexes are zero-based when you begin accessing the elements. When
you’re declaring the array’s size, you need to think only of how many elements
are needed.

The preceding statement creates three arrays, each having three storage loca-
tions. It’s a lot easier to think of it as having three rows and three columns
(much like a spreadsheet).

If you’re playing a game of tic-tac-toe, you might want to start by putting an X
in the center position (see Figure 8-11). To place the character X in the second
row of the second column, you use the following statement:

aTicTacToe[1][1] = 'X';

Why isn’t the location shown as [2][2]? That’s right—because array indexes are
always zero-based, so the first row is index row 0, and the second row is index
row 1, and so on.

multidimensional arrays

In C++, you create a multidimen-
sional array and store a value in

one of the array elements by
using these statements:

char aTicTacToe[3][3];

aTicTacToe[1][1] = 'X';

In Delphi (Pascal), you create a
multidimensional array and store

a value in one of the array ele-
ments by using these statements:

var aTicTacToe : array[0..2,0..2] of
char;

aTicTacToe[1,1] := 'X';

Figure 8-11, Storing a value in an array location

X

column 1

row 1

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

data s truc tures 289

uses of arrays
Arrays are an excellent data structure for storing information in memory
because they can be accessed sequentially without any knowledge of the
memory cell contents. As long as you know the array name and the data type
for elements, you can retrieve and store data with an array. Arrays are also easy
to create and are useful for people who write computer programs. For example,
you have a program that stores 20 student names. Instead of creating 20 sepa-
rate storage locations, each with its own name, you have to create only one
array containing 20 storage locations, accessed by a single name plus an index.
That’s a lot easier to remember and use.

You have learned that an array is a collection of homogeneous data items.
Chapter 14, “Programming I,” introduces a data structure called a class,
which is a collection of heterogeneous data items.

A disadvantage of using arrays is that a lot of overhead (computer power) can
be expended in trying to insert new elements into a defined array structure.
The array is a contiguous list data structure, which means memory cells are
located one after the other in memory. What if you define an array to hold
20 student names, but then one more student registers for the course? Now
you have run out of room in the array and have to redefine the array’s size and
make sure all the information in the first array is copied to the second array
correctly. This method is quite inefficient and cumbersome.

Another disadvantage of arrays is that data in memory cells can be accessed
only sequentially—that is, one at a time, in order. So if you want to find a
specific value stored in an array, you have to start at the first position in the

8

Figure 8-12, Three-dimensional array

level 0

char[][][] aTicTacToe = new char[3][3][3];

level 1

level 2

row

column 0 1 2

level 0
row 0

column 0

0

1

2

level 1
row 1

column 1

level 2
row 1

column 2

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

290 chapter eight

array and look at every single position until you find the value you’re looking
for. You can’t randomly search the data stored in elements based on search
criteria. If you’re using arrays for random searching of data, the computer is
performing work that can be done more efficiently by using a different data
structure.

The real benefits of arrays become more apparent when you learn how to
program loops, discussed in Chapter 15, “Programming II.”

l ists
As you’ve learned, the process of changing array size dynamically is quite ineffi-
cient and daunting. Another data structure, the list, was developed to overcome
some disadvantages of arrays. This data structure holds dynamic lists of data,
meaning the lists vary in size. Examples of lists that grow or shrink include class
enrollment, cars brought in for repairs, and e-mail inboxes. In fact, whenever
the amount of data is unknown or could change, you have a good candidate for
a list data structure. The amount of storage needed for the list is unknown and
needs to be flexible so that the list can accept new items or have existing items
removed.

The forms of lists that can be implemented to work efficiently with dynamic
data are as follows:

• Linked lists
• Queues
• Stacks

The following sections describe these data structures.

l inked lists
A linked list is used when the exact number of items is unknown or the length
of the structure might change. For example, a linked list could be used to store
the names of students who visit a professor’s office in a day, points you have
scored against an opponent in your favorite video game, or companies that have
sent you spam e-mail. You use the logic behind a linked list every day.

A linked list differs in use from an array in that it stores data noncontiguously
(not in order). Instead of allocating a block of memory with array cells follow-
ing each other contiguously, a linked list maintains the data and the address of
where to go next. Remember that each cell of an array uses an address as a ref-
erence for accessing the data. A linked list also uses addresses but implements

linked list – A data structure
that uses noncontiguous
memory locations to store
data; each element in the
linked list points to the next
element in line and doesn't
have to be contiguous with
the previous element

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

data s truc tures 291

The professor also has a piece of paper, but it contains only a student number.
The professor starts the game by reading this number aloud and pointing to the
student whose piece of paper contains that number. This student reads aloud
the color written in the left box, and then reads the student number printed

8

Figure 8-13, The piece of paper used in the linked list game

data item

paper 1

write your
color here

student #

go next?1

2

data item

paper 2

go next?2

3blue

pointer – A memory
variable containing the
address of a memory cell as
its data

them as “The memory locations I’m using can be stored anywhere in memory,
so what memory location is next in line for me to jump to?”

Linked lists are the basic constructs for more advanced data structures, such as
queues and stacks. All these structures use pointers. Learning how pointers
work is not rocket science, but it tends to be a topic that can confuse beginning
computing students. In fact, you have already used pointers but probably didn’t
realize it. All you have to know is that a pointer is a memory variable contain-
ing the address of a memory cell as its data. Just think “address,” and it’s easier
to grasp. You have already worked with addresses while learning about arrays.
An address is simply a location in memory.

For example, say you’re playing a game in which students sit in a circle. Each
student has a piece of paper with a box in the upper-left corner indicating a
student number and another box in the center divided into two more boxes
(see Figure 8-13). The students are told to write their favorite color in the
center box on the left and leave the box on the right alone, as it already has a
number printed in it.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

292 chapter eight

What happens if you want to insert a new element into the list? If it’s an array,
you have to resize it, which causes the computer to allocate a new block of
memory big enough for the entire array, and then the old array’s contents must
be copied to the new array’s memory cells. This method isn’t an efficient way of
storing data in memory if you’re adding and deleting elements.

in the right box on his piece of paper. The student with this number then states
her color and calls out the student number written on her paper. This process
continues until all the students have had a turn to read aloud the color they
wrote and call out the number in the right box. How does this game end?
The last student’s paper doesn’t have a student number printed in the right
box. Instead, the last student’s “go next?” box contains a null (also called
a null value).

This game demonstrates how a linked list is used in memory and how a
pointer is used to tell the computer which memory location is the next one
in the list. Each piece of paper represents the structure of a linked list: As
Figure 8-14 shows, it contains both data (the color) and a pointer to where
to go next (the student number). The professor’s piece of paper represents
the head pointer, the beginning of the linked list that indicates where to get
the first piece of information.

Figure 8-14, Structure of a linked list

data item

paper 1

professor’s
paper

head
pointer

which
student starts

the game?

go next?1

2red

data item

paper 4

go next?

NULLblack

data item

paper 2

go next?2

3blue

data item

paper 3

go next?3

4green

1

4

null value – The absence of
a value, meaning there’s no
value stored; null is not the
same as blank or zero

head pointer – A pointer
indicating the beginning of
the first element in a data
structure

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

data s truc tures 293

A linked list doesn’t have to work with contiguous memory, which makes it
more efficient for dynamic structures. The professor could even put the new
student at the beginning of the line without affecting how the information is
processed. Why? Because the professor would still tell student 1 to start.
Student 1 would read the color “red” and then call on student 2, who would
read the color “blue.” This process would continue until after student 3 reads
the color “green” and calls on the new student, who is number 5. Student 5
would read “purple” and then call on student 4, who would read “black” and
then stop.

8

A linked list, on the other hand, simply creates a new “piece of paper” with
one location for the data and another for the “where to go” pointer address.
Then the pointer before the location where the new paper is to be inserted is
changed to point to the new paper. The pointer on the new paper is made to
point to the next paper in the sequence. For example, a new student joins the
class. The professor hands a piece of paper with the number 5 on it to the new
student and tells the student to sit at the end of the line and write a favorite
color in the box on the left. The professor then tells the student to follow stu-
dent 3 in telling the class the color, and then the new student should point to
student 4 (see Figure 8-15).

Figure 8-15, Inserting an element into a linked list

data item

paper 1

professor’s
paper

head
pointer

which
student starts

the game?

go next?1

2red

data item

paper 4

go next?

NULLblack

data item

paper 2

go next?2

3blue

data item

paper 3

go next?3

5green

1

4

data item

paper 5

go next?

4purple

5

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

294 chapter eight

Without having to move any students in the class, a student can be deleted
from the game. All that has to happen is that whichever student was pointing
to the deleted student needs to change his or her “go next?” value to point to
the student who follows the deleted student. In other words, before an item is
deleted from a linked list, the “go next?” value is saved so that the previous item
can be updated to skip the deleted item.

stacks
A stack is a special form of a list that allows you to “push” new items onto the
list and “pop” existing items off the list. It’s similar to how some all-you-can-
eat buffet restaurants provide plates for customers (see Figure 8-17). The plate
holder is spring-loaded, and as a customer removes a plate from the stack,
every plate moves up one position. As clean plates are added to the stacks,
the current plates move down, away from the top of the stack. The kitchen
employee pushes plates onto the stack, and customers pop plates up from the

The same concept applies when you want to delete an element from a linked
list. The element that points to the item being deleted must have its pointer
modified to point to the item that the deleted item used to point to (see
Figure 8-16).

Figure 8-16, Deleting an element from a linked list

data item

paper 1

professor’s
paper

head
pointer

which
student starts

the game?

go next?1

2red

data item

paper 4

go next?

NULLblack

data item

paper 2

go next?2

5blue

data item

paper 3

go next?3

5green

1

4

data item

paper 5

go next?

4purple

5

Deleted

stack – A list in which the
next item to be removed
is the item most recently
stored

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

data s truc tures 295

A stack is considered a last in, first out (LIFO) data structure. The last or most
recent item pushed (put) onto the stack is the first item popped (removed)
from the stack. Another example of a LIFO data structure is a text editor. As
you type characters, the character insertion pointer is placed at the end of the
last character typed. If you press the backspace key, the last character typed is
removed. Or think of a can of Pringles potato chips. The factory pushes chips
into the cylinder so that the first chip pushed in sits at the very bottom and is
the last one to come out.

Notice that in a stack, items are added to or taken away from the top of the
stack. In other words, the first value popped from the stack is the value that has
remained on the stack for the shortest amount of time. The very last item
popped from the stack has remained on the stack for the longest time.

uses of a stack

How a stack is used can best be explained by understanding how a computer
processes the lines of source code in a program. As the computer executes a
program, it understands the tasks it’s supposed to accomplish by using source
code. A line of source code is simply a command to do some work. This work
might include storing a value in memory, performing a mathematical calcula-
tion, displaying a value onscreen, sending information to the printer, or a
plethora of other tasks.

8

stack. Looking at the top plate to inspect it without removing it from the
stack is called peeking.

Figure 8-17, The stack concept

last one in
is first one
out

peeking – Looking at the
top item in the stack with-
out removing it from the
stack

last in, first out (LIFO) –
The last item placed on
the stack is the first item
removed from the stack

push – Place an item on
the stack

pop – Remove an item from
the stack

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

296 chapter eight

The source code is logically organized into procedures, groups of related
commands that perform a task. Another line of source code might call the pro-
cedure and tell it to execute its lines of source code. The called procedure might
in turn call another procedure and so on, until there’s a long list of procedures
that have called each other.

The computer must keep track of the calling procedure so that when the called
procedure’s source code is completed, it can return to where it left off in the
program. Think of it as the computer creating a “lifeline” so that it always
knows how to get back to where it came from. This backtracking is accom-
plished by using a stack. The computer pushes the address of a procedure call
onto the stack. As the called procedure finishes executing its source code, the
address of the procedure is popped off the stack, and the computer proceeds to
the next statement in the program.

back to pointers

In most stack implementations, a pointer called the stack pointer keeps track of
the top of the stack. The computer knows where to push new items and remove
current items from the data structure by using the memory location pointed to
by the stack pointer. Remember that stacks, like linked lists and arrays, are just
memory locations that have been organized into structures to facilitate reading
from them and writing to them. Figure 8-18 shows how the stack pointer is
adjusted when an item is popped off the stack.

Figure 8-18, Stack pointer is decremented when the item is popped off

before pop
operation

stack
pointer location

where is
the next

item
added or
removed?

issue a
pop

operation
on the
stack

5 5

value

50

4 30

3 25

2 85

1 100

after pop
operation

stack
pointer location

4 4

value

3

30

2

25

1

85

100

empty

procedure – A group of one
or more related commands
that perform a task

stack pointer – A pointer
that keeps track of where
to remove or add an
item in a data structure

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

8

Before an item is popped from the stack, the status of the stack must be
checked to make sure there’s an item to pop. Before an item is pushed onto the
stack, the computer must check to make sure there’s room for the new item.
Otherwise, pushing or popping could cause an error.

queues
A queue is another type of linked list that uses a first in, first out (FIFO) struc-
ture. Insertions are made at the end of the stack, and deletions are made at the
beginning. The implementation of this data structure is much like waiting in
line. For example, the first customer in line is the first one to leave the line. The
last customer in the line is in line the longest. You have encountered FIFO
structures when you have gone to a bank, bought food at the supermarket,
driven your car on and off a ferry, or lined up at the school bookstore to buy
this book.

uses of a queue

A queue is used in many situations in a computer system, and you hear it refer-
enced by people who work with computer task management. For example, as
you print documents, they’re placed in a print queue. The first item to be
printed is the document that has been in the queue the longest. As the item is
printed, it’s deleted from the queue, and the next item is printed. If you request
to print another document, it’s placed at the end of the queue. This process
continues until the queue is emptied. The queue is a “worker bee” that simply
accepts what it’s given and pushes it out if it can. It keeps pushing out the old-
est items and putting the newer items at the end of the list.

In a queue, all insertions of new data occur at the rear of the queue, and
removal of data occurs at the front of the queue.

pointers again

A queue uses a head pointer and a tail pointer. The head pointer keeps track of
the beginning of the queue. As you might have guessed, the tail pointer keeps
track of the end of the queue (see Figure 8-19). If the queue contains no items,
both the head and tail pointer point to the same location.

When an item is removed from the queue (to dequeue an item), the head
pointer is changed to point to the next item in the list following the item re-
cently removed. Look at the queue shown in Figure 8-20. If you dequeue an
item from this queue, the oldest entry (stored in location 1) is removed. The
head pointer is then updated to point to location 2, signifying that it’s currently
the oldest entry in the queue.

data s truc tures 297

queue – A list in which the
next item to be removed is
the item that has been in
the list the longest

first in, first out (FIFO) –
The last item placed on the
stack is the last item re-
moved from the stack, and
the first item removed from
the stack is the first item
placed onto the stack

tail pointer – Keeps track of
the end or rear position of
the data structure

dequeue – To remove an
item from a queue

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

n o t e

298 chapter eight

Figure 8-19, A queue uses a FIFO structure

head
pointer location

queue
front

1 5

value

50

4 30

3 25

2 85

1 100

tail
pointer

queue
rear

oldest entry

newest entry

5

Figure 8-20, Removing an item from the queue

head
pointer location

queue
front

2 5

value

50

4 30

3 25

2 85

1 empty

tail
pointer

queue
rear

oldest entry

newest entry

5

When an item is inserted into the queue (to enqueue an item), it’s placed at
the end of the list, and the tail pointer is updated. As shown in Figure 8-21,
a new entry containing the value 18 is enqueued, thus adding a new item to
the list and updating the tail pointer to point to the newest item added to
the queue.

There are many different ways to implement data structures in

programming, depending on how the programmer wants to do it.

As you can see, both stacks and queues use pointers to keep track of items in
their data structures.

enqueue – To insert an item
into a queue

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

data s truc tures 299

Each position in the tree is called a node or vertex. The tree is binary because
each node has at most two child nodes. A node can have zero, one, or two child
nodes. The child node to the left of the parent node is called the left child. The
child node to the right of the parent node is called the right child.

trees
Another data structure that uses pointers to manipulate storage of information,
but is not a list, is a binary tree. A tree represents a hierarchical structure, simi-
lar to that of organizational or genealogical charts, and is useful for keeping the
list of data in a hierarchy and for speeding up searches (see Figure 8-22).

Figure 8-21, Inserting an item into the queue

head
pointer location

queue
front

2

5

value

50

4

6

30

3 25

2 85

1 empty

18

tail
pointer

queue
rear

oldest entry

newest entry

6

Figure 8-22, Tree data structure

108642

7 113

5 14

16

9

8

tree – A data structure that
represents a hierarchical
structure, similar to that of
organizational or genealog-
ical charts

node or vertex – A position
in a tree data structure

left child – The child node to
the left of the parent node

right child – The child node
to the right of the parent
node

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

300 chapter eight

The depth or level of the binary tree refers to the distance from the root node.
The maximum number of levels is called the height of the tree (see Figure 8-24).

The node that begins the tree is called the root and is not a child of any node.
A node that has no children is called a leaf node (see Figure 8-23).

Figure 8-23, Tree nodes

1086

leaf nodes

left child node

root node

right child node

42

7 113

5 14

16

9

Figure 8-24, The level and height of a binary tree

Start at node
B and go as
far down as

you can
traversing
through
nodes.

The height of the
tree is 3: Start at
root node A and

traverse to C
to G to H.

3

level 3

level 2

level 1

level 0

ED

node height
A 3
B 1
C 2
D 0
E 0
F 0
G 1
H 0

B

G

H

F

C

A

2

1

root – The node that begins
the tree

leaf node – A node that has
no child nodes

depth or level – The dis-
tance from the node to the
root node; the root’s depth
or level is 0

height – The longest path
length in the tree

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

data s truc tures 301

searching a binary tree
A node in a binary search tree contains three components, shown in Figure 8-26:

• Left pointer
• Right pointer
• Data

In the binary tree is a root pointer containing the root node’s address and pro-
viding initial access to the tree. If the left or right child pointers contain a null
(empty) value, the node is not a parent to other nodes down that specific path.
If both left and right pointers contain null values, the node is not a parent
down either path.

8

uses of binary trees
Binary trees can also be called binary search trees (BSTs), as long as the tree fol-
lows two rules:

• The data value of the left child is less than the value of the parent node.
• The data value of the right child is greater than the value of the parent node.

Binary search trees, when arranged correctly, are a useful data structure for
searching through stored data. One use is storing information in a hierarchical
representation, such as the file system shown in Figure 8-25.

You learn more about file systems in Chapter 10.

Figure 8-25, A file system structure can
be stored as a binary search tree

Huffman coding

David A. Huffman, a student at
MIT in 1952, constructed an

encoding method that uses binary
search trees in file compression

algorithms. The method is called
the Huffman Coding Tree.

binary search tree (BST) – A
binary tree in which the left
child’s data value is less
than the parent node’s, and
the right child’s data value
is greater than the parent
node’s

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

302 chapter eight

A binary tree must be defined properly to be searchable. In a binary tree, the
left child node always has a value less than the right child node’s. Searching for
a particular value in a binary tree requires starting at the root position and
determining whether the path will move to the left child or the right child. If
the left pointer is NULL, there’s no node to traverse down the left side. If the
left pointer does have a value, the path continues down that side. If you have
found the value you’re looking for, you stop at that node.

Searching for the value 8 in Figure 8-27 requires the following steps:

1. Start at the root node.

2. Does the value 8 5 the root value (9)? No. Then is the value 8 . the root
value (9)? No. Move to the left child (5).

3. Does the value 8 5 5? No. Then is the value 8 . 5? Yes. Move to the right
child (7).

4. Does the value 8 5 7? No. Then is the value 8 . 7? Yes. Move to the right
child (8).

5. Does the value 8 5 8? Yes. Stop traversing the tree.

Figure 8-26, A node in a binary search tree

data right pointerleft pointer

left
structure

right
structure

L R33

L R44

L

node
structure

R56

L R78

L R49 L R92

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

data s truc tures 303

8

Figure 8-27, Searching a binary tree for the value 8

4

5

1

3

2

1. Start at Root node.

L R2 L R4

L R5 L R14

L R9

L R3

L R6 L R8

L R7

L R10 L R12

L R11

L R15

L R16

To see an example of what happens with a null value, try searching for the
value 1 in Figure 8-28:

1. Start at the root node.

2. Does the value 1 5 the root value (9)? No. Then is the value 1 . the root
value (9)? No. Move to the left child (5).

3. Does the value 1 5 5? No. Then is the value 1 . 5? No. Move to the left
child (3).

4. Does the value 1 5 3? No. Then is the value 1 . 3? No. Move to the left
child (2).

5. Does the value 1 5 2? No. Then is the value 1 . 2? No. Attempt to move
to the left child, but stop traversing the tree because the left pointer (2) is
NULL.

Figure 8-28, Searching a binary tree for the value 1

4

5

1

3

2

null value
stop search

L R2 L R4

L R5 L R14

L R9

L R3

L R6 L R8

L R7

L R10 L R12

L R11

L R15

L R16

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

304 chapter eight

You can perform these same searches for any number, with the result being
that the value is found or not found.

sort ing algorithms
In addition to the array, list, and tree data structures, there’s another essential
way to organize data: sorting. In many cases, even if data is in a list or other
structure, if you can’t sort the data, it’s useless. Can you imagine a phone book
that simply entered data sequentially in order of new phone numbers assigned
to customers? The last person in the phone book would be the last person to
sign up for a phone number from the telephone company. Finding anyone’s
phone number would take forever (or longer)!

Almost any type of computer output is in some type of sort order so that the
reader can interpret it easily. Here are some other examples of data being sorted:

• Words in a dictionary
• Files in a directory
• Index of a book
• Course offerings at a university

Think back to Chapter 6 on databases. The Songs table contained a list of all
songs stored in the music inventory. Sorting the songs by title made finding a
song easier. If the data wasn’t sorted, you would have to look through each song
record until you found the one you’re looking for. If you have five songs, the
search takes no time at all. If you have more than 2000 songs, you might as
well start canceling all your extracurricular activities so that you can search
through music records.

Remember that an algorithm is a procedure or formula for solving a problem.
To sort data, you first need to create an algorithm that defines the process for
sorting. There are many algorithms for sorting data; each one has advantages
and disadvantages. In fact, the list of sorting algorithms continues to grow as
more computer scientists try to improve established sort routines. Two sorting
routines covered in this chapter are the selection and bubble sorts.

selection sort
The selection sort is a simple sorting routine that mimics closely how you
might sort a list of values. To sort from lowest to highest, for example, it starts
at the first value in the list, and then processes each element, looking for the
smallest value. After the smallest value is found, the selection sort places it in
the list’s first position and simultaneously moves the value that was in the first
position to the location that originally contained the smallest value. Then the
sort moves on to the next position, looking for the next smallest value. It
continues to “swap places” between the current position and the position where
it finds the smallest value. For example, you have an array containing the

selection sort – A sorting
routine that selects the
smallest unsorted item re-
maining in the list, and then
swaps it with the item in the
next position to be filled

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

data s truc tures 305

following numbers: 14, 8, 2, 4, and 10. Follow the example of the selection
sort shown in Figure 8-29.

8

Figure 8-29, A selection sort

element data

14

8

2

4

10

0

1

2

3

4

array BEFORE the sort1

element data

2

4

14

8

10

0

1

2

3

4

Find the next smallest value, which is 4
(found in element 3), and swap it with

the value in element 1 (8).

The next
smallest
value is

now in its
correct

position.

3

element data

2

4

8

10

14

0

1

2

3

4

Find the next smallest value, which is 10
(found in element 4), and swap it with

the value in element 3 (14).

The next
smallest
value is

now in its
correct

position.

5

element data

2

4

8

10

14

0

1

2

3

4

the sorted list6

element data

2

8

14

4

10

0

1

2

3

4

Find the smallest value, which is 2
(found in element 2), and swap it with

the value in element 0 (14).

The
smallest
value is

now in its
correct

position.

2

element data

2

4

8

14

10

0

1

2

3

4

Find the next smallest value, which is 8
(found in element 3), and swap it with

the value in element 2 (14).

The next
smallest
value is

now in its
correct

position.

4

In a selection sort for lowest to highest values, the computer starts processing
through the list until it finds the smallest value. In this example, the number 2
in element 2 is the smallest value, so the value 2 is moved into element 0 (the
first location), and the value 14 is moved to element 2 (Step 2 in Figure 8-29).

The computer accepts that the value in element 0 is the smallest and ignores
that position for the rest of the sort. Instead of looking at element 0, it moves
on to the next element (1) and begins searching for the next smallest value. It
finds the number 4 in element 3. It moves the value 4 up to element 1 and
moves the value 8 to element 3 (Step 3).

Again, the computer knows that memory location 1 now has the next smallest
value stored and moves on to element 2. This process of searching for the
smallest value and swapping it with the current location continues. It finds the
number 8 in element 3. It moves the value 8 up to element 2 and moves the
value 14 to element 3 (Step 4).

This process of searching for the smallest value and swapping it with the cur-
rent location continues. It finds the number 10 in element 4. It moves the
value 10 up to element 3 and moves the value 14 to element 4 (Step 5). This
list is finally sorted (Step 6).

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

The selection sort is simple to use but isn’t very efficient for sorting large lists.
For this task, you need a different sorting routine, explained in the next section.

bubble sort
The bubble sort is an older and slower sort method. It works by starting with the
last element in the list and comparing its value with that of the item just above it
in the list order. If it’s smaller, it changes positions and continues up the list,
comparing itself with the other items until an item doesn’t pass the “I am smaller,
so I move up” test. If it isn’t smaller, the next item is compared with the item
above it and swapped if it’s smaller. The system continues checking values until
the smallest value “bubbles” up to the top. Then the entire process starts over but
stops at the second item because it already knows that the first item contains the
smallest value.

Now try an array containing the following numbers: 14, 8, 2, 4, and 10. Follow
the example of the bubble sort shown in Figure 8-30.

306 chapter eight

Figure 8-30, A bubble sort

element data

14

8

2

4

10

0

1

2

3

4

array BEFORE the sort1

element data

14

8

2

4

10

0

1

2

3

4

Compare the values in elements 3 and
2. If the value in element 3 is less than

the value in element 2, swap the
values. In this case, element 2 has a

smaller value than element 3.

Leave it alone
because 2
is smaller
than 4.

3

element data

2

14

8

4

10

0

1

2

3

4

Compare the values in elements 1 and 0.
If the value in element 1 is less than the

value in element 0, swap the values.

Swap the
value in

element 0
(14) with
the value

in element
1 (2).

5

element data

2

14

8

4

10

0

1

2

3

4

The smallest value
is now in its correct

position.

6

element data

14

8

2

4

10

0

1

2

3

4

Start with the last element and compare
its value with the previous element. If the

last element is less than the previous
element, swap the values.

Leave it alone
because 4
is smaller
than 10.

2

element data

14

2

8

4

10

0

1

2

3

4

Compare the values in elements 2 and
1. If the value in element 2 is less than

the value in element 1, swap the
values. In this case, element 1 has a

smaller value than element 2.

Swap the
value in

element 2
(2) with the

value in
element 1

(8).

4

bubble sort – A sorting rou-
tine that compares each
item in the list with the
item next to it; if the first
item is greater than the sec-
ond, it swaps them, and
then repeats this process
until it makes a pass all the
way through the list with-
out swapping any items

The computer starts the processing with element 4. It compares the value 10
with the value 4 in element 3. Because the value in element 3 (4) is smaller
than the value in element 4 (10), it leaves the 10 alone and uses the value in

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

element 3 (4) for the next comparison (Step 2 in Figure 8-30). Next, the value 4
in element 3 is compared with the value 2 in element 2. Because the value 2 is
smaller than 4 and is already higher up in the list, it leaves them alone (Step 3).

Next, the value in element 2 (2) is compared with the value in element 1 (8).
Because 2 is less than 8, the values are swapped so that the value 2 is now in
element 1, and the value 8 is in element 2 (Step 4).

Now compare the value in element 1 (2) with the value in element 0 (14).
Because 2 is less than 14, the values are swapped so that the value 2 is now
in element 0, and the value 14 is in element 1 (Step 5).

After all that work, the smallest value has “bubbled” up to the top of the sorted
list (Step 6). Now you have to continue this process with the remaining four el-
ements in the array! The only nice thing about the bubble sort, besides being
easy to implement, is that you don’t have to worry about the value in element 0
anymore because you already know it’s the smallest.

Figure 8-31 shows the entire process starting over with the bottom position and
its value. The only difference is that you don’t have to worry about the element
in position 0.

data s truc tures 307

8

Figure 8-31, The bubble sort continues

element data

2

14

2

4

10

0

1

2

3

4

array with the first item in the
correct position

1

element data

2

14

4

8

10

0

1

2

3

4

Compare the values in elements 3 and
2. If the value in element 3 is less than

the value in element 2, swap the
values.

Swap it
because

4 is smaller
than 8.

locked
into

position

3

element data

2

4

14

8

10

0

1

2

3

4

The next smallest
value is now in its
correct position.

5

element data

2

14

8

4

10

0

1

2

3

4

Start with the last element and compare
its value with the previous element. If the

last element is less than the previous
element, swap the values.

Leave it alone
because 4
is smaller
than 10.

2

element data

2

4

14

8

10

0

1

2

3

4

Compare the values in elements 2 and
1. If the value in element 2 is less than

the value in element 1, swap the
values.

Swap the
value in

element 2
(4) with the

value in
element 1

(14).

4

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Element 4 has the value 10 and is compared with the value in element 3 (4)
(Step 2). No change occurs, so the computer moves on to comparing elements
3 and 2. The value in element 3 (4) is smaller than that in element 2 (8), so it’s
swapped (Step 3).

On you go, comparing the value in element 2 (now 4) with the value stored in
element 1 (14). Because the value in element 2 is smaller, it’s swapped (Step 4).
The second smallest value has now bubbled its way to the second position in
the list (Step 5).

The process continues as shown in Step 1 in Figure 8-32, with the first two
elements now locked into place. Element 4 still has the value 10 and is
compared with the value in element 3 (now 8). Because element 3 has a value
smaller than element 4, no change occurs (Step 2). Element 3 (8) is compared
with element 2 (14). Because element 3 (8) has a value smaller than element 2
(14), the values are swapped (Step 3). The third smallest value has now bubbled
its way to the third position in the list (Step 4).

308 chapter eight

Figure 8-32, The bubble sort still swapping along

element data

2

4

14

8

10

0

1

2

3

4

array with the first two items
in the correct position

1

element data

2

4

8

14

10

0

1

2

3

4

Compare the values in elements 3 and
2. If the value in element 3 is less than

the value in element 2, swap their
values.

Swap it because
8 is smaller

than 14.

locked
into

position

3

element data

2

4

14

8

10

0

1

2

3

4

Start with the last element and compare
its value with the previous element. If the

last element is less than the previous
element, swap their values.

Leave it alone
because 8
is smaller
than 10.

2

element data

2

4

8

14

10

0

1

2

3

4

The next smallest value
is now in its correct

position.

4

Hang in there because you’re almost done! The process continues as shown in
Step 1 of Figure 8-33, with the first three elements now locked into place.
Element 4 still has the value 10 and is compared with the value in element
3 (now 14). Because element 4 (10) has a value smaller than element 3 (14),

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

data s truc tures 309

8

As you can see, a bubble sort involves a lot of comparisons—and this list has only
five values. The bubble sort is simple to use but requires many comparisons, so
it’s quite inefficient in terms of processing speed.

other types of sorts
Selection sorts and bubble sorts are easy to use but run too slowly because they
make too many comparisons for large lists of information. For this reason,
other sort routines have been created with the specific purpose of sorting data
in a shorter time with fewer comparisons. Some of these other routines are as
follows:

• Quicksort—This routine incorporates the logic that sorting two small lists is
easier and faster than sorting one large list (divide and conquer). It’s very fast
and useful when a large amount of information needs to be sorted. The routine

Figure 8-33, The bubble sort’s last comparison

element data

2

4

8

14

10

0

1

2

3

4

array with the first three items
in the correct position

1

element data

2

4

8

10

14

0

1

2

3

4

The next smallest value
is now in its correct

position.

locked
into

position

3

element data

2

4

8

10

14

0

1

2

3

4

Start with the last element and compare
its value with the previous element. If the

last element is less than the previous
element. swap their values.

Swap it
because

10 is smaller
than 14.

2

the values are swapped (Step 2). The fourth smallest value has now bubbled its
way to the fourth position in the list (Step 3). Because there’s only one element
left and nothing to compare it against, element 4 must have the largest value in
the entire list of values.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

n o t e

310 chapter eight

keeps breaking the data down into smaller lists until they’re quite manageable
to sort. The routine does this by calling itself over and over until each list is
sorted. The process of calling itself is called recursion. After the lists are sorted,
the sorted sets are simply combined into one big sorted set. Believe it or not,
you have already encountered the basics of a quicksort in the discussion of a
binary search tree. The quicksort is fast but difficult to comprehend.

Do you suppose if you looked up recursion in a dictionary, it would say,

“See recursion”?

• Merge sort—Similar to the quicksort, the merge sort splits data into sets.
Instead of splitting data over and over into small sets, however, the merge
sort splits data into two equal halves. Each half is sorted, and then both
halves are merged back together into one list. This sort also uses recursion
by calling itself over and over until the data is sorted. It’s fast but not as
efficient as the quicksort because it uses twice the memory to perform its
sorting algorithm.

• Insertion sort—This sort requires two list structures into which sorted items
are inserted. The first list is the data structure containing the information,
and the second list is the sorted data structure. This routine simulates
sorting a deck of cards. As you select a card, it’s put in its correct place in
the sorted list. You continue this process of moving cards around until all
cards are in their correctly sorted locations. This sort isn’t complex and has
the advantage of being efficient with lists of fewer than 1000 elements.

• Shell sort—This efficient routine makes multiple passes through the list,
grabbing a set of values to sort. It then uses the insertion sort routine to sort
the data. For each pass, the system grabs a larger set of data. As the size of the
set increases, the number of sets that need to be sorted decreases until the
entire list is sorted.

Other sort routines are available, with each having its own advantages and
disadvantages. One consideration might be the complexity of programming
code needed to implement the sort. Another might be the amount of memory
the routine needs to complete the sort.

recursion – The process of a
routine calling itself

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

data s truc tures 311

8

one last thought
Algorithms are used everywhere in the computer industry. They’re used for cre-
ating and working with data structures, searching for information, and sorting
data. As you progress through your computing education, you might even be
the person who develops the fastest sorting algorithm ever known in the com-
puter industry!

Knowing how to work with data structures and sorting algorithms is necessary
when you begin writing computer programs. Many algorithms have already
been written and are available for your use. Also, knowing what tools are avail-
able and which sort routine will perform best for a situation can save you a lot
of time because you won’t have to reinvent the sort routine.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

• Data structures are used to organize data.

• Arrays are stored in contiguous memory cells (one right after the other).

• To define an array, you must specify the array name, type, and size.

• A single-dimensional array is a structure consisting of one level of array
elements.

• A multidimensional array is a structure consisting of more than one level, and
each level consists of an array.

• The array’s size is stored internally by using an upper and lower bound.

• A pointer is a memory variable that points to a memory cell location.

• A linked list is a data structure that can be used when the size of the information
to be stored is unknown or will change. Stacks and queues are forms of linked lists.

• A stack uses a last in, first out (LIFO) structure.

• A queue uses a first in, first out (FIFO)structure.

• A tree data structure represents a hierarchical storage method.

• Each position in a tree is called a node.

• Binary search trees are efficient for searching for information.

• There’s a wide variety of sorting algorithms, including selection, bubble,
quicksort, merge, insertion, and shell sorts.

array (280)

binary search tree (BST) (301)

bubble sort (306)

data structure (279)

depth or level (300)

dequeue (297)

element (282)

enqueue (298)

first in, first out (FIFO) (297)

head pointer (292)

height (300)

index (subscript) (284)

312 chapter eight

last in, first out (LIFO) (295)

leaf node (300)

left child (299)

linked list (290)

lower bound (284)

multidimensional array (285)

node (vertex) (299)

null value (292)

offset (283)

peeking (295)

pointer (291)

pop (295)

c h a p t e r s u m m a r y

k e y t e r m s

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

data s truc tures 313

8

1. Describe the uses of an array.

2. How would you define an array to keep track of five students’ ID numbers
(integer value) and their final averages, rounded to the nearest whole num-
ber (integer value)?

3. Using the array defined in question #2, write the statements to store
information for the five students’ ID numbers and final averages in each
array element.

4. Describe in your own words how a stack works.

5. Describe in your own words how a queue works.

6. Describe in your own words how a binary tree works.

For questions 7 and 8, use Figure 8-34.

procedure (296)

push (295)

queue (297)

recursion (310)

right child (299)

root (300)

selection sort (304)

stack (294)

stack pointer (296)

tail pointer (297)

tree (299)

upper bound (284)

Figure 8-34, Sample data for
questions 7 and 8

element data

32

4

7

2

25

0

1

2

3

4

105

t e s t y o u r s e l f

7. Show each step to sort the data by using a bubble sort.

8. Show each step to sort the data by using a selection sort.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

11. Label the root and leaf nodes.

12. What is the maximum height of the tree?

13. On what level is the node with the value 15?

14. Show the steps to find the value 7.

15. Show the steps to find the value 17.

314 chapter eight

9. Show each step to sort the data by using a bubble sort.

10. Show each step to sort the data by using a selection sort.

For questions 11–15, use Figure 8-36.

For questions 9 and 10, use Figure 8-35.

Figure 8-35, Sample data
for questions 9 and 10

element data

5

32

30

1

2

0

1

2

3

4

205

Figure 8-36, Sample data for questions 11–15

15

17

7

10 20

19

44

21

50

45

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

data s truc tures 315

8
1. A(n) __________ is a data structure consisting of contiguous memory

locations.

a. Array
b. Stack
c. Queue
d. Tree

2. A(n) __________ is used in an array to access each element.

a. Index
b. Subscript
c. Both a and b
d. None of the above

3. A single array can contain information of different data types (integers,
characters, decimals, and so on).

a. True
b. False

4. The statement char[] aAnswers = new char[5] declares an array that has
memory locations of 1 through 5.

a. True
b. False

5. The offset is used to specify the distance between memory locations.

a. True
b. False

6. Arrays are a good data structure to use with dynamic data.

a. True
b. False

7. A stack uses a LIFO structure.

a. True
b. False

8. A queue uses a FIFO structure.

a. True
b. False

9. LIFO is an acronym for:

a. List in, first order
b. Last in, first out
c. Last in, first order
d. List in, first out

p r a c t i c e e x e r c i s e s

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

316 chapter eight

11. How many comparisons does it take to find the following numbers?

a. 8
b. 2
c. 23
d. 30
e. 17

12. What is the number of nodes on level 3?

13. What is the number of nodes on level 4?

14. What is the maximum height of the tree?

15. How many right and left child nodes are there?

Given the following numbers—1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12—answer
questions 16 through 20.

16. Draw a binary search tree for these numbers. Make sure binary search tree
rules are applied.

17. How many comparisons does it take to find the number 4?

18. How many comparisons does it take to find the number 11?

19. What is the maximum height of the tree?

20. On what level is the number 6?

10. FIFO is an acronym for:

a. First in, first out
b. First in, first order
c. First in, final out
d. First in, final order

Use Figure 8-37 to answer questions 11–15.

Figure 8-37, Sample data for questions 11–15

2017

92 2219

8 12

10

21

16

30

23

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

data s truc tures 317

8
1. Write a sorting routine different from those discussed in the chapter to

organize information, and explain how it’s implemented.

2. Using six different numbers in any order, draw a diagram that shows how
the merge sort works.

3. Draw a diagram that shows how the insertion sort works, using six differ-
ent numbers in any order.

4. Draw a diagram that shows how the quicksort works, using six
different numbers in any order.

5. Draw a diagram that shows how the shell sort works, using six
different numbers in any order.

1. Which sorting routine do you think is best to use when sorting the infor-
mation in a phone book for a large city? Why?

2. List five scenarios for using an array.

3. List five scenarios for using a stack.

4. List five scenarios for using a queue.

5. Write the statements to define an array for a three-dimensional tic-tac-toe
board, and then play the game with other class members by specifying the
array location where you want to place an X or an O.

1. What are some sorting routines currently being used that haven’t been
mentioned in this book? What are the advantages and disadvantages of
using them?

2. Find a Web site that demonstrates different sorting algorithms, and share it
with the class.

3. Find at least three Web sites that demonstrate how a stack and queue work,
and share them with the class.

4. Find at least three Web sites that explain binary trees, and share them with
the class.

5. Describe how a binary search works, using the pre-order, post-order, and
in-order traversal methods.

d i g g i n g d e e p e r

d i s c u s s i o n t o p i c s

I n t e r n e t r e s e a r c h

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

c h a p t e r

operat ing sys tems

9

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

i n t h i s c h a p t e r y o u w i l l :

• Learn what an operating system is

• Become familiar with different types of operating systems

• Identify the major functions of an operating system

• Understand how operating systems manage processes

• Understand how operating systems manage resources

• Understand how operating systems provide security

• Learn how to perform basic operating system file management functions in
Windows and Linux

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

I recently took a trip to Texas to visit family. (For those who are wondering: Yes, the stars at night are big and
bright.) We went to a fun little place called Sundance Square in Fort Worth to have some dinner. I had been
tasked with finding a restaurant for the group, usually a simple 2-minute job for normal people. “This place

looks good. Done.” For me, it involved four hours scouring the Internet and one spreadsheet.

I have this problem wherever I travel. I realize that I won’t be returning to the city often, so I want to find the
best place to eat at the best price. So even before I arrived in Fort Worth, I got on the Internet and started
searching. I read review after review and list after list. I made note of the ones that looked good and their

prices, and then I started trying to rank them. (I was still working on this list as we were being seated at the
restaurant the group finally chose because I couldn’t decide.)

This problem carries over to watching TV, too. Every time I’m channel surfing and see a VH1
Top 100 show, I can’t resist, no matter how stupid the topic. Even with Top 100 Music Videos

Featuring Kitties, I have to know what #1 is!

This is why I don’t like other operating systems gaining ground against Windows. Linux has been getting more
popular for a while, and Apple has made a huge comeback with its Pentium-based computers and Leopard oper-

ating system. I want a clear winner! Bring on the monopoly! Then I won’t have to choose.

Windows is obviously the big hitter in the group, but more people are making the switch to other operating
systems because of cost, security, and cool features, among other reasons. Linux is usually free, so how can you
beat that value? Worse yet, for me, there are a bunch of different GUIs to choose from, so picking the one I like

best is impossible. Even Bill Gates has to admit that the new Apple computers are pretty dang sweet.

In the computer world, the Linux vs. Windows debate rivals that of Ford vs. Chevy or Coke vs. Pepsi. (In fact, the
only debate that gets more heated in these circles is the Kirk vs. Picard debate. If you bring this one up, look

out!) So which operating system is the best? We might never know.

If you traveled to Fort Worth, where would you eat? Maybe a place with some famous Texas barbecue
or authentic Mexican food? There are lots of tasty choices. After all my work, however, where did

we end up eating in Fort Worth? A Chicago-style pizzeria.

320 chapter nine

the lighter side of the lab
by spencer

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

operat ing sys tems 321

operating system (OS) –
The program responsible
for managing the user
interface, system resources,
and processes

If you try to run a program on a computer without an operating system—save a file, print a

file, or any other task you can think of—as they say in the movies, “It just ain’t gonna happen!”

Operating systems are essential to the functioning of computers. Everything that takes place

on a computer goes through, uses, or gets permission from the operating system. Inside the

computer, the operating system is the boss. Outside the computer, you can be the boss—if

you know how to control the operating system. This chapter helps you understand what an

operating system is, what it does, and how it works. It also explains how to perform some

basic folder and file functions in Windows and Linux, the operating systems you’ll most

likely use in your study of computers. Armed with a better understanding of what the

operating system is doing and how it works, you and your computer can be more efficient. If

you learn how to use operating systems now, everything else becomes easier because you can

concentrate on new material in future courses and not have to spend time trying to find

your files. As you’ve probably guessed, your professors have heard the “I lost my file” story

too many times.

o p e r a t i n g s y s t e m s

what is an operating system?
An operating system (OS) is the software “control center” of modern
computer systems. It’s the first program loaded into memory when the
computer starts (boots). The OS then remains resident in memory to load
and supervise all other programs that run on the computer. Both people and

why you need to know about...

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

322 chapter nine

how does a
computer boot?

The process of starting a com-
puter is often referred to as

booting. The term “boot” comes
from the idea of using bootstraps

to pull on boots. Computers are
hard-wired with a small program

called a bootstrap loader that
checks the status of all hardware
devices before going to a storage

device and loading the OS into
memory so that it can be exe-
cuted. The process of checking

hardware is called POST, which
stands for power-on self test. You

have probably seen the flashing
lights and onscreen messages as

the POST is performed.

Figure 9-1, An OS provides an interface between the user, applications, and hardware

user
application

software

operating
system

hardware

printerRAM

ROM BIOShard drive

CPU

n o t e

application software interface with the CPU and I/O devices through the OS
(see Figure 9-1).

booting – The process of
starting a computer system

POST (power-on self test) –
A procedure performed by
the computer boot routine
to check hardware devices

driver – A special program
that provides an interface
to a specific I/O device

n o t e

In computing, there’s a strong distinction between system software and

application software. Operating systems, drivers, and other utilities are

considered system software. Word-processing and accounting programs,

for example, are considered application software, or just “applications.”

The OS provides a way for application software, such as a word-processing
program or Web browser, to interact with computer hardware. It also contains
special interfaces that allow the computer to interact with peripheral devices.
These interface programs are called drivers, short for device drivers. For
example, when you click the Print icon in your word-processing program, a
signal is sent to the OS that a document should be sent to the printer. The OS
then communicates the document data to the driver for the printer, and the
driver controls the printer as it prints your document.

Many problems on a computer are caused by outdated drivers, especially

video drivers. Check the Web site of your device’s manufacturer for

updated drivers, which are widely available and can be downloaded and

installed.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

9

operat ing sys tems 323

Operating systems have the capability to connect with standard devices, such as
the keyboard and monitor. For most other I/O devices, such as printers, scanners,
and cameras, drivers must be installed. These drivers, often written by the device
manufacturers, usually ship with the I/O device, but checking the manufacturer’s
Web site for an updated driver is always a good idea. You can avoid many
problems by making sure you have the most current driver for a device.

An OS is just a computer program, although it’s an essential one. Like other
programs, OSs are written in programming languages, such as C and C++.
They generally consist of two parts: the core program (called the kernel) and
other system components that support and extend the kernel (see Figure 9-2).
The kernel, the core of the OS, is a small program that’s loaded first and
remains in memory the entire time the computer is on. The program responsi-
ble for loading the kernel is in the BIOS chip on the main board. When power
is turned on, the CPU begins executing the instructions stored in the BIOS
chip. These instructions perform the POST and then load the OS kernel from
the boot device specified in the CMOS RAM. After the kernel is loaded into
memory, the BIOS program transfers control to it.

The BIOS and CMOS are also described in Chapter 3, “Computer Architecture.”

kernel – The core of an
operating system; con-
trols processor, disk,
memory, and other
central functions

before the OS

Early computers didn’t have oper-
ating systems. A program had to

be entered bit by bit, using
switches on a front panel. This

program was the only thing run-
ning on the computer and

remained in memory only as long
as the computer had power.

Figure 9-2, Users and computer components interact with the OS kernel

applications

operating system

hardware

configuration data

configuration filesRegistry

user

kernel

shell

user interface tools

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

324 chapter nine

Windows – A popular
Microsoft GUI operating sys-
tem for Intel-based systems

DOS (Disk Operating
System) – A single-user,
single-tasking, command-
line operating system; the
Microsoft predecessor to
Windows

Linux – A multitasking,
multiuser, open-source
variation of the UNIX
operating system

UNIX – A multitasking,
multiuser, command-line
operating system known for
its stability and reliability

n o t e

The other part of the OS is made up of system components, or modules. The
main module is the program responsible for the user interface. In Windows,
this module provides the graphical desktop you use to perform computer
functions. In Linux, it might be the Gnome, KDE, or Xfce graphical interface.
Drivers are other modules that interface with I/O devices, such as printers,
monitors, and network cards. All these modules work together to give the user
and applications access to the CPU and other connected devices.

Most OSs are loaded on the computer’s hard disk, although on smaller
handheld computers and personal digital assistants (PDAs), the OS can
reside on a ROM chip. Currently, Microsoft Windows is the most widely
used OS. Years ago, you might have used DOS (Disk Operating System).
The “Disk” part of the name indicates that this OS has support for disk
drives, a novel feature at the time. Many companies now are using the
Linux or UNIX operating system on their servers. You might have also used
the Macintosh operating system (Mac OS) at school. Operating systems vary
in style and special features, but they all perform similar functions. Table 9-1
shows how the main operating systems fit into the overall scheme of OS
development.

Linux is an open-source variation of the UNIX operating system. Many of the

Linux commands and features described in this chapter also apply to UNIX.

Table 9-1, OS development summary

approx.
OS date description

UNIX 1968 First widely used multiuser, multitasking OS;
initially for mid-range computers.

CP/M 1975 First OS that allowed business work on PCs, with its
VisiCalc spreadsheet software.

MS-DOS 1980 First OS for the IBM PC.

PC DOS 1981 IBM version of Microsoft MS-DOS.

Mac OS 1984 First widely distributed OS to use a graphical user
interface (GUI) and a mouse, for Apple PCs; Mac OS
X is closely related to UNIX but runs only on Apple
computers.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

9

operat ing sys tems 325

Table 9-1, OS development summary (continued)

approx.
OS date description

Windows 3.x 1990 Early Microsoft Windows versions, including
Windows 3.1 and Windows 3.11 (collectively referred
to as Windows 3.x), provided a graphical interface to
what was essentially still DOS "under the hood."

Linux 1990 Open source, meaning it was developed, tested, and
enhanced by many people as a collaborative effort.
Based on UNIX, Linux was created by Finnish com-
puter science student Linus Torvalds in 1990 and has
expanded to include a GUI and many other modules.
Those participating in development make the OS
available free to everyone, although some companies
charge to package or support Linux. Because of its
low cost, availability for many types of computers,
and stability, Linux has become popular in the past
few years.

Windows NT 1993 Included more advanced security features, network
support, and user administration features than
Windows 3.x. It came in two versions: Windows NT
Workstation for end-user computers and Windows
NT Server for managing and maintaining a network.
Designed mainly for businesses and technical users
rather than home users.

Windows 9x 1995 These OSs—Windows 95, Windows 98, and
Windows Me (Millennium Edition)—relied on a DOS
core but had a more user-friendly interface and
advanced features, such as automatic recognition
and configuration of I/O devices (Plug and Play),
more integrated Internet capabilities, and support
for hardware devices, such as CD/DVD-ROM drives.

Windows 2000 An upgrade of Windows NT with additional features,
2000 including improved network support and increased

speed and stability. There are several versions:
Windows 2000 Professional is popular for business
desktops, and Windows 2000 Server, Windows 2000
Advanced Server, and Windows 2000 Datacenter
Server are network OSs.

(continued)

open source – Computer
programs, including oper-
ating systems, developed as
a public collaboration and
made available free for use
or modification

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

326 chapter nine

platform – The OS running
on a computer

n o t e

Table 9-1, OS development summary (continued)

approx.
OS date description

Windows XP 2001 Combined the user-friendly features of Windows 98
and Windows Me with the strengths of Windows
2000. Included an upgraded user interface, support
for multiple users, better performance, and more
support for multimedia, such as audio and video.
Available in three versions: Home Edition,
Professional, and Tablet PC Edition.

Windows 2003 A network OS with additional features for
Server 2003 managing and maintaining a network; provides

increased security, enhanced file and print server
support, support for remote access, and more.
Available in several versions, including Standard
Edition, Enterprise Edition, Datacenter Edition,
Web Edition, and Small Business Server 2003.

Windows 2006 Designed to improve security in Windows to address
Vista criticisms of security vulnerabilities in previous

versions. Its release was delayed because of the
extra work required for improving security aspects
of the OS. Includes improvements in networking
and multimedia. A new server OS, Windows Server
2008, was also released at this time.

Windows 7 2009 The most recent Windows version has improvements
over Windows Vista yet maintains compatibility with
existing Vista drivers. It has new features for voice
and handwriting recognition as well as a complete
reworking of the taskbar.

Versions of Microsoft Windows are installed on nearly 90% of desktop

computers worldwide.

The OS running on a computer is often called its platform and is typically
tied to a particular CPU. Applications that run on one platform won’t run on
another platform without modification. For example, the Microsoft Word
application that runs on the Windows XP platform can’t run on an iMac

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

9

operat ing sys tems 327

running backward?

In the world of computers, ensur-
ing that older hardware and

software are compatible with
newer computers is referred to as
“backward compatibility” and is

crucial to the success of a new
OS or CPU. Many past failures in

PCs can be traced to their lack of
backward compatibility.

single-tasking – An OS that
allows running only one
process (task) at a time

multitasking – An OS’s
capability to effectively
support more than one
process running at a time

network operating system –
An OS designed to provide
strong network services

multiprocessing –
Coordinated execution of a
process, using two or more
CPUs at the same time

computer running Mac OS. Applications that have been converted to run on
multiple platforms are called “cross-platform” applications and should run
nearly identically in different OSs.

types of operating systems
Operating systems can be classified by their features or intended uses. For
example, older OSs, such as DOS and Windows 3.x, were designed to be
single-tasking operating systems, meaning only one program or task could be
running at a time. Current versions of Windows, Linux, and Mac OS X are
examples of multitasking OSs, meaning they can service many different
program tasks at a time. Most of today’s OSs are multitasking. Some, such as
NetWare, UNIX, Linux, and Windows Server 2008, are designed as network

operating systems, with capabilities to configure and manage networks of
computers.

Each OS has been designed to be strong in a particular area. For example,
recent versions of Microsoft Windows and Mac OS have been designed to have
an easy-to-use interface and multimedia capabilities to appeal to home and
small-business users. UNIX and Linux are designed to be very strong in multi-
tasking, security, and multiprocessing (using more than one CPU). UNIX and
Linux are also known for their stability. Windows is installed on the over-
whelming majority of desktops, but UNIX and Linux are often the OSs of
choice in the server environment. Servers—database servers and Web servers,
for example—are computers used to service many different users.

Many other OSs run on equipment such as PDAs and cell phones. In some
cases, the OS is just a scaled-down version of a larger OS, as with the Android
OS, based on the Linux kernel, used in the T-Mobile G2. It’s important to
remember that every multipurpose device with a CPU must also have an OS.

funct ions of an operating system
Although they have different features and strengths, all OSs perform the same
basic functions. For example, they provide a user interface, schedule and
manage program execution, manage memory, configure devices, provide file
management and security, provide basic networking capability, and monitor
performance. The basic functions that all OSs perform can be classified into
four main categories:

• Providing a user interface
• Managing processes
• Managing resources (including memory)
• Providing security

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

328 chapter nine

providing a user interface
As a computer user, you’re no doubt familiar with the function of providing a
user interface. The user interface is a program that enables you to communicate
with the computer. Operating systems provide for input from devices such as
the keyboard, mouse, and touch screen as well as audio commands.

There are two basic types of user interfaces: the command-line interface and the
graphical user interface (GUI), shown in Figure 9-3. DOS and Linux use a
command-line interface and are sometimes called console operating systems.

command-line interface – A
method of communicating
with the OS by typing com-
mands and receiving
responses in text format

graphical user interface
(GUI) – A method of inter-
acting with the OS, in which
information is displayed in a
graphical format, and the
user can select items by
using a pointing device,
such as a mouse

Figure 9-3, The Windows command prompt emulates a DOS environment (top); the
default GUI interface of Windows Vista (middle); and the GUI interface of Linux
(bottom)

ping
command
entered

ping
command
executed

command
prompt

window

desktop

button

menu

icon

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

operat ing sys tems 329

9

the first GUI

The GUI was invented by scien-
tists at Xerox Corporation in

1970. It was adopted later by
Apple Computer and used exten-

sively in Macintosh computers
before being adopted by

Microsoft for its Windows prod-
uct. Now virtually all home and

business OSs have a GUI.

Users interact with the OS by typing commands at a command prompt, with the
output displayed as characters and numbers. Windows, Mac, and some Linux
versions use a GUI, which allows users to interact with the OS by using the
keyboard and mouse or other pointing device to click icons and buttons, open
graphical windows, and make menu selections instead of typing text commands.

Although Windows is primarily a graphical OS, you can also access a
command prompt, usually via the All Programs, Accessories menu. The
command prompt emulates a DOS environment. DOS, the first Microsoft
operating system, is a command-line OS with no graphical interface. GUIs
can be added to Linux, but standard Linux uses a command-line interface. To
provide backward compatibility, Windows has always included the capability
to interface with the OS via the command prompt. Many computing courses
require you to have some knowledge of the command prompt interface in
Windows so that you can run Linux or DOS programs and back up your files
in a console environment.

command prompt –
Words and symbols
displayed onscreen that
indicate the OS is waiting
for user input

Figure 9-3, (continued)

window

desktop

button

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

330 chapter nine

managing processes
Operating systems are responsible for loading, starting, running, and stopping
processes—or programs—on the computer. Each program you run is a process.
Processes might then start (sometimes called “spawn”) other processes to support
them. In Windows, for example, you can view running processes by pressing
Ctrl+Alt+Delete to open Task Manager and then clicking the Processes tab to
display information on all running processes (see Figure 9-4).

process – A small program
running on a computer; can
be part of a larger program

Figure 9-4, Windows Task Manager

Linux has a similar function for displaying information on active processes. At
the console prompt, you can type the ps command to get a list of all running
processes. Figure 9-5 shows an example of the output of this command. There’s
no DOS command to list currently running processes because only one process
can be running at a time. DOS was designed to be used by a single user,
completing one task at a time. Linux, on the other hand, was designed to
accommodate multiple users and multiple tasks.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

operat ing sys tems 331

9

Figure 9-5, Viewing processes in Linux with the ps command

time slicing – A method of
allocating fixed time units
to running processes so that
it appears to users that all
processes are running
simultaneously

In reality, only one process can run at a time on all single CPU systems. For
example, in Windows you might be listening to an MP3 while you’re down-
loading a file and, at the same time, using a word-processing program to write
your term paper. If you opened Task Manager and looked at active processes,
you would probably see even more processes running. It would seem you’re
running many processes at once; however, the computer is likely carrying out
only one process at a time. Von Neumann architecture supports only serial exe-
cution of instructions; during any given clock cycle, only one instruction from
a single program can be executed. If the computer has multiple processors,
some parts of some processes might be executing in parallel.

The parts of a computer system, such as the CPU, memory, keyboard, monitor,
and network adapter, function at different speeds. The CPU is the fastest and can
execute billions of instructions per second. Main memory is slower and can be
accessed only millions of times per second. Because memory and other devices are
slower than the CPU, the CPU has time to spare. It uses this spare time to exe-
cute a few instructions at a time for each running process. Of course, the CPU is
also much faster than users. Say the average user types 60 words per minute. In
the time between each keystroke, the CPU can execute billions of instructions.

time slicing

Computers can run many programs with only one processor by using effective
time management. College students also have to be good at time management—
at least, those who want good grades and a social life do. You have probably
observed students talking on cell phones while eating breakfast while studying
for a history assignment and maybe even putting on makeup. (Actually, maybe
that was you.)

The method that allows multiple processes to share the CPU is called time

slicing, and it’s an important responsibility of the OS. It works by allocating
small segments of CPU time to each running process, one after another. To
users, it seems that multiple processes are running at the same time, but in
reality, the processor is just using its time efficiently. Time slicing works because
often the CPU is waiting for I/O devices to return information.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

332 chapter nine

Plug and Play (PnP) – A
technology that allows the
OS and hardware to work
together to detect and con-
figure I/O devices
automatically

Time slicing, managed by the OS, allows computers to accomplish much more
work than they would otherwise, but this process is complicated. The OS must
be able to decide which process is ready for execution and which process is
waiting for some I/O to take place. Sometimes processes need to have CPU
time immediately—for example, to act on special keystrokes, such as
Ctrl+Alt+Delete, which can be used in Windows to view and terminate
processes. Because the OS might be allocating time to other processes when
keystrokes are entered, the OS must also allow processes to interrupt the CPU
and jump to the head of the line of processes requesting CPU time. This proce-
dure takes place with interrupt handling.

Interrupts can be initiated by programs or devices. When an interrupt occurs,
the CPU stops what it’s doing and goes to a program in memory called an
interrupt handler. Multiple interrupt handlers reside in memory waiting for
their number to be called. The main interrupt handler is part of the OS and is
executed when the time-slicing timer ticks. This interrupt routine is coded to
decide which processes are ready for more execution time and which process is
next in the execution schedule.

managing resources
Devices such as the main memory, hard disk, and CD/DVD-ROM drive are
the computer’s resources. The CPU uses them to accomplish program tasks.
Each process running on the computer might need to access and use these
resources. Therefore, another responsibility of the OS is to manage the
computer’s resources.

I/O devices have to be configured to work correctly in the environment in
which they’re installed. In the past, configuration was performed by users
setting physical switches or jumpers or running special software utilities. In
1995, a new technology was introduced with Windows 95. This technology,
called Plug and Play (PnP), was intended to create a computer with hardware
and software that worked together to configure devices and assign resources
automatically, making hardware changes and additions easier. Plug and Play
has been a feature of all subsequent versions of Windows and has been used in
other operating systems as well.

Theoretically, it’s possible for each program or process running on a computer
to access I/O devices directly. For example, sometimes DOS-based games access
the video card directly to try to improve performance. Having programs access
I/O devices directly isn’t a good idea, however. Each program accessing I/O
devices directly would need drivers for the specific I/O devices attached to the
computer. It makes more sense to have the OS be responsible for all interfacing
with I/O devices. That way, any program can simply request that the OS
perform the I/O operation, and only the OS has to be set up to recognize
and interface with I/O devices.

interrupt handling –
A method of allowing
processes and hardware I/O
devices to interrupt the
processor’s normal execut-
ing so that it can handle
specific tasks

resources – Devices con-
nected to the CPU, such as
the main memory, hard
disk, and CD/DVD-ROM
drive; all running processes
have to share these devices

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

9

operat ing sys tems 333

Managing a computer’s resources is tricky, in that the OS must assign and keep
track of priorities for each device and each running process. It’s even more
difficult when a process is waiting for a resource allocated to another process,
and the second process is waiting for a resource allocated to the first. This rare
situation is called deadlock. Unless the OS can break the deadlock by recognizing
it and releasing one of the resources, processing ceases and the system freezes up.
Although deadlock occurs only rarely, if the OS didn’t provide a remedy for it,
the system couldn’t continue processing without a reboot.

managing memory

Another important resource that an OS manages is memory. All programs and
processes running on a computer are stored in main memory, or RAM.
Program data is also stored there. When a user issues a command to run a
program, the OS determines the location of free space in memory and loads the
program from the disk to this memory location. As processes and programs
come and go, the OS must constantly manage memory and communicate with
the CPU about where to begin executing a program.

providing security
Some processes running on a computer are programs the user has initiated, and
others are initiated by programs running on the system. Still others are part of
the OS itself. All these processes theoretically could have access to all memory
and all system resources. However, one process writing into the memory area of
another process can cause problems. Operating systems are responsible for
protecting memory and other resources and serve as the “resource police,”
ensuring that resources are distributed evenly among competing processes.

Allowing unauthorized users to access programs or devices is also dangerous. Most
computer systems contain sensitive data, and access to this data needs to be
controlled. The OS provides a means for allowing only authorized users to access
programs or devices as another measure for keeping the computer and its resources
secure. One way OSs provide security is by allowing system administrators to set
up password-protected user accounts. Many OSs also allow administrators to set
up group policies that govern which resources a class or group of users is allowed
to access. When a new user is created and assigned to a group, he or she gains the
group’s rights and permissions automatically. The system administrator saves time
by not having to list every permission a new user should have.

using an operating system
As you continue your education in computing and embark on a career, you’ll
have to use and interact with many different operating systems. Although un-
derstanding how an OS works is helpful, knowing how to perform basic tasks is

deadlock – A rare situation
in which I/O devices and/or
processes are waiting for
each other for use of re-
sources; this situation
would continue indefinitely
without intervention by
the OS

recovery partition to the
rescue

Most major OSs allow you to cre-
ate a recovery partition on the

main hard drive that can be used
in case you can’t boot your system.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

334 chapter nine

just as important. Much of your interaction with an OS is simply starting and
running programs. At other times, you need to know how to use the OS to
manage your computer’s resources. In the following sections, you learn how to
perform some basic file management tasks with two of the most widely used
operating systems.

managing disk fi les
From the user’s point of view, one of the main functions of an OS is to orga-
nize files on the computer’s drives. For this task, the OS needs a formal filing
structure. Nearly all operating systems allow users to give names to files as
they’re stored. For better organization, OSs allow you to organize files into
structures called folders or directories. Folders are organized into a treelike
structure with a single root level and one or more branches. The files can then
be viewed as leaves (nodes) on the tree structure. Figure 9-6 shows an example
of this tree structure in Windows.

folder – Structure on a for-
matted disk that enables
storing and organizing files;
also known as a directory
or subdirectory

directory – Same as folder;
“folder” is often used
in Windows, and
“directory/subdirectory” is
more often used in DOS
and Linux

root level – The main
folder/directory level on a
drive

Figure 9-6, The Windows interface for working with files and folders

In command-line operating systems, such as Linux and DOS, a similar struc-
ture is used, but you can’t view it as a tree structure. You need to enter
commands at the prompt to display files and folders, as shown in Figure 9-7.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

operat ing sys tems 335

9

Figure 9-7, Linux command-line interface for displaying files and folders
how are files organized

on CDs?

CDs have their own filing sys-
tem, but each OS translates the

CD filing system into a format
common to the OS so that users

can treat it the same as any
other drive on the system.

DOS in Windows

You can practice DOS commands
by opening a command prompt

window in Windows.

The graphical interface of Windows makes it easy for users to view and work
with the folder structure. Windows Explorer is one way of viewing and manag-
ing files in Windows. In Figure 9-6, shown previously, the system’s drives and
folders are shown in the left pane, and subfolders and files are shown in the
right pane. You can set the right pane to display folders and files in different
ways. For example, Figure 9-6 shows the Details view, which displays informa-
tion on file size, type, and date modified. Graphical interfaces can improve user
productivity substantially because working with files and folders is fast and easy.

The next sections show you how to perform some basic file management func-
tions in Windows and Linux. If you can become familiar with these tasks, you’ll
be more effective in everything else you do in the computing field.

Normally, Linux uses a command-line interface, so the following sections list
commands you enter at the command prompt. Many GUIs are available for
Linux, but because they’re similar to the Windows GUI, only the command-
line interface is described in these examples.

Linux commands have what are called command-line switches (sometimes
called parameters or flags), used in this format:

ls -lrt

The ls command lists files in the specified directory or subdirectory. The
switches shown with this command, listed after the hyphen, list all files located
in the current directory. Switches modify the way a command works. The “l”
switch indicates that the output should be in long format. The “r” specifies
reverse order for the output sorted by file modification time, which is indicated
by the “t” switch.

just in case

Linux commands are case sensi-
tive. For example, LS or Ls won’t

work for the ls command.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

336 chapter nine

partition – An area of a
hard disk reserved to hold
files of a particular OS type

format – Organizing the
disk’s surface in a way that
allows writing folders and
files to it

command syntax

In the command syntax shown in
this chapter’s tables, words in

bold are required, and italic
words are replaced with the spec-
ified information. Items in square

brackets are optional and
can be omitted.

n o t e

Although the syntax for commands is shown in the following sections, you
need to consult each operating system’s Help feature to find detailed informa-
tion on switches. In Linux, entering man command gives you the manual
pages with information on the command you specify. Note that nearly all
switches are optional, and you don’t need to worry about them most of the
time. To exit manual pages, simply type “q.”

The basic operations for creating and managing folders and files, explained in
the following sections for Windows and Linux, are as follows:

• Partitioning disks
• Formatting disks
• Creating folders (subdirectories)
• Listing folders and files
• Renaming folders and files
• Deleting folders and files
• Copying folders and files
• Moving folders and files

partitioning disks

Before a disk can be used, it must be divided into partitions and formatted. Both
tasks are accomplished by running a program that’s part of the OS. Partitioning a
disk prepares it to be formatted by dividing it into areas called partitions. The parti-
tions are simply broad divisions of the disk’s total capacity into specific OS areas.
Partitions aren’t prepared to receive folders and files until they have been formatted.

Both Windows and Linux use the fdisk command to partition hard disks. As
mentioned, Linux is case sensitive, so the fdisk command must be lowercase.
Windows isn’t case sensitive, so FDISK works, too. Partitioning commands
should be used only when necessary, however, because they’re somewhat
complicated and can erase your entire hard drive easily. If you’re fond of the
files on your hard drive, you’ll pay close attention to the following note.

CAUTION: The FDISK command completely and irreversibly erases disk

drives. Never run FDISK unless you are sure of what you’re doing.

formatting disks

After a disk has been partitioned, it can be formatted by the OS. The process of
formatting arranges the disk surface into addressable areas and sets up the basic
directory tree structure on the disk. Formatting can also be used to place a copy
of the OS on the disk so that it can be used as a boot disk for starting the com-
puter. Table 9-2 shows the commands for formatting in Windows and Linux.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

operat ing sys tems 337

9

n o t e CAUTION: Formatting a disk erases its contents completely. Never format

a disk unless you are certain you don’t need any files on it.

Table 9-2, Formatting disks

OS commands/procedures to format disks

Windows Nearly all types of disks can be formatted in Windows Explorer.
Some specialized removable drives have their own format program,
but most can be formatted with the OS program.

In Windows Explorer, right-click the drive to be formatted and click
Format. The Format dialog box that opens has options you can set.
Most are defaults and shouldn’t be changed. You can do a full
format or a quick format. A full format marks tracks and sectors on
the disk and puts the basic tree structure on the disk. The quick
format just puts an empty tree structure on the disk. You can also
select an option to place system startup files on the disk.

After you select options and click the Start button, the disk is
formatted. The OS informs you when the formatting is finished
and the disk is ready to use.

Linux Use the fdformat command to format a disk. The command takes
this form:

fdformat [-dDeEfHlLmMUqvx]

[-b label] [-B filename]

[-t dostype] [devname]

The items in brackets are optional switches that modify the
command.

The fdformat command performs a low-level formatting on the disk.
To complete the formatting process, you also need to use the mkfs
command to create the file system on the disk. You can get more
detail on the fdformat command by entering man fdformat
at the command prompt.

Linux also has the format command to format hard disks. Enter
man format at the command prompt for more help on format-
ting hard disks.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

338 chapter nine

n o t e

n o t e CDs and DVDs are usually formatted only when they’re written to.

Exceptions are rewriteable CDs and DVDs.

creating folders (subdirectories)

After a disk has been partitioned and formatted, files can be stored on it. As
mentioned, OSs allow you to divide the disk further into folders or directories that
can also contain subfolders or subdirectories. At the root level, you can create fold-
ers, and every folder you create there is considered to be “under” the root folder.
You can also create child folders inside these folders, and they’re called subfolders
or subdirectories. Folders containing “children” are called parent folders or parent
directories. A folder that’s a child to one folder can also be a parent to another
folder. Any folder on a disk can contain files and/or additional child folders.

Note that there’s always a current subdirectory (folder) in use. Typically, it’s
shown as part of the prompt in command-line interfaces and on the status bar
in Windows. Commands for subdirectories act on the current subdirectory
unless you specify otherwise.

The parent-child structure has nearly unlimited depth, but as a practical matter,
you should avoid creating more than 10 levels in the structure. Nesting more
than 10 folders results in lengthy file pathnames and makes the files in those
folders difficult to find.

For users to be able to create this structure, the OS needs to provide a method
of creating folders. Folders are given names, and each OS has specific rules for
naming them. In general, folder names must start with a letter and can include
additional numbers or letters and some special characters, up to a maximum
length of 255 characters. Linux is case sensitive, meaning that it treats upper-
case and lowercase letters as different letters. DOS and Windows aren’t case
sensitive.

Windows uses the term “folder,” but Linux more often uses the terms

“directory” and “subdirectory.” In most of this chapter’s discussion, the

terms are used interchangeably.

Table 9-3 shows commands and procedures for creating folders in Windows
and Linux.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

operat ing sys tems 339

9

Table 9-3, Creating folders

OS commands/procedures to create folders

Windows Folders can be created in Windows in two ways:
• In Windows Explorer, select a drive or folder, and then right-

click the blank area in the right pane, point to New, and click
Folder. A folder called New Folder is appended to the list of
files and folders in the right pane. You can then click this folder
and rename it with whatever name you like.

• Select the folder you want to be the parent to the new folder,
and then click File, New, Folder from the Windows Explorer menu.
(In Windows Vista and later, you select the folder you want to be
the parent in the navigation pane on the left, and then click
Organize, New Folder on the command bar.)

Linux Use the mkdir command to create subdirectories (folders). To change
your current (default) subdirectory, use the cd command.The following
command creates a subdirectory named homework as a child under
the current directory:

mkdir homework

listing the contents of drives and folders

Table 9-4 shows the procedures and commands to list the contents of drives
and folders in Windows and Linux.

Table 9-4, Listing the contents of drives and folders

OS commands/procedures to list contents of folders or drives

Windows The main program for viewing drives, folders, and files is Windows
Explorer. To open it, click Start, All Programs, Accessories, Windows
Explorer, or double-click the desktop icon (if you have one). You can
also hold down the Windows (flag) key and press E.

In Windows Explorer, you can browse the tree structures of your
drives. Clicking the plus symbol next to a folder opens the folder’s
contents. (In Windows Vista and later, right arrows and down arrows
are used instead of plus and minus symbols.) In general, folders are
on the left and files on the right, although subfolders are sometimes
displayed on the right. If you right-click a file or folder and click
Properties, you can view details about it.

(continued)

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

340 chapter nine

Table 9-4, Listing the contents of drives and folders (continued)

OS commands/procedures to list contents of folders or drives

Linux To list files and folders, use the ls command (for “list") with the
following syntax:

ls [-a] [-A] [-b] [-c] [-C] [-d] [-f] [-F] [-g]

[-i] [-l] [-L] [-m] [-o] [-p] [-q] [-r] [-R] [-s]

[-t] [-u] [-x] [pathnames]

The ls command has many switches for modifying how files are
displayed. You can find information on them by entering man ls
at the command prompt.

renaming folders and files

After you have created folders, the OS provides a method for renaming them,
as shown in Table 9-5.

Table 9-5, Renaming folders and files

OS commands/procedures to rename folders or files

Windows In Windows Explorer, right-click the folder or file and click
Rename. The cursor moves to the name of the highlighted folder
or file, and you can type the new name. You can also select a file
or folder, press F2, and enter the new name.

Linux The Linux syntax for renaming a file or directory is as follows:

mv directory newname

In this command, directory is the full pathname to the
subdirectory or file, and newname is the new name for the
subdirectory or file.

deleting folders and files

An OS must also provide a method for deleting folders. Note that deleting folders
requires care because it can also delete all files and subfolders contained in the
deleted folder. Command-line OSs such as Linux don’t allow recovering folders
and files after they have been deleted. In Windows, deleted files and folders reside
in the Recycle Bin folder until it’s emptied.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

operat ing sys tems 341

9

wildcard – A symbol that
stands for one or more
characters, used in selecting
files or directories

Both these OSs allow the use of wildcards. Wildcards are characters that are used
to match any character, much as the joker can match any card in many card
games. In Windows and Linux, wildcard characters are the asterisk (*) and the
question mark (?). The asterisk matches any group of characters, and the question
mark matches a single character. For example, the following path includes all files
in the c:\windows\system32\drivers folder tree with .inf as a file extension:

c:\windows\system32\drivers*.inf

Here are some more examples of wildcards:

*.exe All .exe files ?xyz Files such as 1xyz, 2xyz, and
so on

a*.bat All .bat files beginning ??xyz Files such as 10xyz,
with “a” abxyz, and so on

Wildcards can be used with many Linux and Windows commands to include
groups of files and folders in file manipulation commands. As with other
commands, wildcard specifications are case sensitive in Linux.

Table 9-6 shows the commands and procedures for deleting folders and files in
Windows and Linux.

Table 9-6, Deleting folders and files

OS commands/procedures to delete folders and files

Windows There are two ways to delete a folder:

• Right-click the folder you want to delete and click Delete.

• Click the folder you want to delete and press Delete.

With both methods, you see a message asking whether you’re
sure you want to delete; click Yes or press Enter to confirm.

Note that deleting a folder also deletes all the files and folders
it contains.

Linux The rm command is used to delete folders (subdirectories) or files.
For subdirectories, the -r switch must be used to indicate that a
subdirectory, rather than a file, is being deleted. In the following
command, rm deletes the file or files specified by filename.The
optional switch -i prompts you before each file is deleted.You
can use Linux wildcards to specify groups of files to be deleted.

rm filename [-i]

For more information on the rm command, enter man rm
at the command prompt.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

342 chapter nine

copying files and folders

After the basic folder and file structures have been set up, files can be copied into
folders or stored at the root level. One of the most essential functions of an OS
is to allow saving files to disk drives. Partitioning, formatting, and creating fold-
ers are done to prepare the drive to receive files. As a user, manipulating files and
folders is one of the most important skills you can learn. Few things are more
frustrating than losing a file on the hard drive or losing all your unsaved work
when the power goes out. Knowing how to copy files and folders and organize
drives into folders makes you more effective in your work and helps you perform
proper backups. Table 9-7 shows you how to copy files in Windows and Linux.

Table 9-7, Copying files and folders

OS commands/procedures to copy folders and files

Windows The easiest, safest, and most consistent method in Windows
Explorer is using the copy and paste functions. Simply right-click
a file and click Copy. Next, right-click the folder or drive you’re
copying the file to and click Paste. A copy of the file is placed in
this location.

You can also hold down the Ctrl key, click the file, and drag it to the
folder or drive. This process is risky, however, because if you acciden-
tally let go of the key or button before the file gets to its destination,
it might wind up in the wrong location, and you might also delete
the file from its original location.

Folders can be copied in the same manner as files. Any files or sub-
folders in the copied folder are also copied.

To select multiple files or folders for copying, click one in the
group and press Shift or Ctrl. Shift selects contiguous folders or
files; click the first item to copy, hold down Shift, and click the last
item in the group to select the entire group. For files or folders
that aren’t contiguous, click the first item to copy, hold down Ctrl,
and click each additional item to add it to the selection.

Linux The cp command is used to copy files and has this syntax:

cp filefrom fileto

The filefrom and fileto are full pathnames to the "from file"
location and the "to file" location. Linux has more wildcards but
still uses the asterisk and question mark. Using the asterisk after
filefrom or fileto instructs the cp command to include all files and
subdirectories in the main subdirectory specification.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

operat ing sys tems 343

9

moving files and folders

Moving files is similar to copying, but the file is deleted from its original
location after it’s moved. The command to move a file is actually a copy
command followed by a delete command. Table 9-8 shows procedures and
commands to move files and folders in Windows and Linux.

Table 9-8, Moving files and folders

OS commands/procedures to move folders and files

Windows The safest method is right-clicking the folder or file you want to
move and clicking Cut. Next, right-click the location where you
want to move the folder or file and click Paste.
You can also click the folder or file, drag it to its new location, and
release the mouse button. This method is called "drag and drop"
and isn’t as reliable as cutting and pasting.

Linux The mv command is used to move subdirectories as well
as files and follows this syntax:

mv oldname newname –r

The -r switch is used to include all child subdirectories and files in
the move process. Note that the mv command is also used to
rename files and folders, as you learned earlier.

one last thought
Because operating systems are a central part of computing, learning the basic
OS concepts and how to use them is essential. In later computing courses,
you’ll expand your knowledge of the theory of OSs. In almost all your later
courses, you’ll have to interact with OSs to complete your studies and assign-
ments. The coverage in this chapter isn’t exhaustive by any means, but it gives
you some common OS tools for managing files and folders.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

344 chapter nine

• Operating systems are essential to the operation of computers.

• Operating systems are special programs designed to manage overall computer
operation.

• An OS is the software control center of a computer system.

• Applications interface with a computer’s hardware through the OS.

• Operating systems consist of a core program called a kernel and other system
components that support and extend the kernel.

• Operating systems provide a user interface. The two main OS interface types
are graphical (GUI) and command line (console).

• The OS is loaded as a result of the loader program in the system BIOS.

• The OS normally resides on the system’s hard drive and is loaded into
memory.

• The OS running on a computer is often referred to as the system’s platform.

• Operating systems can be single-tasking or multitasking.

• Operating systems provide a user interface, manage processes, manage
resources, and provide security for the system.

• Operating systems are responsible for loading, starting, running, and stopping
processes.

• Operating systems allow multiple processes to share the CPU through a
procedure called time slicing.

• Some operating systems use Plug and Play (PnP) technology to detect and
configure I/O devices automatically.

• The most popular operating systems are Windows and Linux.

• Operating systems also provide for managing and organizing disk folders and
files.

• Commands can be modified by using switches or parameters.

• Disks can be organized into folders (directories) and files.

• Learning to use OS file management functions can help you work more
efficiently.

c h a p t e r s u m m a r y

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

9

operat ing sys tems 345

booting (322)

command-line interface (328)

command prompt (329)

deadlock (333)

directory (334)

DOS (Disk Operating System) (324)

driver (322)

folder (334)

format (336)

graphical user interface (GUI) (328)

interrupt handling (332)

kernel (323)

Linux (324)

multiprocessing (327)

multitasking (327)

network operating system (327)

open source (325)

operating system (OS) (321)

partition (336)

platform (326)

Plug and Play (PnP) (332)

POST (322)

process (330)

resources (332)

root level (334)

single-tasking (327)

time slicing (331)

UNIX (324)

wildcard (341)

Windows (324)

1. What is the first program loaded into memory when a computer is
started?

2. Special programs designed to allow the computer to communicate with
peripheral devices are called what?

3. What is the core program of an OS called?

4. What is multitasking?

5. What is multiprocessing?

6. What are the four main categories of OS functions?

7. What are the two basic types of user interfaces in an OS?

k e y t e r m s

t e s t y o u r s e l f

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

8. What is a process in an OS?

9. What method allows multiple processes to share the CPU?

10. What is the purpose of an interrupt handler?

11. Folders and files in an OS are organized into what type of structure?

12. In Linux, how do you access information on OS commands?

13. What is the purpose of formatting a disk?

14. Give an example of a case-sensitive OS.

15. What command is used in Linux to create a folder?

16. What command is used in Linux to list folders and files on
a drive?

17. In an operating system, what’s a wildcard?

18. In Windows, what key is used to rename a file?

19. For what task is Plug and Play used in an OS?

20. Do PDA devices require an OS?

1. DOS stands for:

a. Demand Open Sources
b. Disk Operating System
c. Device Outer Shell
d. Direct Operating System

2. Multitasking operating systems can service many different
at once.

a. Users
b. Program tasks
c. User interfaces
d. Operating systems

3. The portion of an OS remains in memory the entire time
the computer is on.

a. CPU
b. Overlay
c. Interrupt
d. Kernel

p r a c t i c e e x e r c i s e s

346 chapter nine

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

operat ing sys tems 347

9

4. Which of the following is not a multitasking OS?

a. Linux
b. UNIX
c. Windows
d. DOS

5. An OS method of allowing multiple processes to share the CPU is:

a. Time slicing
b. Multiuser
c. I/O
d. Command line

6. Deadlocks are resolved by:

a. Interrupts
b. Time slicing
c. Memory segments
d. The OS

7. Graphical interfaces can be added to the Linux OS.

a. True
b. False

8. Command-line switches are used to:

a. Modify the command’s operation
b. Disable the OS
c. Enable the graphical interface
d. Remove folders

9. Before a disk can be used, it must be:

a. Erased and locked
b. Partitioned and formatted
c. Filled with folders and files
d. Time sliced

10. The process of arranges the disk’s surface into addressable
areas and sets up the disk’s basic directory tree structure.

a. Partitioning
b. Time slicing
c. Booting
d. Formatting

11. The main level of a disk is called the:

a. Root
b. Platform
c. Head
d. Subdirectory

12. Windows is case sensitive.

a. True
b. False

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

13. In Windows, the md command must be used to create a folder.

a. True
b. False

14. What is the Linux command to list files and folders on a disk?

a. ls
b. lsdir
c. chdir
d. list

15. Which of the following is the Linux command to rename files?

a. rename
b. F11
c. mv
d. ls

16. The Linux command for deleting a folder is:

a. del
b. rd
c. rmdir
d. rm

17. In Windows Explorer, you can select multiple folders and files by using the
left mouse button combined with which of the following?

a. Right mouse button
b. Shift key
c. Alt key
d. Spacebar

18. The Linux wildcard _______________ can be used to match multiple
characters.

a. ? (question mark)
b. - (hyphen)
c. / (forward slash)
d. * (asterisk)

19. The Linux command to delete a file is:

a. del
b. delfile
c. rm
d. filedel

20. Windows Explorer can be used to drag and drop both files and folders.

a. True
b. False

348 chapter nine

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

operat ing sys tems 349

9
1. What functions are performed by the OS kernel?

2. What is a thread, and how does it relate to a process?

3. Who is responsible for developing device drivers for an OS?

4. What is spooling, and what function does it perform in an OS?

5. What shells are used with Linux to provide a GUI? What is the strength of
each?

1. Could there be a computer system that doesn’t have an OS?

2. What other functions could an OS perform?

3. What techniques other than time slicing could be used for process
management?

4. Which is better: a graphical user interface or a command-line interface?

5. What makes an OS stable?

1. What is the most popular graphical interface available for Linux, and how
does it compare with Windows?

2. What is the next version of Windows called, and what new features will it
have?

3. Who created Linux, and for what purpose was it created?

4. What is the process for locating and downloading device drivers for major
operating systems?

5. What is the difference between Linux and UNIX?

I n t e r n e t r e s e a r c h

d i g g i n g d e e p e r

d i s c u s s i o n t o p i c s

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

c h a p t e r

f i l e s truc tures

10

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

i n t h i s c h a p t e r y o u w i l l :

• Learn what a file system does

• Understand the FAT file system and its advantages and disadvantages

• Understand the NTFS file system and its advantages and disadvantages

• Compare common file systems

• Learn how sequential and random file access work

• See how hashing is used

• Understand how hashing algorithms are created

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

the lighter side of the lab
by spencer

Recently, I was hired to work in the technology section of the university newspaper and was
excited until it came time to get paid. No, that’s not just a lame reporter joke. I would have to actually

get paid to be able to joke about it.

Shortly after I got the job, I received an e-mail instructing me to stop by the payroll office to fill out some
forms for tax purposes. Sounds easy enough, right?

The forms were simple by IRS standards, so I had to ask “What does this line mean?” only 37 times. In just six or
seven hours, I was done with the two forms and walked up to the counter to hand them in. The nice person

behind the desk said, “Okay, I’ll just need to see your Social Security card.”

I was pretty sure I’d had a Social Security card at some point. I could picture what it looked like. It had popped
up now and then, but now it had completely disappeared from existence (much like my dating life).

I explained that I didn’t have my Social Security card, nor did I know where it was. She explained that they
would hold my checks until I found it. (Judging by how well I kept track of the Social Security card, the checks

were probably safer in their hands anyway.)

I began my search in my bedroom. Unfortunately, my room needs a little “defragmentation,” if you know what I
mean. I checked the stack o’ junk in my closet, facing severe risk of avalanche. I checked the pile o’ clothes

on the bed and didn’t find anything other than a pair of pants I’d forgotten I owned. (They passed the smell
test, so I wore them when I went out that night.)

At this point, I was out of ideas, so I pulled out the big guns—I asked my mom. (This is a luxury that
all you smarty-pants who moved out of your parents’ house before you were 27 don’t have. Who’s laughing

now?) Unfortunately, she couldn’t find it either.

I’ve worked for the university newspaper for nine weeks without receiving a check. I can’t help but think that
none of this would have happened if I had used file structures. I could have created a linked list with

yellow sticky notes, beginning at my baby book and leading from place to place until it pointed to my Social
Security card. Defragging would be fun—almost like a scavenger hunt. It would be impossible to lose anything!

If you happen to find my Social Security card lying around, let me know.
I’ll send you reward money—after I get paid.

352 chapter ten

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

f i l e s truc tures 353

what does a f i le system do?
One function of an operating system (OS) is organizing and maintaining files
on secondary storage media, such as hard drives, CDs, and removable media.
A file system is the part of the OS responsible for creating, manipulating,
renaming, copying, and moving files to and from these storage devices. A hard
drive is the most common place to store files. Besides being a place to store all
your documents, music files, and movies, it’s the central location for storing the
OS, applications, and user files.

In this book, you have learned about many operating systems and been intro-
duced to many different applications and tools for making your life as a
computing student easier. Each of these operating systems and applications
uses files to perform its tasks.

file system – The part of
the OS responsible for
creating, manipulating,
renaming, copying, and
moving files to and from
a storage device

Have you ever thought what it would be like if you were listening to your favorite song,

and a third of the way through it, the system prompted you to go find a file containing the

next part because not all the song was in one location? Or what if you were reading a book

and had to check out five different books because each one contained a couple of chapters?

In either situation, you would be frustrated. Instead of being able to complete the task

without interruption, you would be distracted by having to spend time locating the

resources you need. Listening to an entire song or reading a book from start to finish is

certainly more productive and enjoyable.

Files containing information (such as songs or books) are commonly used in everyday

computer tasks. The operating system is responsible for managing files and making sure tasks

are uninterrupted. These tasks involve using a file manager and file management system. By

understanding how an operating system stores and maintains data in a computer, you can

better comprehend how a computer handles files, learn how to manipulate files, and keep

your computer running as efficiently as possible.

f i l e s t r u c t u r e s
why you need to know about...

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

User files are files you create for your own use, such as the following:

• Word-processing documents
• Source code for programs you have written
• Music files
• Movie files
• Spreadsheets
• Photos

The list could go on and on because so many different applications and tools
are available. Each file takes up storage space on a hard disk or other storage
medium, and the file system must keep track of these files. One way the file
system does this is to organize files into directories, which are common stor-
age areas. In fact, the file system acts much like a filing cabinet, with each
piece of paper representing a file, and each file folder representing a directory
or subdirectory (see Figure 10-1). Windows, Mac OS X, and many Linux
versions use a file folder icon to represent a directory and call directories

Figure 10-1, Files and directories in a file system are similar to documents and folders in
a filing cabinet

computer

disk drives

directories

subdirectories

files

Apple

In 1978, Apple introduced its first
operating system, Apple DOS

(unrelated to MS-DOS). In 1984,
the Macintosh was the first PC to

use a graphical OS. The current
version is Mac OS X.

354 chapter ten

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

10

f i l e s truc tures 355

“folders.” As you saw in Chapter 9, the OS uses a similar treelike hierarchical
structure to organize files into directories and subdirectories (folders), as
shown in Figure 10-2.

random access – Reading
data from or writing data
to anywhere on a disk

sequential access – Reading
and writing data in order
from the beginning

Figure 10-2, Folders and files in Windows

The file system’s job is to keep track of where files and directories are located
and assist users by relating their locations to the storage medium’s physical
structure. Hard disks, for example, are physically organized into tracks and
sectors, and read/write heads move over specific areas of the hard disk to store
(write) or retrieve (read) data.

A hard disk is a random access device, meaning you can read data from or write
data to anywhere on the disk. (Another type of access is sequential access, in
which you must start at the beginning of data and read until you get to the
data you want. You learn more about access methods later in this chapter.)
Random access is a faster way to access data, but users want to store and
organize information in a more orderly (less random) fashion. That’s where the
file system comes in. Various file systems have been developed to allow users to
organize their files as they want and still take advantage of the speed of random
access (also called relative access).

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

what’s your file system?

To see which file system your
Windows computer uses, open

the My Computer window, right-
click the hard drive, and click

Properties. The file system is listed
near the top of the General tab.

cluster – Area of the hard
drive containing a group of
the smallest units that can
be accessed on a disk
(sectors)

Figure 10-3, Sectors are grouped into clusters on a
hard disk

sector
track

cluster of
four sectors

f i le systems and operating systems
The type of file management system used depends on the OS. The first
Microsoft file system was File Allocation Table (FAT). Different versions of FAT
were used from MS-DOS in the 1980s through Windows 95, 98, and Me.
Beginning with Windows NT, the default Windows file system changed to
New Technology File System (NTFS), although FAT was still supported. Current
Windows OSs use NTFS by default. UNIX and Linux support several different
file systems, including XFS, JFS, ReiserFS, ext3, and others. The original
Macintosh Filing System (MFS) evolved into the Hierarchical Filing System
(HFS) and then the Hierarchical Filing System Extended Format (HFS+), the
current Mac OS X file system.

Each of these file management systems was suitable at the time it was developed
to handle storing and maintaining the OS’s file structure, but unlike fine wine,
filing systems become outdated, and new ideas and methods are discovered.
NTFS has many advantages over the older FAT file management system, but
before you can appreciate them, you need to understand how FAT came to be
and what it accomplished.

FAT
Many people worry about being overweight, but computers are weight
conscious, too: They incorporate FAT into their system and try their best
to manage it!

FAT was introduced with the first PC operating system, MS-DOS. In those days,
you could store the entire OS on a single floppy disk. As you learned earlier, a
hard drive stores information in sectors. In many file management systems,
including FAT, sectors are grouped to form clusters (also called allocation units),
as shown in Figure 10-3.

FAT (File Allocation Table) –
File management system
used to locate files on a
storage medium

NTFS (New Technology File
System) – File management
system introduced in
Windows NT and incorpo-
rated into all desktop and
server Windows OSs since
then; used to locate files on
a storage medium

356 chapter ten

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

10

f i l e s truc tures 357

Data is stored in 512-byte sectors on the hard drive, and depending on the file
size, data might occupy one or more sectors. For performance reasons, sectors
are organized into contiguous (one after the other) clusters on the disk. So in
reality, a file might occupy one or more clusters that consist of one or more
sectors. FAT simply keeps track of which files are using which clusters and
where files are located by using entries in the FAT table.

FAT organizes the hard drive into several areas, as shown in Figure 10-4:

• Partition boot sector
• Main FAT
• Backup FAT
• Root directory area
• Data area (measured in clusters)

The partition boot sector contains information the file system needs to know
how to access volumes. (A volume is a drive or a drive partition formatted with
a file system. A hard disk can have more than one volume, or one volume can
span several disks.) Two FAT tables are stored in fixed locations: main FAT and
backup FAT. If an error occurs in reading main FAT, the backup FAT can be
copied over the main FAT to ensure system stability. The root directory area
keeps an entry for every file and folder stored in the root directory. Each entry
contains information on the file or folder, including name, size, and number of
the cluster holding the beginning of the file.

The FAT format progressed from FAT12 through FAT16 to FAT32. The
numbers refer to the number of bits in each FAT entry. As the number of bits
for FAT entries increased, so did the size of partitions and files that could be
used with FAT.

Figure 10-4, Typical FAT file system

Partition boot record (1 sector)

Root directory area

Main FAT (size depends on
total number of disk clusters)

Backup FAT (same size
as main FAT)

Data area (size varies,
depending on total

number of disk clusters;
stores all other files

and directories)

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

VFAT

Microsoft created Virtual FAT
(VFAT) in the mid-1990s as an

extension of FAT so that the OS
could handle filenames longer

than eight characters.

defragging

To access Disk Defragmenter in
Windows XP and Vista, click Start,
All Programs, Accessories, System

Tools, Disk Defragmenter. To
defragment the drive properly,

you might need to turn off virus
checkers, screen savers, and other

running programs.

disk fragmentation – Occurs
when files’ clusters are
scattered in different
locations on the storage
medium instead of being in
contiguous locations

n o t e

Every file and folder on a drive is stored in units called clusters, which consist
of smaller units called sectors. The computer needs to know which clusters are
used for each file. The FAT table contains this information and maintains the
relationship between files and clusters used for files. Each cluster has two entries
in the FAT table: The first shows the current cluster information, and the
second contains a link to the next cluster to use.

Flash memory devices, such as SmartMedia, Compact Flash, and memory

sticks, emulate popular file management schemes, such as FAT.

Because clusters are linked this way in the FAT table, FAT is a form of a linked
list. The process of linking a file’s clusters continues until the end of the file is
placed in the final cluster. It’s marked with a special code so that when the file
system is looking for all the file’s pieces, it knows when it has reached the last
cluster and doesn’t need to look for more of the file.

FAT keeps track of which clusters it can use for writing information and which
are already in use storing file data. It also marks which clusters are bad and no
longer usable so that the file system doesn’t attempt to use them.

When you first format a hard drive, many clusters are available for use,
although some might have been marked as bad already. If you store a file on
a newly formatted hard drive, the file system usually stores the information in
a contiguous block of clusters. As time goes by and you store, delete, and
move files, the contiguous blocks might not be contiguous any more. The file
system then puts data into clusters wherever it fits best, often in noncontigu-
ous blocks. Having data scattered all over the disk in this fashion can create
some problems, discussed next.

disk fragmentation

As more files are stored on the hard drive and clusters become less contiguous,
the file system begins to slow down because it’s moving the hard drive’s
read/write heads all around trying to locate the clusters for a particular file.
Every time a new file is stored, the system tries to recover open space.
Eventually, a file can have its clusters stored in every corner of the hard drive.
This state of affairs is called disk fragmentation (see Figure 10-5).

358 chapter ten

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

10

f i l e s truc tures 359

Fragmentation can occur in NTFS as well, but it’s a bigger problem with FAT.
To compensate for this unorganized storage method, Windows provides the
Disk Defragmenter utility to reorganize clusters on the hard drive so that
they’re contiguous again. This utility acts like the computer system’s mom:
It comes into the hard drive, takes a look at how messy it is, and cleans every-
thing up. It’s a helpful tool that should be used regularly to make sure your
system runs at peak performance. Disk Defragmenter improves performance by
minimizing how much read/write heads have to move to access data.

advantages of FAT

The main advantage of FAT is its efficient use of disk space. Because large files
aren’t required to have contiguous clusters, FAT can place the parts of the file
wherever they fit.

Another advantage is that filenames can now have up to 255 characters. Under
FAT16, filenames were limited to eight characters for the name and three
characters for the file extension. FAT32 supports 255-character filenames.

One more advantage of using FAT is how easy it is to recover files that have
been deleted. When a file is deleted, the file system doesn’t actually remove it
from the hard drive; instead, it places the hex value E5h in the first position of
the filename. The actual file and its contents remain on the drive and can be
recovered easily by using special software, such as a hex editor, to replace the
E5h with the original first letter of the filename. In fact, unless you fill up the
hard drive with files or do a low-level format, in which the file system formats
the drive by removing all the stored data, you can usually recover deleted files.

disadvantages of FAT

Compared with NTFS, using FAT has many disadvantages. One is that overall
performance slows down as more files are stored on the drive. Another problem,
as mentioned, is that the drive can become fragmented quite easily.

In addition, FAT lacks many of the security features in NTFS, such as being
able to assign access rights to files and directories. It can also have file integrity
problems, such as lost clusters, invalid files and directories, and allocation
errors. All these problems have been addressed in NTFS.

Figure 10-5, Files become fragmented as they’re stored in noncontiguous clusters; a
defragmenting utility moves files to contiguous clusters and improves disk performance

fragmented disk:

after defragmentation:

undelete that file!

Windows makes the process of
undeleting a file easy. All you have

to do is open the Recycle Bin on
the desktop, right-click the file that

was deleted, and click Restore to
restore the file to its original

location.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

from FAT to NTFS

If you’re converting a FAT drive to
an NTFS drive, the reserved
blocks of space are usually

located somewhere in the middle
of the partition, resulting in

slower performance. For this
reason, doing a clean install on a

new drive when converting to
NTFS is always recommended.

Master File Table (MFT) – A
table used in NTFS to store
data about every file and
directory on the volume

n o t e

NTFS
NTFS was developed with the goal of overcoming FAT’s limitations.
Introduced with Windows NT, it’s the default file system in all current
Windows operating systems. NTFS is often referred to as a “journaling” file
system because it keeps track of transactions performed when working with
files and directories. If any errors are encountered, the file system “rolls
back” transactions until it’s stable again. This feature is a benefit of using
NTFS because the file system is less likely to become corrupt, but if it does,
it’s usually smart enough to fix itself.

NTFS uses the Master File Table (MFT) to store data about every file and
directory on the volume, and the OS uses data in this table to retrieve files.
Data stored in the MFT includes a file’s size, name, and permissions, among
other information.

The MFT is similar to a database table containing attributes about files and can
be thought of as a table of contents for files and folders in a volume. When a
file or folder is created on the volume, a record is also created in the MFT. If
the file is smaller than 700 bytes, it’s also stored in the MFT entry. Like FAT,
NTFS uses clusters (allocation units) for storing data. It reserves blocks of space
so that the MFT can grow.

Not all hard drives in a computer must use the same file management

system. One can use FAT, and another can use NTFS, for example.

advantages of NTFS

The structure of NTFS makes file access fast and reliable. When you want to
view a file in FAT, first the file system has to read the FAT entry and make sure
it’s valid. Then it accesses the file by searching for clusters assigned to the file.
In NTFS, the file system simply goes right to the file as soon as you request it.

In addition, with the MFT, the file system can recover from problems without
losing a lot of data. The journaling feature also makes restoring to a stable
system state easy. There’s also a backup (mirrored) copy of the MFT in case of
damage to the main MFT, which is useful for system restoration.

Security has been improved compared with FAT, too. Under NTFS, an admin-
istrator can specify which users or groups of users can perform certain
operations on files and directories (also called file and directory permissions).
These permissions include both reading and writing data. FAT was designed
during the single-user era, but NTFS is geared more toward a networked
environment, so security measures have been increased.

360 chapter ten

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Encrypting File System
(EFS) – An encryption
technology that converts
data in a file to unreadable
information by using an
encryption algorithm and
key value; to make the
information readable
again, you must decrypt it
with another key value

file compression – The
process of reducing file size
and, therefore, taking up
less disk space

10

f i l e s truc tures 361

n o t e

NTFS also supports file encryption with Encrypting File System (EFS) and file
attributes, so you can encrypt files to protect them from unauthorized access.
If other users are able to access a file owned by a different user, they can see
information about the file but not the actual data in the file.

Finally, NTFS includes a file attribute that controls file compression. A user
can set a file to be compressed and save disk space. File compression is the
process of reducing a file or folder’s size. The entire process is transparent to
the user, meaning the file doesn’t have to be uncompressed before the user
can read it. The system handles compressing and uncompressing for you. You
simply sit back and reap the benefits of saving disk space.

There are many different types of file compression, but hard drives have

become so inexpensive that many users don’t want to sacrifice perfor-

mance to save disk space.

disadvantages of NTFS

There are also disadvantages of using NTFS on a volume. Because NTFS has a
larger system overhead than FAT, it’s not recommended as a file management
system on volumes smaller than 4 GB. For example, on a 100 MB drive, NTFS
needs about 4 MB of disk space. This also means you can’t format a floppy disk
with NTFS because the file system wouldn’t fit on the disk.

Another disadvantage is that you can’t access NTFS volumes from MS-DOS,
Windows 95, or Windows 98. Also, many Linux distributions can’t write to
NTFS drives.

comparing file systems
Table 10-1 compares the features of FAT16, FAT32, and NTFS. Which file
system you use depends on the OS you’re using and the features you need. For
example, if you’re using Windows 9x as an OS, you use FAT; if you’re using
Windows XP or Vista, you use NTFS. Choosing the correct file system rarely
depends on hardware; it depends more on the OS.

why not compress?

There are two disadvantages of
using file compression:

• It slows performance.

• You can’t encrypt a
compressed file.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Table 10-1, Fat16, FAT32, and NTFS compared

feature FAT16 FAT32 NTFS

total volume size 4 GB 2 GB to 2 TB 2 TB

maximum file size 2 GB 4 GB Size of drive
(theoretical limit
of 264 bytes)

OS support DOS, Windows Windows 95 Windows NT
3.x, 9x, (OSR2), 98, NT, (service pack 4),
NT, 2000, XP, 2000, XP, Vista, 2000, XP, Vista,
Vista, and Server and Server and Server
2003/2008 2003/2008 2003/2008

compatible with yes yes no
floppy disks

security limited security limited security extensive
security features

file compression supported with supported with included as
extra utilities extra utilities part of NTFS

journaling (tracking none none yes
file transactions)

large database limited yes yes
support

multiple disk no no yes
drives in one
volume

All PCs with Windows operating systems are now formatted with NTFS. FAT
is used only with older small hard drives and small removable devices, such as
flash drives, which are usually formatted with FAT32. NTFS can support drive
sizes up to 16 TB (1600 GB), so it should remain a viable file system for the
foreseeable future.

In the UNIX/Linux environment, you also have a variety of file system choices;
some are listed in Table 10-2. As with Windows file systems, some Linux file
systems support journaling, some support long filenames, and all have specified
maximum file sizes.

362 chapter ten

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

10

f i l e s truc tures 363

Table 10-2, Some UNIX/Linux file systems

file system description

Extended File System (ext) and The default Linux file system;
the newer versions, ext2 and ext3 the current version, ext3,

supports journaling

Unix File System (UFS) Original file system for UNIX;
compatible with virtually all UNIX
systems and most Linux systems

MS-DOS Compatible with FAT12 and FAT16
(doesn’t support long filenames); typically
installed to enable UNIX to read floppy
disks created in MS-DOS or Windows

Network File System (NFS) Developed by Sun Microsystems for UNIX
systems to support network access and
file sharing (such as uploading and
downloading files); supported in almost
all UNIX/Linux versions and many other
operating systems

The best way to determine which file system to use, barring any specific
hardware requirements, is by checking your current OS and determining
what type of file system environment you want to work in. Then evaluate the
advantages and disadvantages of each file system.

f i le organizat ion
Now that you have an idea of what a file system does and the different types of
file systems that are available, take a closer look at file characteristics and how
files are stored on disks and other media.

binary or text
A file is a storage location containing data that’s treated as binary or text. All
files are stored as binary files, and as you learned in previous chapters, all data
on the disk is actually stored as 1s and 0s. The difference between text files and
binary files is that text files consist of ASCII or Unicode characters. Each time
you type a character in a file (including letters, punctuation, and spaces), the
file system stores a byte in the file. Text files are typically read with word-
processing programs or text editors, such as Notepad in Windows or gedit in
UNIX/Linux, and are easy to view and modify.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Binary files can’t be read with these programs, and the term “binary” is often
used to refer to any file that isn’t a text file. Binary files can be read by comput-
ers but not humans and contain coded and numeric information. They’re also
more compact than text files. Some examples of binary files are executable
programs, applications, and sound and image files.

sequential or random access
Data is usually stored sequentially or randomly (see Figure 10-6). Sequential
storage means data is accessed one chunk after the other in order, and random
storage means data can be accessed in any order. Random access is also called
direct or relative access.

364 chapter ten

Figure 10-6, Sequential versus random access

random
access

sequential
access

sequential access

A sequential file is accessed starting at the beginning of the file and is processed
to the end of the file. The data stored in the file can be thought of as one long
row of information. An example of a sequential file is an audio file or a video
file. When you add new data, it’s written at the end of the file. Because data is
appended to the end of the file, the writing process is fast. On the other hand,
retrieving data can be extremely slow, depending on the data’s location.

Sequential file access allows storing information in the file row by row, much
like a database table record. Each line of the sequential file can be organized or
logically grouped as though you’re describing a record. For example, a line in a
sequential file might consist of a student ID, first name, last name, and letter
grade. As shown in Figure 10-7, a comma (or another character, such as a tab)
can be used as a field delimiter to separate each field in the line.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

10

f i l e s truc tures 365

Instead of using a character as a delimiter, you can use a fixed length for each
field. Data that isn’t long enough to fill the entire field can be padded with
spaces. Figure 10-8 shows the layout of student records in fixed-length format:

• Student ID: 4 characters
• First name: 10 characters
• Last name: 15 characters
• Grade: 2 characters

Figure 10-7, A comma can be used as a
field delimiter

1234,Joseph,Blow,C
2452,Mary,Lamb,A-
5839,Alexander,Roma,B
8983,Marissa,Anderson,A
7738,Miles,Gregory,A
8442,John,Jones,C+

Figure 10-8, Data can also be in fixed-length format

1234Joseph
2452Mary
5839 Alexander
8983Marissa
7738Miles
8442John

Blow
Lamb
Roma
Anderson
Gregory
Jones

C
A-
B
A
A
C+

By the time you’re finished creating a sequential file, you have stored one or
many rows of data in order.

A major drawback of sequential access is that when you insert, delete, or
modify existing records, you must process the entire file by writing all the
information with changes to a new file. In addition, although sequential access
is often used in computer systems, it has a serious drawback: The only way to
get to a specific record in a file is by starting at the beginning of the sequential
file and reading through it until you get to the record you want. If the file has
only a few records, this method isn’t a problem. When files contain many rec-
ords, or the records are very large, sequential access can be a real problem. It
takes time to read each record, especially when the disk’s read/write head has to
be moved. Therefore, to deal with large amounts of data, another method is
needed: random access, discussed next.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

366 chapter ten

For example, you have a file of 1000 records, and each record is 100 bytes. If
you want to access record 538, you multiply the record number by the record
size (538 * 100) and calculate that the record you’re looking for is 53,800 bytes
into the file. Depending on how many bytes per sector and per track are on the
disk, you can position the read/write head at that exact point.

An added benefit of random file access is that records can be updated in place.
If you want to make a change in a record, you calculate the record’s position
and then write directly to the record. You can’t do this with sequential access
because variable-length records can be different sizes. Updating a sequential file
requires copying the entire file to a new file and modifying the record as it’s
written to the new file.

The advantages of random file access are getting to a particular record faster
and being able to update the record in place. The disadvantage is that disk
space can be wasted if data doesn’t fill the entire record or if some record
numbers don’t have data. Random file access works well when a sequential
record number can identify records easily.

hashing
When records can’t be identified by a sequential numeric value, or the numeric
identifying value isn’t in sequential order beginning with 1, another technique
has been developed that allows using nonnumeric record keys to access relative
records. This technique, called hashing, is widely used in database management
systems. Hashing uses a hashing algorithm to generate a unique value called a
hash key for each record. The hash key is then used as a key value in a list of

random access

Accessing a particular record in a file is faster if you can position the read/write
head directly on the record without having to read all the records in front of it.
If all records are the same size, you can mathematically calculate the record’s
position on the disk surface and go right to it. This is the principle behind
random access. Random access requires fixed-length records; Figure 10-9 shows
the difference between variable-length and fixed-length records.

Figure 10-9, Record organization and file access

SR1

variable-length records must be accessed sequentially

SR2 SR6 SR7 SR8

fixed-length records can be accessed randomly

SR10SR4SR3 SR5 SR9

RR1 RR2 RR3 RR4 RR5

hashing – A common
method for accessing data
in a file or database table
with a unique value called
the hash key

hash key – A unique value
used in hashing algorithms
and identifying records

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

10

f i l e s truc tures 367

rows or records of information. Combining hash keys establishes an index simi-
lar to what you learned about in Chapter 6.

why hash?
The goal of hashing is to create an algorithm that allows converting a key
field, such as a phone number, that isn’t suited for relative (random) file
access into a relative record number that can be used. Even ASCII character
fields can be converted by using a hashing technique.

For example, if you’re storing customer information, you can use a phone
number as the identifying key in a relative access file, but the file would have
large blocks of unused spaces reserved for unused phone numbers. With a
customer living in area code 702, you would have to waste the space for relative
records 0 through 7019999999, which isn’t acceptable.

To solve this problem, you use a simple hashing technique. You subtract
7019999999 from the customer’s phone number and use the result as the
relative key. Doing so solves the problem of wasting space on relative record
numbers for phone numbers less than 702-000-0000. This hashing technique
still isn’t the most efficient, however, because you still waste many blocks of
space lying between the ranges of your customers’ phone numbers, as it’s
unlikely their phone numbers are in order beginning with 701-000-0001.
You need to come up with a better hashing technique. Although devising an
efficient hashing algorithm might be difficult, there are a few basic techniques
you can use to formulate one.

A moderately simple technique for hashing a number such as a phone number
is to first determine the maximum number of records you might have. The
records in the relative file should have a key value from 0 to the highest number
possible, minus 1. This range is then used to allocate space for the file to store
all the records it might end up using. After you know how many records you
need to store, you can create an algorithm that converts the customer’s phone
number into a number in the specified relative record range.

An easy way to accomplish this is to divide the highest possible phone number
by the expected number of customers, with the result being an algorithm key.
After you have this key, you can use it on customer phone numbers to calculate
their relative record numbers.

For example, a phone number in the United States is made up of 10 numeric
digits (999-999-9999, not including parentheses or dashes). You make a rough
estimate and decide that you could have approximately 2000 customers. So you
divide 9999999999 by 2000 to come up with the algorithm key, which, rounded,
is 5,000,000. If your first customer has a phone number of 702-555-1234, the
relative record is calculated as 7025551234 / 5000000, or 1045. The record for
this customer is then stored in relative record 1045.

hashing algorithm – A
routine of logic used for
determining how hash
values are created

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

This hashing technique might be useful if the 2000 customer phone numbers
were evenly spread throughout the range of 0000000000 to 9999999999. In a
normal situation, however, phone numbers are more likely grouped in a single
area code and in just a few three-digit prefixes. In this case, the algorithm
generates a lot of collisions.

dealing with collisions
Collisions happen when the hashing algorithm generates the same relative key
for more than one original key value. In the previous example, the same relative
key is generated for the phone numbers 522-500-5000 through 522-999-9500.
This isn’t acceptable, so a better algorithm needs to be developed.

A simple remedy for the collision problem might be expanding the algorithm. For
example, the previous algorithm could be expanded to include the sum of the
phone number’s digits, with the hope of lessening the chances of a collision. Again,
using the phone number 702-555-1234 gives you the relative key 1045. Add to it
the sum of the phone number’s digits: 34 (7 1 0 1 2 1 5 1 5 1 5 1 1 1 2 1
3 1 4), giving 1045 1 34, or 1079. Another phone number, such as 702-555-
5678, would have a relative record number of 1045 1 50, or 1095, and a collision
is avoided. Using this technique doesn’t completely prevent collisions, but it does
lessen them. Note that if one customer has the phone number 702-555-1234 and
another has the phone number 702-555-4321, a collision occurs.

With a little skill and mathematical ability, you can develop an efficient algo-
rithm for the range of customer phone numbers and nearly eliminate collisions.
Even the best hashing algorithm occasionally has collisions, however, so you must
make some provisions for dealing with them. One common method is creating
an overflow area in the relative file that holds records with duplicate relative
record numbers.

The overflow area works in this manner (shown in Figure 10-10): The first
record with a relative key calculated by the hashing algorithm is placed in the

368 chapter ten

collision – In hashing, what
happens when the hashing
algorithm generates the
same relative key for more
than one original key value

overflow area – Area in a
file that’s used in case a
collision occurs during the
hashing algorithm

Figure 10-10, An overflow area helps resolve collisions

A

A B

C

B

collision occurs because both
items generate the same

hash value

B

C

primary area

overflow
area

points to
overflow

area

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

10

f i l e s truc tures 369

specified place on the disk. When the hashing algorithm generates the same key
for a different phone number, the system goes to the specified relative location
on the disk and checks to see whether the phone number of the record there
matches the customer’s phone number. If not, the second record is written to
the overflow area at the end of the file.

When a record is retrieved, the process is similar. The hash key is calculated
from the phone number, and the record at the calculated position is retrieved.
If the record at that location isn’t the correct one, the overflow area is searched
sequentially until the matching record is found.

hashing and computing
In the past, creating hashing algorithms has been the focus of computer-related
education programs. The most efficient hashing algorithm for a certain key was
awarded a prize—maybe something like a deluxe pocket protector.

Hashing benefits companies that produce database management systems. Each
company wants the most efficient storage and lookup routines so that their
systems outperform the competition.

Many different hashing algorithms are used in computing. Some are based on
encryption and decryption, and others focus on indexing. Many programming
languages have specialized built-in libraries of hashing routines, but don’t be
surprised if one day you need to create your own hashing routine.

one last thought
A computer system’s worth is often measured in terms of what’s stored on its
hard drives. Power supplies, main boards, CPUs, and monitors can be replaced
easily. Data, on the other hand, can be difficult, if not impossible, to replace.
All aspects of data storage depend on the file system that’s used. Computing
professionals who have a strong understanding of file systems can make data
available more readily and know how to protect it. Who knows? Your career
path might lead to participating in the design of the next-generation filing
system for a new form of mass storage device.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

• A hard drive is an example of a random access device that stores information
in tracks and sectors and accesses data through read/write heads.

• A file system is responsible for creating, manipulating, renaming, copying, and
moving files on a storage device.

• Windows uses FAT or NTFS as the file system.

• The File Allocation Table (FAT) file system keeps track of which clusters files
are using.

• FAT is prone to disk fragmentation.

• New Technology Filing System (NTFS) is the default file system on current
Windows operating systems and uses a Master File Table (MFT) to keep
track of files and directories on a volume.

• NTFS has many advantages over FAT, such as better reliability and security,
journaling, file encryption, and file compression.

• Linux can be used with many file systems, such as XFS, JFS, ReiserFS, and
ext3, but ext3 is used most commonly.

• A file contains binary or text data.

• Data is usually stored and accessed sequentially or randomly (relative access).

• Hashing is a common method for accessing a relative file and uses a hashing
algorithm to generate a hash key value for identifying a record location.

• Collisions occur when the hash key is duplicated for more than one relative
record location.

• The goal of hashing is to create an algorithm that allows converting a key field
into a relative record number with few collisions.

cluster (356)

collision (368)

disk fragmentation (358)

Encrypting File System (EFS) (361)

FAT (File Allocation Table) (356)

file compression (361)

file system (353)

hash key (366)

370 chapter ten

hashing (366)

hashing algorithm (367)

Master File Table (MFT) (360)

NTFS (New Technology File
System) (356)

overflow area (368)

random access (355)

sequential access (355)

c h a p t e r s u m m a r y

k e y t e r m s

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

10

f i l e s truc tures 371

t e s t y o u r s e l f

1. Describe what a file system does.

2. Describe the key characteristics of FAT.

3. Describe how a drive becomes fragmented.

4. Explain how defragmentation works and how it can improve system
performance.

5. How does FAT differ from NTFS, and when is each used?

6. What are the advantages and disadvantages of FAT?

7. Describe the key characteristics of NTFS.

8. What are the advantages and disadvantages of NTFS?

9. Describe the Master File Table (MFT) and how it works.

10. What are the advantages and disadvantages of file compression?

11. What’s the difference between a text file and a binary file?

12. How does sequential file access differ from random file access?

13. What are the strengths and weaknesses of sequential file access and
random file access?

14. Explain how hashing works.

15. You’re trying to create a hashing algorithm to work with information
stored for a student registration system. Each student is identified by a
student ID, which is seven characters. The numbers for student IDs range
from 1000000 to 9999999. Write a hashing algorithm that minimizes
collisions.

1. Which of the following is not a responsibility of the file system?

a. Creating files
b. Manipulating files
c. Renaming files
d. Copying files
e. None of the above

2. Sectors are made up of clusters.

a. True
b. False

p r a c t i c e e x e r c i s e s

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

3. In FAT, files don’t need to be stored in a contiguous block of memory.

a. True
b. False

4. Which of the following FAT formats allows the largest volume size?

a. FAT12
b. FAT16
c. FAT32
d. All FAT formats have the same maximum volume size.

5. Which tool is used to reorganize clusters so as to minimize drive head
movement?

a. Disk Defragmenter utility
b. Sequential Access utility
c. FAT
d. NTFS

6. FAT32 provides the capability to assign access rights to a file and directory.

a. True
b. False

7. Which is not an advantage of using NTFS?

a. Journaling
b. File encryption
c. Efficient disk use on small volumes
d. Security

8. Which is not a file system used in Linux?

a. HFS+
b. XFS
c. JFS
d. ext3

9. You’re tracking information on rocket launches. Each launch is assigned a
number from 1000 to 100000. There will probably be around 5000
launches, and you’re using a hashing algorithm that divides the highest pos-
sible number of launches by the expected number of launches. What is the
hashing algorithm key in this situation?

a. 200
b. 20
c. 500000
d. 5000000

10. Using the information from problem 9, if you have a rocket launch num-
ber of 80000, what is the relative record?

a. 4000
b. 400
c. 50
d. 5000

372 chapter ten

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

1. What is a journaling file system?

2. Are there any other types of file systems besides journaling, FAT, and
NTFS? If so, describe them.

3. Does disk defragmenting really make a difference in your system’s
overall performance? Why or why not?

4. What is a hash table, and how is it used?

5. Create a hashing algorithm for uniquely identifying records. Make
sure you describe how it works.

1. Using question 15 from the Test Yourself section, determine which
hashing algorithm is best suited for reducing the number of
collisions.

2. What situations are best for using sequential file access?

3. What situations are best for using random file access?

4. What are the maximum file and volume sizes for the NTFS and ext3
file systems? What happens when storage devices exceed these sizes?

5. Which of the common file systems is the least prone to fragmenta-
tion? Why?

1. What are the most current file systems used in Windows? Describe
their differences.

2. What are the most current file systems used in Linux? Describe their
differences.

3. Find five Web sites that explain hashing and demonstrate a hashing
algorithm. Share your findings with the class.

4. How do you convert a FAT drive to an NTFS drive?

5. How does ext3 organize a hard drive?

6. How does NTFS organize a hard drive?

10

f i l e s truc tures 373

d i g g i n g d e e p e r

I n t e r n e t r e s e a r c h

d i s c u s s i o n t o p i c s

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

c h a p t e r

the human-computer in ter face

11

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

i n t h i s c h a p t e r y o u w i l l :

• Learn the origins of human-computer interface development

• Learn about human interaction technologies

• Learn the foundations of human interface design

• Understand how to build an effective user interface

• Discover how contemporary design experts create cutting-edge technologies

• Find out what human emotion has to do with good design

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Recently, I got my first Bluetooth headset. I had resisted buying one for a long time because in the past,
I’d been startled by strangers suddenly talking to me out of the blue in a store, saying something like, “Yeah,

I laughed so hard it frightened my Chihuahua.” After a second or two, I’d respond with something vague, such
as “Oh . . . that’s good to hear.” These strangers would then look at me blankly as they turned their heads, and

I’d finally notice the tiny Bluetooth headset.

My dad just gave me one for my birthday, so now I’m the stranger who startles people in the store as I walk up
and down the aisles chatting seemingly to myself. I don’t know what I ever did without it. It’s nice to not

have a numb arm from holding the phone up to my ear for long periods or a kinked neck from the
old-fashioned version of “hands free.”

That has me thinking about what else could be hands free. The other day when I was driving, I thought about
how cool it would be if I could hook up a voice-activated Web browser in my car, with a small display in

the windshield, so that I could browse the Internet while on the road. (My next thought was that
I really need to seek professional help.)

Some of you might remember the 1989 movie The Wizard, starring cute and lovable Fred Savage. It intro-
duced the newest and coolest technology around at the time: the “Power Glove” Nintendo controller.

Like every other kid, my brothers and I were blown away as we watched the screen follow the movements
of the Power-Gloved hand.

Today’s technology makes the Power Glove seem silly. We’ve moved beyond the keyboard and mouse to voice
recognition, touch screens, and bowling games where you actually bowl. The only way to make bowling more

real would be to add the scent of used bowling shoes.

Sophisticated technology makes programming more difficult because, let’s face it, users can be idiots. For exam-
ple, I always wondered why Wii remotes need straps, until my neighbor mentioned that his cute and lovable

daughter was playing Wii tennis and, on a big serve, threw the remote through the screen of his big-screen TV.

Of course, I’d never do anything like that. I am a trained professional. Whoa! What just happened? Why is my
computer typing every word I say? How did my speech-recognition software get turned on? Why won’t this win-

dow close? CLOSE!

376 chapter eleven

the lighter side of the lab
by spencer

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

t h e h u m a n - c o m p u t e r i n t e r f a c e

Software developers often put off designing a program’s user interface until the end. Even

with the advent of GUI rapid prototyping tools and extreme programming techniques, sys-

tem and engineering needs often drive development, not the needs of the people who will be

using the program. Also, it’s all too easy to blame the user when there are problems. Software

developers even have a quick response to users having trouble with software: RTFM, or Read

the Fabulous Manual (although other words starting with “F” are also used). However, al-

though people are ultimately responsible for their actions in using technology (they are, after

all, using it), expecting excellent results from poorly designed technology is like expecting

someone to be able to open the door shown in Figure 11-1 without a struggle.

why you need to know about...

the human-computer in ter face 377

Figure 11-1, A poorly designed door

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

378 chapter eleven

the evolving interface
There are many examples of how technology often doesn’t do what’s intended
and is even dangerous to use. Look at the glass exit doors with a push bar in
your bank. Is it obvious which side the door hinges are on? People have broken
their wrists on them. Look at your stove, too: The burners are in a square pat-
tern, and the dials to control them are in a line across the front of the stove.
Even though you’ve used the stove for years, you probably still have to stop and
think about which burner you’re turning on—the front one or the back one?

A project’s design and its usability often get second-level status, despite the im-
portance users give to usability. Studies have shown that users rate a computer’s
ease of use as up to 45% of their overall satisfaction. Operation, noise, repair
service, system capacity, and other considerations rated much lower. Users often
get second-level status, too, despite the importance of their satisfaction in
selling them a product or service.

Companies give many reasons for not focusing on users—in other words, for
using a system-first rather than a user-first development approach. For exam-
ple, a company might have small development teams without the necessary
skills in user interface design. Other reasons companies cite for using a system-
first approach include having established development processes, developers
protecting their turf, and the belief that extra steps in development, such as
gathering requirements, result in increased costs. Some have even argued that
the computer industry is economically geared toward creating more features in
faster releases instead of focusing on creating a quality user-centered experi-
ence. An argument has also been made that PCs are the problem because
they’re more of a multipurpose device than any other consumer item.

n o t e In 1990, Bill Gates said, “We need to do a better job of thinking about

technology from the point of view of all individuals—how they work, how

they think, what they need to work and think more effectively.”

Although Microsoft, like any company, hasn’t always created the most usable
products, many of its efforts have been successful, and it has spent a lot of
money trying to make its products usable. Despite having software on many of
the world’s desktop computers, Microsoft must still compete for users, as must
any company in the computer industry. Competing for users should be enough
of an incentive to strive for well-designed software and hardware: That’s the
financial bottom line.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

11

the human-computer in ter face 379

The software industry, like no other, has involved consumers in the develop-
ment process by releasing software in beta format and updating it based on user
feedback. This process is a form of rapid prototyping (discussed later in “The
User-Centric Design Process”). However, engaging in this process doesn’t neces-
sarily mean that a company has done a good job of addressing users’ needs.

Understanding a particular user base and its needs—whether spoken or
unspoken—and developing and evaluating technological responses to these
needs require many skills. Naturally, unspoken needs are the most difficult to
determine. For this reason, companies such as Microsoft, Yahoo!, IBM, IDEO,
Google, and others employ people with skills that are useful in determining
users’ needs. A design team might include someone with good visual design
skills, someone who understands behavior, someone who’s good at creating
prototypes, and someone who knows how to test and observe behavior. Finding
one person with all these skills is rare, so usually, a team is necessary. The team
can also include people from marketing, engineering, and manufacturing to get
different perspectives.

Although this chapter doesn’t delve into details on anthropological methods of
observation, psychologists’ understanding of human responses, and principles
of visual design, it does give you an appreciation of how these skills are used in
developing user interfaces. The goal of this chapter is to broaden your outlook
as a potential programmer. Remember that at the other end of the program
you’re writing are people trying to use it. You want them smiling serenely, not
cursing loudly.

This chapter starts with an overview of some interface technologies for interact-
ing with computerized technologies. You then continue with the foundations of
user interface design, including understanding the psychology of how people use
technology, analyzing technology use in different settings, fitting user interface
design into the software engineering cycle, and evaluating interface designs. You
also look at some cutting-edge interactive design methods, with special attention
on Web development as well as the newest research in emotion and design.

user interface technologies
Human-computer interface technologies are more than just a mouse, keyboard,
screen, and GUI. With ubiquitous and embedded computing technologies, the
interface to a computer could be a teddy bear, the human body, your car’s dash-
board, or a number of other objects. A computer might receive input through
voice, leg movements, biochemical changes, pulse and respiration rates, or
where the user’s eyes are looking. It might give feedback in the form of a visual
display but also as sound, movement, heat, or some other response. In this
section, you look at some technologies that allow for “multimodal” interfaces—
many modes of interaction.

by any other name...

The focus on addressing users’
needs can go by many names,
such as “user-centric design,”

“consumer-driven design,” and
“user-first design.” Although the
meaning of these terms can dif-

fer slightly, they all mean
addressing users’ needs as the

starting point in design.

user interface – The
component that handles
interaction between a
technology and the user;
consists of what the user’s
senses can perceive and
what the user can manipu-
late to operate the
technology

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

380 chapter eleven

With gaze systems, users can type letters, play chess, and perform other tasks in a
number of ways. Many gaze systems use an infrared sensor to gauge where the
user’s eyes are looking on a screen and respond by measuring the length of time
the eyes stay in one location or by using some other trigger that acts as the “mouse
click.” Measuring eye movements is useful in other ways. For example, Web page
developers can use an eye movement analysis tool to track the amount of time a
user spends on parts of an interface to determine whether the design makes sense.
On the left, Figure 11-2 shows a gaze system with an infrared camera to track eye
movements. On the right is an example of a program that captures and displays
the user’s eye movements.

voice-recognition
technology – A technology
that can recognize human
speech and process
instructions

Figure 11-2, Gaze systems in action

Courtesy of Päivi Majaranta and Harri Rantala from the Tampere Unit for Computer-Human Interaction at the University of Tampere, Finland

gaze system – A system
that uses users’ eye move-
ments as input

Computer voice-recognition technology has improved considerably since the
mid-1990s, and you’re probably familiar with the increasing use of voice-
activated help systems or answering systems that companies use. Recognition
systems trained for individual users, such as Dragon NaturallySpeaking
(www.nuance.com/naturallyspeaking/), are quite good at processing both voice
commands and text input, and they continue learning and improving as
they interact with users.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

www.nuance.com/naturallyspeaking/
http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

11

the human-computer in ter face 381

Systems designed to interact with many users, such as the ones at utility
companies, obviously need to accommodate many different voices. To achieve
voice recognition, they limit the number of phrases understood—collectively called
the system’s “grammar”—during a conversation. In other words, the system can
understand when you speak a number but won’t understand you talking about
your grandmother. Being able to recognize “normal” conversation is called
natural-language processing. Although it often isn’t a major component of
speech recognition because of limitations with voice recognizers, it’s a critical
component of search engine parsing and is growing in sophistication.

Haptics technologies allow users to feel—not just see or hear—some kind of
response, called “feedback,” from the system. If you’ve played with a Wii,
you have already experienced this feedback with the hand unit’s vibrations.
Haptics have a long history in aviation; they originated with flight simula-
tion projects the United States developed during World War II that used a
type of analog computing.

natural-language
processing – A system that
recognizes the natural way
in which humans communi-
cate verbally (by speech
or text) and can discern
meaning from this
communication

haptics technologies –
Technologies that allow
users to feel a response
from a system, not just see
or hear a response; opti-
mally, can replicate the
sensation of feeling an
object in real life to create
a virtual tactile experience

n o t e One common haptics system is the fly-by-wire controls on airplanes. Pilots

don’t control the plane’s components directly with cables and pulleys;

instead, a computer sends signals to servos that move the control

surfaces. Airplane manufacturers added a “feel” to controls so that the

pilot feels the drag and shudder that emulate actual physical control.

Figure 11-3 shows a girl using a pen-like device attached to an arm that
gives feedback depending on what the girl sees and “touches” while looking
at the monitor. On the right is an example of what the user might see in the
monitor. Notice the black pointer touching the toothpaste tube. When the
user touches the toothpaste tube, she can “feel” its texture. When she
touches the rubber bulb of the horn to the left of the toothpaste tube, she
can feel it and press hard enough to get the horn to honk. Outlines of
images are delineated by feel.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

382 chapter eleven

Along with tactile systems that sense pressure the user exerts and advanced
human-machine interface technologies that allow a direct neural connection to
the body, haptics are also used in many advanced prosthetic limbs and remote
operations (called “haptic teleoperation”), such as flying remote drones, operat-
ing on a patient in another location, and controlling an underwater robot.
Haptics can also be used with virtual reality technologies to train people for
working in real situations. Given their capabilities to measure force, they allow
practical training that previously was possible only with on-the-job training.

User interfaces to computers started with entering data by flipping switches, but
since then, attention has been paid to many other methods of sensing input.
Tracking eye, head, and body movements, sensing neural output, measuring
brain activity, hearing and understanding speech, sensing the motion of a pen or
mouse, and many other ways of entering data are possible now. Computer out-
put has become just as sophisticated, with the use of heat, movement, vibration,
and speech, among others. The opportunities to work on how humans and
computers interact are many, varied, and increasing.

foundations of user interface design
People’s capabilities, experiences, opinions, needs, expectations, and
worldviews are included in the way they expect certain technologies to
interact with them. Designers have to take these personal factors into account
when developing technology, despite the tendency to design solely for
physical capabilities. Designers also bring their own personal factors into
their work, which explains why a perfect user interface will never exist. It’s
still a goal worth striving for, however.

Courtesy of Arto Hippula (left) from the Tampere Unit for Computer-Human Interaction at the University of Tampere, Finland, and author

David Ferro (right)

Figure 11-3, An example of haptics technology

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

11

the human-computer in ter face 383

For any technology, people have a model, or idea, of how the technology works.
Models, metaphors, and analogies can be distinguished from one another, but
generally, they all describe the mental view people have of a technology. Models
allow users to predict what will happen given certain input, to find causes for
the system’s behavior, and to determine what actions cause the changes they
want. A model can also serve as a device for recalling relationships between
actions and events. Users can map a model to another similar device and get
similar results. For example, your understanding of how a car wheel changes
the car’s direction gives you a clue for how to steer a powerboat. If you had to
steer a boat controlled by a tiller, however, you might find mapping a car’s
steering mechanism to the boat more difficult.

Everyone involved in the development process has his or her own model. In
software design, designers should take the users’ and programmers’ models into
account and build on these models to create common metaphors. The result of
not bringing these mental models into some accord or not incorporating every-
one’s expectations is what creates superstitious behavior. User interface
specialist Paul Heckel stated, “Most software is run by confused users acting
on incorrect and incomplete information, doing things the designer never
expected.”

Superstitious behavior is why consistency in the user interface is important. For
example, look at the user interface of the world and gravity. If your shoes
seemed to start floating to the ceiling after you took them off at night, you
might start building a model in your head of gravity’s effects that includes all
sorts of unlikely behavior, such as believing you need to pat your head three
times before untying your shoelaces to counteract your shoes floating away. You
might see superstitious behavior in users restarting their systems every time they
install software because they had to do it before with other software and now
believe it must be done no matter what.

human psychology in human-computer
interaction
To design an interface, you need to understand a few things about how humans
think and work—an important factor in human-computer interface design.
Many studies examine physiological capabilities to, say, move a mouse or a
person’s eyes across the screen by measuring the chemical reactions in saliva,
electrical impulses in the brain, and other physiological reactions to stimuli.

Humans have sensory storage, short-term memory, and long-term memory.
Sensory storage works as a buffer to store all the sensory information coming in.
Unfortunately, although sensory storage can absorb massive amounts of informa-
tion, it can’t hold on to it for very long because more information is always
coming in. However, if you pay any attention to the information, it’s moved into
the higher memory functions. This is how you process movies, for example.

superstitious behavior –
Users with incomplete
information on how to use
a technology create an
incorrect model of the way
a technology works

sensory storage – Where
sensory information is first
processed by the human
brain before passing it to
short-term memory; can
handle a lot of information
simultaneously but can’t
store it for long

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

384 chapter eleven

n o t e

Sensory storage takes in each frame of film as it comes in at a high speed, and
higher-level functions smooth out the images to make them continuous.

Another example is how your sensory system works at a party. It’s always on,
keeping an eye, ear, and so forth on your surroundings for anything that might
be important. So even if you’re involved in chatting with someone at a party, if
you hear your name spoken from across the room or spot a cute guy or gal by
the punch bowl, you’re able to pick up on this sensory information. This phe-
nomenon is why bells, whistles, blinking red lights, and other sounds and
visuals are used in interfaces to grab your attention.

Interestingly, repeated actions can cause the sensory system to ignore a

stimulus. This reaction, called “habituation,” is why bells, whistles,

blinking red lights, and the like should be used sparingly.

Short-term memory, the next stage, is where you do information processing,
such as mathematics. It’s limited to holding between five and nine items. New
information bumps out the old, unless it’s moved to long-term memory. Also,
information is held in short-term memory only temporarily, up to 30 seconds.
Because of short-term memory’s limitations, people use tactics such as repeti-
tion and chunking to retain information. Chunking groups bits of information,
essentially tricking short-term memory into remembering fewer items. Phone
numbers are a good example. Instead of remembering nine digits, you can
remember a phone number as three chunks: area code, prefix, and suffix.

Designers need to be aware of the limits of short-term memory. Moving users to
another page when they need information from the previous page can be a prob-
lem, for example. Pop-up windows placed over the information users need to do
their work cause trouble, particularly when they obscure information a user is
trying to get help on. In addition, systems that “forget” information from one
page to another force users to remember and reenter information, further taxing
their short-term memory and patience.

Long-term memory is the next stage. The amount of information that can be
stored there is potentially limitless, but unfortunately, the information isn’t as
easy to access. You’ve probably experienced the “tip-of-the-tongue” phenomenon
when you’re trying to remember something. People often use mnemonics as
memory hooks to recall information, and chunking can work, too. Storytellers
often remember key events in a story and what comes next. This way, they don’t
have to remember the entire story at once; instead, they retrieve it as needed. An
example of a user interface moving away from having users rely on long-term
memory is the way a word-processing program prompts you with a list of docu-
ments you have opened recently. Your long-term memory still needs to come

short-term memory –
Where information is sent
after the sensory system
receives it; limited to
storing five to nine items
temporarily

long-term memory – Where
information is stored on a
semipermanent basis; can
store a potentially limitless
amount, but retrieving
information can be more
difficult

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

11

the human-computer in ter face 385

into play, however. Word-processing programs haven’t gotten so sophisticated
that they can remind you what you wanted to say in the document!

ignoring human psychology?

So should you be designing only for accessing long-term memory through recog-
nition? Taking a look at the advantages and disadvantages of GUI menu
systems can shed some light on this question. GUIs are not the answer for all
applications. More important, they’re not the answer for all users. After users
become familiar with an application, they often use keyboard shortcuts or some-
times command-line input so that they don’t have to drag and click a cursor all
over the screen. Take a simple task such as moving just executable files from one
folder to another. By the time you open a view, sort and select information, open
another view, and drag or copy and paste the files, someone with expertise work-
ing at the command line could have typed “copy c:*.exe d:” and moved on to
other things.

Menu interfaces have advantages and disadvantages as well. With menus, users
don’t have to memorize commands, functions are easy to recognize and access,
keyboard entry errors are reduced, nonexperts can learn the application quickly,
and menu selections are flexible with the use of shortcut keys. A menu doesn’t
necessarily make an interface easier to use or learn, however; that requires good
design. Menu interfaces can include the following drawbacks:

• Users might get lost in a broad or deep menu structure.
• Menu terms might not be recognizable or meaningful for users.
• Menu graphics require a lot of computing power to work quickly.
• Menus use more screen space.
• Combining commands with a menu isn’t as easy as with a command-line

interface.

The importance of each of these concerns depends on your target users and
their needs as well as the application platform. Designing applications takes
more into account than human memory storage.

design criteria for a quality user interface
The following design criteria are useful in creating a quality user interface:

• Quality of the experience—How does the design give people a satisfying expe-
rience? What need does the product satisfy?

• An understanding of users—How well did the design team understand the
needs, tasks, and environments of users? How well was this understanding
reflected in the product?

• An effective design process—Is the product a result of a well-thought-out and
well-executed design process? What design issues came up during the process,
and what method was used to address them? How were budgeting, scheduling,
and other practical issues managed to support the goals of the design process?

recognition versus recall

Designers must accommodate
long-term memory capabilities
and limitations. One strategy is

using the long-term memory
access approach of recognition

versus recall. You can see this
approach by comparing a GUI

with menus, which shows avail-
able commands, and a

command-line interface that
requires users to remember

(recall) available commands.
Recall-activated functions have

their place, however. In fact,
they’re a recommended alterna-

tive for experienced users who
want shortcuts.

design criteria – Factors to
consider in creating a good
design, including users’
needs and experiences and
what’s appropriate given
the design’s constraints

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

386 chapter eleven

• Learnability—Is the product easy to learn and easy to remember how to use?
Are the product’s features obvious to users? How well does the product support
the different ways people will approach and use it, considering their varying
levels of experience, skills, mental models, and strategies for problem solving?

• An aesthetic experience—Is using the product aesthetically pleasing or satisfy-
ing? Does it show consistency of style and operation? Does the design
perform well within technological constraints?

• Changeability—Have the designers considered whether the product’s change-
ability is appropriate? How well can the product be adapted to suit users’
needs and preferences? Does the design allow the product to evolve for new,
perhaps unforeseen, uses?

• Manageability—Does the product account for and help users manage needs
such as installation, training, and maintenance?

Well-designed software should act like a good teacher, creating a working rela-
tionship with ease of entry for the student (user). In addition, users can be
stretched incrementally to achieve more sophisticated results. To optimize the
user experience, you should put users in control of the interface, reduce users’
memory load, and make the user interface consistent. The following sections
discuss these principles in more detail.

guidelines for user control

There’s a classic story in user interface design. A campus planner had to deter-
mine where to lay sidewalks for a new quad between buildings. First, he decided
to see where people walked on the grass. Wherever heavy traffic had pressed
down the grass, that’s where he decided to put a sidewalk. The point of this
story is letting users have control or, at the very least, creating the perception of
them having control, even when control of the task is mostly out of their hands.
Here are some guidelines for user control:

• Use modes judiciously, and strive to make the application as modeless as
possible. For example, in older text editors, keystrokes are used to move be-
tween text entry mode and text modification mode. Knowing which mode
you’re in is often confusing. However, both modes are important and need to
be accommodated.

• Give users flexibility in using different interfaces (keyboard, mouse, voice,
and so forth) for input.

• Allow users to change focus so that they can interrupt what they’re doing
without being trapped in a long, and possibly unwanted, sequence. A tutor-
ial should allow them to save their place and return when they’re ready, for
example.

• Display descriptive messages that are helpful and not distracting. When users
are engaged in a critical task, they don’t want to see tips on unrelated features,
for example.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

11

the human-computer in ter face 387

• Provide immediate feedback and reversible actions. People want to know
what’s happening, so the system should be informative about where the user is
in correcting an unwanted action, for example. Sometimes this feature is called
the “illusion of progress,” which has the added benefit of giving users a better
impression of software. Allowing users to engage in another activity at the
same time can also create the illusion of progress. If you have a slow-loading
Web page in your browser, for example, you can still edit your Facebook
page in another browser window and listen to the Benedictine monks of
St. Michael’s in your media player.

• Provide meaningful, helpful navigation paths and exits. The system should be
easy to navigate.

• Accommodate users with different capabilities. The system should be accessi-
ble to users with varying skill levels and physical capabilities.

• Make the user interface “transparent” (not literally, of course!), meaning it’s so
easy to use and understand that users don’t have to focus on learning it. The
tasks they need to perform should be the focus.

• Allow users to customize the interface. They should be able to set preferences
for how they use the software.

• Allow users to manipulate interface objects directly, as in moving files on the
desktop. This guideline has its downside, however. For example, selecting an
object accidentally and losing it by dropping it in the wrong folder can hap-
pen. Does the desktop metaphor give users a cue for undoing this action?

• Encourage exploration. Why not include the fun of discovery in an interface?
Designers can look for ways to encourage users to find faster ways to do tasks
or do more complex tasks. It’s a delicate balance, however. Word used to have
an animated paper clip icon called “Clippy” that suggested new ways of doing
things, but many users found this feature annoying. Similarly, many users dis-
able the helpful hint boxes that open in many programs when they’re started.
Games are much better at encouraging exploration.

guidelines for users’ memory load

Interface designers need to consider how humans process information, and
reducing users’ memory and processing loads is a critical component. The fol-
lowing guidelines have some similarities with the guidelines for user control:

• Reduce the need to rely on short-term memory by making sure the informa-
tion needed to operate the program is readily available.

• Rely on recognition more than recall by including cues (visual, audio, and so
forth) for what actions are available. Menus work well for this purpose.

• Provide visual cues, such as a blinking cursor to indicate where a user is in a
document or a status bar that shows what font size you’re using.

• Provide defaults and undo and redo actions. The undo and redo buttons in a
word-processing program are a good example. The program’s defaults, such as
what mode it’s in or what task it’s ready to perform, should be obvious. For

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

388 chapter eleven

example, when using a word-processing program, it should be obvious that
you’re in the mode for entering text, not the mode for looking up a word in
the thesaurus.

• Provide interface shortcuts. Using shortcut letters to represent menu items is
one method, such as F for File, E for Edit, and S for Save. Alt, Ctrl, Esc, and
function (F1, F2, and so on) keys tend to work more on recall than recogni-
tion, but they can work for this purpose, too.

• Promote an object-action syntax. A good example is using a word in a docu-
ment as an object and an action menu (in Windows, a right-click menu) that
allows performing actions on that object. For example, if you right-click a
word in Microsoft Word, you get options such as Cut, Paste, Font, and so on.
Actions that can’t be performed are disabled (“grayed out”) or aren’t displayed.
In iTunes, for instance, you can’t choose options on the Edit menu for cutting
or pasting a song until you’ve selected a song.

• Use real-world metaphors. If you understand 95% of a subject, grasping
the remaining 5% is easier than if you start from 0%. Real-world metaphors
help get users farther along the path they want to follow. Look at the editing
toolbar in Word, for example. Do the icons make sense? Some have argued
that the scissors icon for the Cut option is a good clue to its function, but the
clipboard icon for the Paste option isn’t. Not all metaphors work well or are
obvious to all users.

• Reveal information progressively, especially for new or infrequent users.
Information should be given to users on a need-to-know basis—in other
words, when it makes sense for what they’re doing and when they’re doing it.
Wizard interfaces often use this step-by-step approach.

• Promote visual clarity. This guideline is where graphics artists and designers
are essential. Take a look at Google’s interface, for example, which is very
streamlined and straightforward. Visual clarity is discussed in more detail
later in “Designing for the Web.”

guidelines for consistency of the interface

Consistency helps users recognize what’s available in the interface. You’ve proba-
bly noticed that many programs have similar icons: a picture of a chain for a
link to another document or a floppy disk icon for saving a file (although
maybe it’s time to update this icon). The following guidelines help in creating
consistency:

• Sustain the context of users’ tasks. For example, if users start a task by using
voice recognition for input, they should be able to complete the task by using
the same input method. The information for them to finish the task should
be readily available without having to change modes, windows, and so forth.

• Maintain consistency within and across products. Why have an icon that
means “save file” in one program but has a different meaning in another pro-
gram? Why have “save file” mean “save the existing file” in one part of the

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

11

the human-computer in ter face 389

program but mean “save another version” in a different part of the program?
Why have the shortcut key S mean “save” at 3 minutes into using the pro-
gram but mean “slow down, big fella” at 6 minutes? Okay, the last question is
a bit exaggerated, but you get the point: Inconsistency confuses people.

• Keep interaction results the same to avoid creating superstitious behavior in
users.

• Strive for aesthetic appeal. Does the interface make people feel good (see
“Human Emotion and Human-Computer Interfaces” later in this chapter)?
In addition, designers have to make sure that images used in the interface
correspond with the company’s brand image. For example, a company that
markets itself as cutting edge doesn’t want icons in its software that look old-
fashioned. Companies often have user interface guidelines that dictate the
look of products, Web pages, marketing brochures, and the like.

designing for the Web
The explosion of Web pages since the mid-1990s, both external Web pages for
users and intranet Web pages for internal company information, and the use of
Web pages as a design model for many types of applications make designing for
the Web a special category of user interface design.

what do designers know about their users?

Servers handle retrieving the Web pages you want, but they’re displayed on
your screen by Web browsers. Because users have a fair amount of control over
how their browsers render pages, such as text and window size, and run their
browsers on different hardware, programmers must accommodate these varia-
tions. Designers don’t know what browser, platform, preference settings,
window size, monitor size or screen resolution, connection speed, color settings,
or font users have chosen. This problem is even more obvious with handheld
devices, such as the iPhone and BlackBerry, used to browse the Web.

So what choices do you have as a designer or developer? Generally, you can try
to force the display to your way of thinking as much as possible by using graph-
ics and Flash programs instead of text, for example, but this approach has
problems. Search engines can’t search for information in graphics, and graphics
take longer to load. Non-GUI users (visually impaired people, for example)
can’t “see” the content, although the ALT attribute in HTML can help remedy
this problem.

However, instead of forcing a particular view, you can design your pages to
reflect users’ needs and wants. Some users’ impairments might mean that larger
text, for example, makes the difference between maneuvering around a Web
page slowly or not at all. To help address these needs, you can code to the low-
est common denominator in terms of browser, platform, and screen size. It’s
more likely, however, that modern Web servers query the client and then serve

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

390 chapter eleven

n o t e

n o t e

pages appropriate for that client and its settings, which means more server-side
coding (invisible to users) than in the past.

Server-side coding also means more customized pages, but that never

hurts customer relations.

There are still programming elements you should be aware of. Any font you use
that doesn’t exist on users’ machines is displayed in their default font. However,
you can specify a backup font by using style sheets. A collection of fonts called
TrueType is built into both Apple and Microsoft operating systems, including
Comic Sans, Courier New, Times New Roman, Verdana, and many others.
With style sheets, you can specify one of these TrueType fonts as a backup in
case users don’t have the font you’ve used. Now you know why so many sites
use the same font.

In addition, images are rendered differently on different platforms because of
variations in gamma settings. A PC has a higher gamma setting (meaning it’s
darker) than a Mac, for example. Images created on a Mac might look darker on
a PC, and images created on a PC might look washed out on a Mac. Users with
24-bit monitor settings see 16 million color combinations—all the colors you
can use digitally. Using a lower bit setting or resizing the image forces the color
to the next available color, which often causes “dithering” (a mottled appearance
in solid colors). With Web-authoring tools, such as Photoshop, you can use the
8-bit Web-safe palette, if you want to be on the safe side. This palette has only
216 colors; the other 40 colors needed for the typical 256-color palette are used
to smooth out colors that are difficult to display.

Web developers need to be aware of usable screen space, too, so monitor resolution
is important. Because browser windows can be resized to any dimension, on any
size monitor, designing for unknown screen “real estate” is a challenge. For exam-
ple, you might need to design for monitors set at a range from 800 3 600 pixels
to 1600 3 1200 pixels. If you design in pixels, your design takes up less real estate
at the 1600 3 1200 end of the range, but everything you’ve designed should be in
proportion. New wide-screen monitors have less vertical space, however. Don’t for-
get that the OS and program also take up screen space. For example, in Windows
the taskbar might take 28 pixels, and the browser window might take up to
160 pixels for just the status, menu, title, navigation, and location bars.

Web pages and services that keep track of client preferences are available,

such as InternetNews.com (www.internetnews.com). Web developers can

use them to see what their clients’ platforms, browsers, monitor sizes, and

so forth are.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

www.internetnews.com
http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

11

the human-computer in ter face 391

n o t e

deconstructing Web pages

There are many guidelines for addressing the basic need of serving the customer
in Web page design. The following list summarizes a few of them:

• Communicating the site’s purpose—The company name and logo should be
easily visible and summarize what the site or company does, and they should
be placed on what’s clearly the site’s home page. You don’t have to actually
welcome people to the site, however, and you don’t need to use “home
page,” “.com,” “.org,” or so forth in the page title unless it’s part of the organi-
zation’s name. In addition, the highest priority tasks should be emphasized and
clear. For example, if the most important feature of a bank’s Web site is allow-
ing users to access their accounts, you might put the logon feature in the
middle of the page or another likely place that users’ eyes will travel to.

Registering other domain names for your site, such as names with

alternative spellings, abbreviations, or common misspellings, is a good

idea. For example, nytimes.com and newyorktimes.com both lead to the

New York Times Web site.

• Communicating the organization’s information—The Web page is part of a
company’s corporate presence and should be in sync with its brand image.
Having “Contact Us” and “About Us” sections builds trust in the site and the
company. In addition, include a privacy policy if you collect information
from users. For security reasons, don’t include internal company information,
such as employees’ phone numbers, on the public site.

• Writing good content—The language should be focused on customers, not on
the corporate hierarchy or other internal interests. Avoid redundant content
and labeling and “clever” phrases that might be hard to understand. Use a
consistent style throughout the site, and follow guidelines for clear writing,
such as spelling out abbreviations and writing in the present tense.

• Revealing content through examples—If the content is self-explanatory, it
doesn’t need a label. Examples (with links to more detail and “more of this
type of content”) can explain content better than descriptions can. Indicate
clearly which links drill down to more detail and which go to more general
information.

• Making links obvious—Differentiate links from other content. They should
follow the universal convention of blue underlined words and indicate which
parts of the site the user has already visited (typically with a color change to
the link text). Avoid generic instructions such as “Click here.” The link
should make it clear what type of content is being linked to, such as an audio
file, a PDF, a video file, and so forth.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

392 chapter eleven

n o t e

• Using clear navigation—Place navigation features in the noticeable area below
a banner. Similar navigation items should be grouped, not repeated on the
page. The home page shouldn’t link to itself. Make it clear where navigation
titles and icons lead users. Avoid unfamiliar and confusing words and images
in navigation features.

• Making search capabilities obvious—Give users a clearly labeled search text box
on the home page that can accommodate the length of typical search key-
words. A Search button to the right of the text box is usually the clearest
label. You don’t need to offer a “search the Web” feature on your site.

• Using graphics, animation, and widgets wisely—Graphics should show real
content, not just add decoration. If an image’s meaning isn’t clear, add a label.
Avoid semitransparent backgrounds because they add visual clutter. Photos
and diagrams should be sized to fit the intended display device. Use anima-
tion sparingly, and don’t use it on important elements, such as headers and
navigation areas, because it detracts from useful content. Drop-down or roll-
over menus can help reduce visual clutter but are limited to users who have
the technology for viewing them (typically Flash or JavaScript, which are add-
ons that many people don’t install). Also, these menus don’t allow a quick
visual scan of the site hierarchy, so use them judiciously. Using too many text
boxes on the home page is confusing, so reserve their use for the page where
they’re specifically needed.

• Following good graphics design principles—The main principle is don’t overde-
sign. Therefore, keep the number of font styles and other text formatting to a
minimum, and avoid horizontal scrolling. (If possible, avoid vertical scrolling,
too.) Strive for a high contrast between text and background to make type leg-
ible. Keep all critical page elements above the bottom of the display window.

• Following other guidelines for content—Make new content, such as recent news
stories or new product offerings, easy to access. If you have news items, link
headlines to full stories. Time-critical content, such as stock quotes, should
display an update time, although it depends on how often users expect the
information to be updated. News less than a day old probably doesn’t need a
date stamp, for example, but a timestamp might be helpful. Avoid pop-up
windows because most users see them as annoying advertisements, especially
if they multiply. You should have one main page, not many, although you
might need to bend this rule and route people to main pages in different lan-
guages. Ads from companies other than your own should be on the edge of
pages, not in the middle or along the top, where they could be confused with
your site’s content. When possible, only new content should be refreshed, not
the whole page.

The bottom line is to stay focused on the reason users come to your Web

site. Anything else is a distraction.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

11

the human-computer in ter face 393

To see examples of these Web design principles, take a look at Figure 11-4,
the home page of the Visual Arts Department at Weber State University
(www.weber.edu/dova).

Figure 11-4, The home page of the Visual Arts Department at Weber State University

According to the designers, the site’s intent is to provide information for
prospective and current students as well as the general public. Another goal is
to make it appealing to users so that they appreciate it as an example of visual
design. Because of this goal, the page doesn’t follow all the functional guidelines
discussed previously:

• It’s difficult to tell what on the page is a link. For example, the items at the
top are menu items with a Flash rollover feature, so users without Flash won’t
be able to use the menu. Other links on the page aren’t in the blue under-
lined text typically used for links.

• The HOME PAGE link at the top is active, which isn’t usually recommended.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

www.weber.edu/dova
http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

394 chapter eleven

• The SHAW GALLERY title with the Calendar link could be missed easily in
the middle of the complex image.

• Under the ANNOUNCEMENTS title are four links, and only the second—
Visit DOVA on Facebook—indicates clearly what the link takes you to. The
first link doesn’t indicate whether it takes you to a form or opens a message
window in your e-mail program, for example. The third is a slow-loading
PDF, and the fourth is another HTML Web page.

• The image at the upper right is actually a link, as is the “W” to the right of
it. However, they don’t give you a hint that they’re links or indicate what the
link might take you to.

On the plus side, the design is eye catching and encourages visitors to explore
and see what the site has to offer. In addition, the design indicates the site’s
purpose clearly, and the menu at the top persists in many (although not all)
pages, so navigation is consistent.

the user-centric design process
The main phases of user-centric design are as follows:

• Gather and analyze user information.
• Design the user interface.
• Construct the user interface.
• Test the user interface.

Frank Lloyd Wright said, “You can use an eraser on the drafting table or a
sledgehammer on the construction site.” In other words, design is essential be-
fore building anything, and spending some time on the design process can save
time in the construction process. However, as you’ll see in Chapter 13, design
processes have become more iterative, and prototyping tools have become more
powerful and widely used. So although designing user interfaces still follows the
four main phases of development, designers often repeat phases or delve into
subphases. Interface design phases can also reflect the software development life
cycle and use many of the tools used in this approach, such as use case diagrams,
flowcharts, and the like.

See Chapter 13, “Software Engineering,” for more information on the
software development life cycle.

Because the process is often iterative, the design team might continue to gather
data while designing a pilot (prototype) of the interface. This prototype is then
tested with real or hypothetical users while the team works on a more complex
prototype, which then evolves based on additional information from data

user-centric design –
Designing by focusing
on users’ needs before
considering other
constraints of the system

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

11

the human-computer in ter face 395

gatherers and is tested with users, and so on. While all this is happening, an
actual product might be created and go through field tests, maintenance, and
upgrades based on feedback from the continuing prototyping process.

phase 1: gathering and analyzing user information

Phase 1 involves steps such as developing user profiles, analyzing users’ tasks,
gathering user requirements, and analyzing the user environment. In
developing user profiles, you ask “Who are the users?” and look at demo-
graphic information, skills, knowledge, background, and more. Techniques
such as conducting interviews, taking surveys, and examining historical data
are helpful.

Analyzing user tasks involves examining what users do and how they do it.
You can discover this information with interviews, but observation is more
helpful. Design team members ask questions about what tasks users perform,
what tasks are most critical, what steps are involved in their tasks, what their
goals are, what information they need, how they do their work, how often tasks
are performed, and how they interact with others in business processes.

Gathering user requirements, usually with focus groups, interviews, and surveys,
focuses on what users expect the product to do for them. Typical questions users
ask are who installs and supports the product and how much it will cost.

User environment analysis examines where users perform their tasks and is usu-
ally best done through observation and reviewing existing data. Environmental
factors include lighting, noise, temperature, and ergonomics (how people’s bod-
ies interact with technology). Designers must also consider the interfaces
typically used for input (voice, keyboard, handheld devices, and the like), users
with special needs, and any cultural needs, such as requiring keyboards for dif-
ferent character sets.

Comparing user requirements with user tasks is a reality check to verify that
your understanding of users and their needs is accurate. However, understand-
ing human activities is so complex that simply listing requirements, putting
them into a system, and popping out the perfect technology for users’ needs
isn’t possible. Finding the “perfect” technology takes continuous evaluation.

phase 2: designing the user interface

In this phase, a product’s usability goals and objectives are defined, user scenarios

are developed, and interface objects and actions are defined.

user profiles – Written
descriptions of who the
users are, including back-
grounds, skills, and so forth

user tasks – What users do
and how they do it

user requirements – What
users want and need to do

user environment – Where
users perform their tasks

user scenarios – Examples
of user activities, written
to show the steps users go
through in using a
technology

putting yourself in the
user’s fins

The head of the design firm IDEO,
Bill Moggridge, says some of the

best-designed products have
been designed by the people who

use them, such as code for the
Linux operating system and out-

door equipment from Black
Diamond. When the designer of a

technology isn’t the user of the
technology, developing a sense of
empathy with the user is critical.

For example, a team designing an
underwater camera (a device

without much peripheral vision)
tried to look at the design from a
diver’s point of view by attempt-

ing to find a coffee cup on a desk
while looking through paper

towel tubes.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

396 chapter eleven

Usability goals and objectives are defined in terms of usefulness, effectiveness,
learnability, and attitude. For usefulness, the goal might be ensuring that users
can use the program to perform their tasks, and an objective might be that
90% of users can perform a simple task on the first attempt. Effectiveness
might refer to how fast users can perform their tasks, learnability might refer to
how quickly they can learn to operate at 100% effectiveness, and attitude might
refer to how high users rate their satisfaction with the product.

User scenarios can be documented in numerous ways, some of which are dis-
cussed in Chapter 13. Developing as many scenarios as possible is often useful
for designing the final user interface. Interface objects and actions are defined
from the user scenarios and tasks, and they should be reviewed with end users
or their representatives. To identify objects and actions, typically you start by
identifying nouns and verbs from the user scenarios; interface objects are
derived from nouns, and interface actions are derived from verbs.

phase 3: constructing the user interface

You should prototype early and often, have plenty of alternatives, and be prepared
to throw many away. The risk of prototyping is that many people consider a pro-
totype the final product that needs just a little refinement. The more sophisticated
the prototype and the more work that has gone into developing it, the more peo-
ple make this assumption. Prototyping has become a specialized skill, and it takes a
person who’s willing to chuck the work and start over. A prototype is developed to
gain support for the approach. It helps managers and eventual users realize the pos-
sibilities and limitations of a technological solution. It isn’t supposed to be the final
product that needs just a few modifications and add-ons. Prototypes can often be
quite rickety—barely held together with tape and chewing gum. In addition, they
don’t need to be constructed of the materials the final product is made of. A soft-
ware program, for example, might be prototyped with paper and pencil.

phase 4: validating the user interface

This phase is where the usability goals and objectives of usefulness, effective-
ness, learnability, and attitude defined in Phase 2 come into play. To assess how
effectively you met the objectives, you can create a variety of tables and mea-
sures. To do so, you use the traditional social science methods of observing,
surveying, and interviewing users or trial users. Many companies, for example,
pay people to try out their products and give feedback on them. Figure 11-5
shows a typical user interface testing lab. The user on the left is working with
the interface being tested, and the researcher on the right is observing him. The
user’s actions are also captured by the camera and microphone on the left, and
his keyboard and mouse actions are recorded by a logging program. In addi-
tion, researchers behind the mirror are observing him. The researchers can
examine all impressions, from facial expressions to pauses in mouse clicks, to
determine where the user interface succeeds and fails.

brainstorming with
the client

One of the world’s most famous
design firms, IDEO (www.ideo.

com), uses a number of methods
for discovering what clients need

and for brainstorming solutions
to meet these needs. The methods

fit into four categories:

• Learn—For example, doing his-
torical analysis to spot patterns
in customers’ past browsing
habits on a Web site

• Look—Observing current
behaviors, such as following
users around for a day to see
how they interact with the
technologies they use

• Ask—Having users fill out
questionnaires or asking them
to create a collage as a way of
discovering the importance
they place on aspects of the
potential system

• Try—Finding ways to create
empathy with users, such as
simulating their work
environments

usefulness – A measure of
how many of the intended
tasks users can perform
with the technology

effectiveness – A measure
of how well the technology
helps users perform their
tasks; often expressed as
how quickly, how easily,
how safely, and so forth

learnability – A measure of
how quickly users can learn
to use the technology to
perform their tasks

attitude – A measure of how
much users enjoy their expe-
rience with the technology

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

www.ideo.com
www.ideo.com
http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

11

the human-computer in ter face 397

human emotion and human-computer
interfaces
As it turns out, aesthetically pleasing user interfaces work better. This might
seem obvious, or maybe it seems to you that aesthetics shouldn’t have a major
effect on function. For example, you wouldn’t expect color to influence func-
tion, but if you think about your relationships with various technologies, you
might see the link.

An aesthetically pleasing interface can make users feel good, and if they feel
good, they’ll be more patient in working with the interface and finding creative
solutions to difficulties in doing their work—in short, they’ll be more forgiving
of any functional problems. When users are willing to find solutions, they be-
come more adept at using the interface. The emotional commitment to an
interface can even influence users’ opinions of how practical the interface is to
use. This emotional effect has contributed to Apple’s success with its product
line, which is generally considered aesthetically pleasing. Think of things in
your life that give you such emotional joy that you put up with their many
flaws (not your significant other—well, maybe).

The study of emotions in decisions about using technology, part of what’s
called the affect system of decision making, has its origins in an early 1990s

Figure 11-5, An example of a user interface testing lab

Courtesy of Päivi Majaranta from the Tampere Unit for Computer-Human Interaction at the

University of Tampere, Finland

affect system – How
emotions and potentially
aesthetics play a role in
decision making

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

398 chapter eleven

study by two Japanese researchers, Masaaki Kurosu and Kaori Kashimura. They
examined ATM control layouts and found that users were more adept at using
attractive interfaces. An Israeli scientist, Noam Tractinsky, was skeptical of
whether the study’s results were universal. Aesthetic differences are generally
considered part of cultural differences. However, he found the same effect:
Attractive interfaces were easier to use.

Since Tractinsky’s study, many other studies have shown the relationship be-
tween attractiveness and ease of use. For example, uniform proportionality—in
anything from facial features to buttons on a phone—has universal appeal and
can be applied to user interface design, among other things. Figure 11-6 shows
a system that measures emotional responses. The headset the researcher is
wearing measures activity in certain parts of the brain, and this information is
displayed on the monitor. This system can be used to observe users’ responses
while working with programs.

There are three levels of design: visceral, behavioral, and reflective. The design
of most objects is perceived on all three levels, so good design should address
all three.

Visceral thinking is snap judgment about an object. Is it dangerous? Is it good?
It’s an instinctive, nearly universal attitude about what feels, looks, tastes,
sounds, and smells good. The response to sweetness is visceral, for example,
whereas a love of salty licorice or limburger cheese is learned and controlled at a
higher level. The visceral level can be controlled by the behavioral and reflective
levels, especially as you get older. In designing a user interface, you might ap-
peal to the visceral level by choosing appealing colors, for example. The weight
and feel of an object in your hand, such as a smartphone, also appeal to the
visceral level. Visceral design is all about immediate emotional impact. It has to
feel good and look good.

Courtesy of Toni Vanhala from the Tampere Unit for Computer-

Human Interaction at the University of Tampere, Finland

visceral thinking –
Immediate, instinctive
thinking; an object’s look
and feel play a role in
how it’s perceived

Figure 11-6, Measuring users’ emotional responses

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

11

the human-computer in ter face 399

Behavioral thinking drives most human behavior. You might also think of it as
the functional level. The main driver is how useful the object is. Appearance
doesn’t matter; only performance does. Most user interface designers focus on
appealing to behavioral thinking by answering the questions “How well does it
work? How easy is it to understand?”

The highest level, reflective thinking, isn’t directly affected by sensory input or
the control of behavior. Reflective thinking is more sophisticated but can be
susceptible to changes in fashion and culture because it appeals to more learned
behaviors. To appeal to reflective thinking in design, you have to focus on the
cultural meaning of a product or its use. This level also involves a user’s self-image
and what message his or her ownership of a product sends to others, as with
people who believe that driving the “right” car or living in the “right” house is
important. Reflective thinking is where a sense of belonging to a community or
status level plays a role. For example, what does a product say about how the user
wants to be perceived by others? Many successful products can demonstrate the
three levels of thinking at work in a product’s appeal. Take the Toyota Prius. To
many, it’s attractive (visceral), works well (behavioral), and creates pride in
ownership and a sense of community among its users (reflective). Reflective
thinking can be powerful. Those uninterested in being in the Prius community,
for example, might not find the product particularly attractive or might focus on
ways it doesn’t work.

personalization and customization
Products such as the iPhone offer another feature for increasing all three levels
of appeal to users: personalization. You can choose from many different cases,
screen savers, and other gadgets for the iPhone, which appeals to the visceral
level, and you can download a wide variety of applications, which appeals to
the behavioral level. Appealing to the reflective level, you can gain easy entrance
into the community of iPhone application developers.

Personalization can work with mass-produced commodities quite well, which is
easily seen in cars. Many people add details and engine enhancements to their
Honda Civics, for example. However, there are a limited number of choices for
personalization. You can make a product yourself, but that’s time consuming,
and few people have the skills for making something as complex as a car or a
computer system. You can have objects made to order, but this approach is usu-
ally expensive. You can also buy add-ons or choose specific options, as with
iPhones and modified Hondas.

True total customization is difficult; turning a car into a helicopter, for in-
stance, isn’t likely. The flexibility of software can allow personalization, if users
have access to the software and tools to manipulate it. However, even with soft-
ware, customization does have its costs. Creating a system that’s easy to use and
understand but also allows making unlimited customizations is difficult. You

behavioral thinking –
Thinking about how
something works

reflective thinking –
Thinking about how
something reflects on
the user and his or her
relationship to others

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Carroll, John M. Human-Computer Interaction in the New Millennium.
Addison-Wesley, 2002 (ISBN 0-201-70447-1).

Mandel, Theo. The Elements of User Interface Design. John Wiley & Sons,
Inc., 1997 (ISBN 0-471-16267-1).

Moggridge, Bill. Designing Interactions. MIT Press, 2007 (ISBN 0-262-13474-8).

Nielsen, Jakob and Marie Tahir. Homepage Usability. New Riders, 2002 (ISBN
0-7357-1102-X).

Norman, Donald A. The Design of Everyday Things. Doubleday, 1988 (ISBN
0-385-26774-6).

Shneiderman, Ben. Designing the User Interface: Strategies for Effective Human-
Computer Interaction. Addison-Wesley, 1998 (ISBN 0-201-69497-2).

400 chapter eleven

often end up with a complex system that’s difficult to understand, thus making
it hard to customize. That’s why many technologies offer limited customization.
Whatever approach to personalization you allow in a product, however, users’
personalization of it creates an emotional involvement with the product and,
therefore, taps into the affect system to create a sense of goodwill toward the
product.

one last thought
The user interface development process depends on the resources an organiza-
tion is willing to spend on it, how much an organization values satisfying end
users, and organizational politics involved in defending the needs of produc-
tion, marketing, engineering, system, and accounting departments. It takes a
strong leader with vision to focus an organization on end users, but one advan-
tage of a technocratic society is that everyone can be a leader in technology in
one way or another. User interface specialist Donald Norman ends one of his
books with the following call (from The Design of Everyday Things, p. 216):

“Now you are on your own. If you are the designer, help fight the battle for
usability. If you are a user, then join your voice with those who cry for usable
products. Write to manufacturers. Boycott unusable designs. Support good
designs by purchasing them, even if it means going out of your way, even if it
means spending a bit more. . . . And enjoy yourself. Walk around the world
examining the details of design. . . . Realize that even details matter, that the
designers may have had to fight to include something helpful.”

So fight the good fight in interface design. Your organization will benefit from
customers’ loyalty and goodwill as a result of your efforts.

s e l e c t e d r e f e r e n c e s

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

11

the human-computer in ter face 401

c h a p t e r s u m m a r y

• Design is often a secondary concern, but it should be the first.

• Poorly designed technology is often the cause of poor sales, poor usability,
and user confusion.

• Many technologies for interacting with computers are available, including a
mouse, a pen or stylus, gaze systems, voice recognition, haptics, and other
input and output devices.

• People bring a variety of personal factors to the technologies they use.

• Designers should strive to create systems that discourage users from engaging
in superstitious behavior.

• Humans have three levels of memory storage that designers should take into
account: sensory storage, short-term memory, and long-term memory.

• Although understanding psychology is important, it’s not the only matter to
take into account when designing interfaces.

• The design criteria for user interfaces are the quality of the experience, an
understanding of users, an effective design process, learnability, an aesthetic
experience, changeability, and manageability.

• Three main goals of a user interface are giving users control of the interface,
reducing users’ memory load, and aiming for consistency in the interface.

• Programming for the Web is complicated because of the many different Web
technologies end users use.

• Remember the basic rules for building effective Web pages, such as communi-
cating a site’s purpose and organization, making links obvious, and creating
helpful navigation.

• The user-centric design process starts with the end user, not system needs. Its
main phases are gathering and analyzing user information, designing the
interface, constructing the interface, and testing the interface.

• User interface design can be iterative rather than sequential, meaning steps
can be revisited many times in the process. Prototyping is a key component
of iterative design.

• Human emotional response is a new but growing area for designers to take
into account when building technology.

• Personalization can help get positive emotional responses from users.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

1. What does the poorly designed door symbolize?

2. List three obstacles to user-centric design.

3. List three career paths that could be useful in creating a good design.

4. What technology do many gaze systems use to track eye movement?

5. Technology with inconsistent responses to user input often creates what
kind of human behavior?

6. What are the three levels of memory storage?

7. What two techniques help improve short-term memory?

8. When might users prefer to use recall instead of recognition in using a
technology’s interface?

9. Describe five design criteria discussed in this chapter.

10. What is one major reason that designing for the Web is different from
designing for other user interfaces?

402 chapter eleven

affect system (397)

attitude (396)

behavioral thinking (399)

design criteria (385)

effectiveness (396)

gaze systems (380)

haptics technologies (381)

learnability (396)

long-term memory (384)

natural-language processing (381)

reflective thinking (399)

sensory storage (383)

k e y t e r m s

short-term memory (384)

superstitious behavior (383)

usefulness (396)

user-centric design (394)

user environment (395)

user interface (379)

user profiles (395)

user requirements (395)

user scenarios (395)

user tasks (395)

visceral thinking (398)

voice-recognition technology (380)

t e s t y o u r s e l f

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

11

the human-computer in ter face 403

1. What technologies in your daily life could be designed better to meet your
needs?

2. What technologies in your daily life could be designed better to meet
the needs of someone with impaired vision?

3. What technologies in your daily life could be designed better to meet the
needs of someone with limitations in mobility?

4. What technologies in your daily life could be designed better to meet
children’s needs?

5. In what ways do the technologies you use every day require recall and
recognition?

6. In what ways could the technologies you use every day be safer?

7. After reading Chapters 14 and 15, pick a programming exercise from each
chapter, and attempt to design the program with the user-first approach.

8. Create a paper-and-pencil prototype of a better smartphone, and explain
how user interface technologies, such as gaze systems and haptics, come
into play. Optional: Simulate using the phone with a partner. What works
and what doesn’t work?

9. Create a verbal simulation of a conversation with a “professor program”
that reports your grades. Imagine that the computer can recognize only
four phrases per exchange. Have someone test it as a user. How complex
is it? What needs does it have? How well did the first conversation go?
Where did it fail?

10. Interview classmates about their expectations for technologies they use
frequently. How well do the technologies meet their expectations?

11. Observe your professor’s behavior. How would you improve his or her in-
teraction with technology in the classroom? What could be solved with
new technology, and what might require only a change in how it’s used?

12. Test a partner in short-term memory ability. How easy is it to remember
the sequence 1 7 7 6 1 9 4 5 2 0 0 1 1 4 9 2? What tactics can your part-
ner use to remember all the numbers? Come up with similar examples of
short-term memory tactics.

13. Find a partner with similar interests, and test each other on long-term
memory questions. For example, if you both like movies, start naming ac-
tors in movies you both know. Describe how you recall these names.

14. Make a spreadsheet with the design criteria discussed in the chapter and a
ranking system of 1 (poor) to 10 (excellent). Interview and observe other
students in your class using a technology of their choice, and see how well
the technology corresponds to the criteria.

p r a c t i c e e x e r c i s e s

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

404 chapter eleven

15. After creating a paper-and-pencil prototype of a smartphone (exercise 8),
conduct a usability study with other students in your class. Give them a
short description, and then observe them as they pretend to use it. Ask
them questions about their use of the prototype.

1. Have a class discussion about the value of command-line interfaces and
menu-based interfaces. If some people have strong preferences for one or
the other, ask them for specific examples.

2. Have a class discussion comparing the user interfaces of some technologies
(for example, Mac OS, Windows, and Linux operating systems or standard
versus automatic transmission in cars). Ask those who have strong prefer-
ences for one to give specific reasons. How much do emotions seem to
come into the interaction between students and technologies?

3. Create a class project to design a toy, using teams with members represent-
ing different aspects of the design process (gathering and analyzing user
information, designing the prototype, constructing the prototype, and test-
ing the prototype) and members representing users of the system. Assign an
observer to take notes during the exercise and report on how well the teams
followed the phases of user-centric design.

4. You can find many pragmatic exercises for understanding users’ needs. One
example is a team-building exercise in which a blindfolded person is led by
the guide’s voice through an obstacle course, with ambient noise, such as
other people talking, to confuse the blindfolded person. Use this exercise to
think of ways to improve the process of understanding users’ needs.

1. Should users of technology be called “users”? What if they were just called
“people”?

2. This chapter discussed considering users’ needs as the first step in the de-
sign process. Would it make more sense to consider the technology first?
What about considering all constraints simultaneously?

3. Some design experts have called computer interfaces the “weak link” in
computing. How would you approach designing computers to have multi-
ple capabilities but still make them as easy to understand as, say, a
hammer?

4. What do you think business practices, law, and economics have to do with
how technology is designed? Give specific examples.

d i g g i n g d e e p e r

d i s c u s s i o n t o p i c s

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

11

the human-computer in ter face 405

5. If users matter so much, why don’t designers do a better job of design-
ing for their needs? Give specific examples.

6. Some have speculated that the perfect personal computer should be as sim-
ple to use and as unobtrusive as a common kitchen appliance, such as a
toaster. What would it take for computers to progress to the ease of use
of a toaster?

1. Go to your favorite Web page. Does it meet the guidelines in the
“Deconstructing Web Pages” section? Explain why or why not.

2. Find a Web resource with statistics on users’ platforms, browsers, and
screen resolutions. How would this information change the way you design
a Web page?

3. Numerous Web resources on designing good user interfaces are available.
Find three, and compare their design criteria with the criteria covered in
this chapter.

4. Numerous Web resources on designing good user interfaces are available.
Find three, and compare their approaches to addressing human memory
capabilities with the approaches discussed in this chapter.

5. Numerous Web resources on designing good user interfaces are available.
Find three, and compare their approaches to addressing human emotion
with the approaches discussed in this chapter.

6. Find two Web sites that have similar purposes, such as two online book-
stores, weather sites, news outlets, search engines, and so forth, and select
one with a good interface and one with a poor one. Compare how these
two sites achieve the design goals discussed in this chapter. In what ways
is the good site’s interface effective, and in what ways does the other site
fall short?

I n t e r n e t r e s e a r c h

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

c h a p t e r

prob lem so lv ing and debugging

12

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

i n t h i s c h a p t e r y o u w i l l :

• See an overview of the history of problem-solving techniques

• Learn some problem-solving approaches for many fields

• Learn the 13 rules of debugging

• See some examples of the 13 rules in action

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Not long ago, I opened a cupboard to find what looked like little chocolate sprinkles (which I’m glad I
didn’t eat) scattered around the garbage can with some chewed-up wrappers. Yes, I had a mouse

living in my cupboard.

I went to work to solve the problem. First, I went to the store to buy a trap. What I didn’t realize is that
there’s a wide variety of mousetraps. (Note: See Chapter 9’s Lighter Side on decision making.) The standard
mousetraps were two for $1, and some poison cost $3 (which I thought might be good, until I realized the

mouse would eat the poison and then go hide behind my dishwasher). The “humane” traps for $5 would trap
the mouse inside them. Um, and then what? For $20, there was a reusable mini–electrocution chamber, which

I’m guessing was manufactured in Texas.

Three hours and one spreadsheet later, I bought two standard mousetraps and set them with peanut butter as
bait. I checked the traps the next day and found they were still set, but all the peanut butter was licked away.

Next day, same result. I realized this was no ordinary mouse.

My dad suggested I try sticky pads, where the mouse simply gets stuck if it steps on one (and again, then
what?). I laid some down, and moments later, I heard a miniature ruckus coming from the kitchen. I ran in to

find that the sticky pad, containing no mouse, had been dragged to the mouse hole.

The next day I put the traps and the sticky pads like a minefield all under the sink. I went to check the traps
later and heard a little rustling from the garbage can. I picked it up, and a GIGANTIC mouse bailed out of the

can and onto the floor near my feet. I did what any man would do in this situation: I screamed like a girl,
jumped, and ran out of the room.

To make a long story short, this scene was repeated a number of times over the next few weeks, as I tried to
trap the mouse inside the garbage can, always followed by a bail, a scream, and a scramble. I considered the

electrocution chamber, but instead bought some industrial-strength steel traps. That did it. I came home a cou-
ple of days later to find that not one, but two mice had met their fate! They were followed by their brothers:

Three, Four, Five, Six, and Seven.

In conclusion, if you run into a problem, don’t give up. Perseverance leads to victory. Also, don’t eat the
chocolate sprinkles.

408 chapter twelve

the lighter side of the lab
by spencer

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

p r o b l e m s o l v i n g a n d d e b u g g i n g

Do you like reading or watching mysteries? Playing video games? Fixing cars? Solving puz-

zles? Whether your mystery-solving hero is Sherlock Holmes, Adrian Monk, or your local

mechanic, the joy of solving mysteries will serve you well in the world of computing.

Although this chapter is short, the importance of its topic can’t be overstated. Computer sci-

ence is essentially the art and science of developing solutions to problems—in other words,

problem solving. For example, software engineering and user interface design are essentially

processes for developing solutions to meet users’ needs. What you’ve learned so far is how to

prevent problems through good design, not how to fix something that doesn’t work. There

are all sorts of ways to prevent problems: software standards, code reviews, risk management,

quality assurance processes, test automation, and the like. Unfortunately, in computer devel-

opment, inevitably a program you write won’t do what you think it should because it has a

“bug” (although some programmers prefer to call it a “feature”). Whatever the problem is

called, you must fix it. In programming, this process of finding and fixing a problem is called

“debugging.” This chapter focuses on that process by giving you some rules to follow and

examples of how they’re used.

why you need to know about...

prob lem so lv ing and debugging 409

the mental game of problem solving
Obviously, people have been solving problems for a long time, so you’re in good
company. However, the scientific study of how people solve problems is more
recent. Psychologists have been studying it only since the early 20th century. They
originally focused on people in a laboratory setting solving stripped-down math
or logic problems, such as the Tower of Hanoi (see Figure 12-1). The assumption
was that problem-solving processes discovered in the lab would be the ones used
in real-life situations. Since the 1970s, however, research has moved to specific
problem domains—medical, automotive, scientific, engineering, and other
fields—and has become less focused on finding general processes for problem
solving. In addition, researchers have found that more complex problems elicit
more complex approaches to solutions.

In addition, a key discovery that emerged is the role that less quantified ap-
proaches, such as intuition and emotion, play in problem solving. A fun book
on the power of intuition is Malcolm Gladwell’s Blink: The Power of Thinking

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

410 chapter twelve

Without Thinking. One of his points is that although rigorous process and
formalized understanding play a role in problem solving, experience can create
intuitive understanding. In other words, having the experience of seeing many
similar problems is valuable in problem solving, but having a few rules and
tools is always useful.

Tower of Hanoi

The Tower of Hanoi is a puzzle
consisting of three rods with sev-

eral disks of gradated sizes stacked
on the leftmost rod, from the

largest on the bottom to
the smallest on the top.

To solve the puzzle, you must
move the stack to another rod

while following these rules:

• Move only one disk at a time.

• Taking a disk from one rod and
sliding it on another rod

constitutes a move.

• You can’t place a disk on top of
a smaller disk.

In addition to being used in psy-
chological research, the Tower of

Hanoi is a widely used method of
explaining recursive algorithms to

programming students.

Figure 12-1, The Tower of Hanoi puzzle

n o t e Reliance on intuition is often why programmers say that debugging is an art.

As for the key discovery about the role of emotion, researchers realized that lab
settings don’t incorporate the emotional aspect of real-life situations. Emotion
can be a powerful incentive or a dismaying distraction, which leads to the first
concrete piece of advice: Take a deep breath, remain calm, and devise a strategy.

Want to see some amazing cases of solving problems while staying calm? Watch
the 1995 movie Apollo 13, read about Shackleton’s expedition to Antarctica, or
listen to the radio program Car Talk with Tom and Ray Maggliozzi. They’re all ex-
cellent examples for future software engineers. One of the most critical tools in an
engineer’s arsenal is an unwavering belief that problems can be solved. If a prob-
lem has been created by people, in all likelihood it can be solved by people. You
don’t want to succumb to mental inertia because a problem seems overwhelming.

Here are a few techniques to keep your chin up while debugging:

• Boast aloud and visualize or write down positive results. This technique cre-
ates a positive self-image and a positive image with peers, subordinates, and
supervisors. Telling others, such as peers, managers, and teachers, that you ex-
pect to solve the problem puts a little pressure on you to solve it successfully.

• Think positively about the process, not negatively. Smile as you hunt for an
elusive bug, and think about how lucky you are to solve problems for a living.

• Be patient. Debugging takes time. The amount of time it takes to understand
what you don’t yet know is unpredictable, although the more familiar a bug
looks, the more control you’ll probably have over finding it. Experience
counts for a lot, and you can only get it with practice.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

12

prob lem so lv ing and debugging 411

why are software problems
so hard to solve?
Actually, software problems might be quite easy to solve, depending on their
underlying cause. The following five categories describe bugs of varying com-
plexity and are listed in order of ease of finding and fixing bugs:

• Coding bugs—Usually the easiest to find and fix, these bugs are the most
likely to occur and are usually caused by not understanding the programming
language thoroughly. Beginners are the most apt to cause these bugs and
often blame anyone or anything (compiler, browser, instructor, and so forth)
but themselves for the problem.

• Logic bugs—These bugs are more difficult to fix. An index counter counting
past the end of the array and accessing an out-of-bounds memory location is
a typical example. In this case, a program crash with the message “segmenta-
tion fault” means a pointer in your program is accessing a memory location
outside its permitted boundaries. The C programming language is particu-
larly susceptible to these bugs because of the lack of memory bounds
checking.

• Bad data bugs—This bug can be considered an offshoot of the logic bug.
Despite its name, the data might not actually be bad. Often it means the
program isn’t robust enough to handle anything other than the expected
input. Expecting data input to be perfect all the time is illogical.

• Compatibility bugs—These problems are even more difficult to debug.
Coding for the Web, for example, requires understanding that different
platforms—browsers, servers, operating systems, and so forth—vary in
standards. Compatibility bugs are closely aligned with coding bugs because
they’re usually caused by not understanding platforms thoroughly.
Standards for platforms are published and available, but often you need to
know more than just a single language to program for the Web, which
adds to the complexity.

• Architecture bugs—These problems are the most difficult to debug and
might require rewriting the code completely. Flaws in the underlying
operating system, browser, server, database, compiler, and even debugger
are certainly possible, but typically, they’re the least common places for
bugs to occur.

Even the easiest category, coding bugs, can be difficult to debug, however.
Software is difficult to debug for these main reasons:

• The fog of war—Seeing what’s happening in the program can be difficult,
both in its source code and while it’s running.

• Multiple goals—The program might have multiple goals that affect or even
contradict each other and that aren’t expressed or understood well.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

412 chapter twelve

• Complexity—The program has many interrelated items, such as processes,
goals, variables, layers of connectivity, and visibility (scope), and these items
contain a lot of variation.

• Constant change—The characteristics of program items, such as variables,
change frequently, and the results can be unpredictable.

problem-solving approaches
There have been many approaches to creating group and individual problem-
solving paths and getting to the root of a problem. The following are only a few
examples, but they can be applied to any type of problem:

• Straw man argument—With this method, you build up a theory of the prob-
lem (the straw man) with the idea that it will likely be knocked down. It helps
you communicate issues, find weak points, and throw away what doesn’t work.
The straw man can be followed by men made of a little stronger stuff (wood,
steel, and so on), depending on what you discover. It’s a useful tool when you
don’t know everything. For example, you could start with the argument “The
print statement doesn’t work because the program never reaches that point.”

• Rules of thumb (heuristics)—Heuristics, used in many fields, consist of “good
enough” approximations. Your experience might tell you that 60% of the
time the problem of print statements not working is caused by the print
statement not being formatted correctly. Other people’s experiences might
lead them to make other estimations. You can follow this reason with the
second most likely reason, third most likely reason, and so on. These reasons
become straw men that you knock down or justify.

• Follow a procedure—If the problem is big and complicated enough, it might
need a procedure, a detailed checklist of what steps need to be followed. For
example, you could create a checklist of what to do if you get a print state-
ment that doesn’t work. The checklist might have Step 1 as “Sleep on it” and
Step 2 as “Make sure it’s not a formatting problem because my rule of thumb
is that 60% of print problems are formatting problems,” and so on.

the scientific method

You can look at many other techniques, but essentially, they boil down to
inductive reasoning, also known as the scientific method. It usually consists of
these four steps:

1. Observe what’s happening.

2. Propose a theory for why it’s happening.

3. Test the theory.

4. Repeat Steps 1 to 3 until the theory is strong enough to stand on its own.
In programming, you usually achieve this step by seeing the program work
the way you designed it. (Realize, of course, that an even better theory
might come around one day.)

risks of careless
programming

Even though software can be dif-
ficult to write and debug, that’s

not an excuse for poor program-
ming practices. Careless

programming can have a bigger
impact than just causing an error
when a program runs. It can cre-

ate security holes and
vulnerabilities that hackers can

take advantage of, leading to
stolen credit card numbers, iden-

tity theft, and the like.

inductive reasoning or
scientific method – A basic
approach to problem solv-
ing, consisting of four steps:
observe, theorize, test, and
repeat

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

12

prob lem so lv ing and debugging 413

You can see that the approaches discussed previously are just mental tools for re-
minding you to follow the scientific method steps. For example, the straw man
argument is simply creating and testing theories. Using heuristics is just applying
your past experience with similar problems to create a theory. Following a proce-
dure is a way to formalize how you plan to propose and test your theories. Steps
3 and 4 are the most important in programming: You need to get into the code,
test it, and modify it. As a computing student, you might be afraid of changing
anything after it’s written, but of fear you must let go, young Padawan.

debugging
So how do you go about solving software bugs? The following “Thirteen I’s”
give you a general approach for debugging:

1. I will own the problem.

2. I will remain calm and remember the mental game of debugging.

3. I will use the scientific method and problem-solving approaches.

4. I will read the manual.

5. I will make it fail.

6. I will look before I assume.

7. I will divide and conquer the problem.

8. I will isolate changes.

9. I will write down what I do. (Keep a debugging log.)

10. I will check the fuel level.

11. I will get another perspective.

12. I will check that the problem is fixed.

13. I will ask three questions.

debugging – The process of
finding and fixing problems
in program code

swatting bugs

Admiral Grace Hopper, as you
learned in Chapter 1, helped

develop the COBOL language and
brought the term “bug” to the

computing industry when a glitch
in the Harvard Mark II was solved

by pulling an actual insect out
from a relay’s contacts (see Fig-
ure 12-2). Technical problems in

general have been called “bugs”
for some time, however. According

to the Oxford English Dictionary,
the term “debugging” was used

in testing plane engines at the
end of World War II. It seems to

have entered into common usage
in programming during the micro-
computer revolution of the 1970s,
which makes sense because most

people didn’t have to worry about
repairing bugs before then.

Figure 12-2, The bug found by Grace Hopper

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

414 chapter twelve

At this point, you might be wondering whether these rules are so obvious that you
don’t need to review them. Far too many times, however, programmers forget the
basics, such as Rule 8, isolating changes. As a matter of fact, forgetting these rules
is so common that you should copy them and tape them above your monitor.

rule 1: I will own the problem
The name “Thirteen I’s” is used for these guidelines to reinforce that you’re re-
sponsible for solving problems in code you write. Don’t waste time and energy
looking for scapegoats. Of course, it’s possible you’ll discover another source for
the bug, such as an underlying problem with the operating system, but you still
have to find a workaround for it. Remember from the previous discussion of
bug categories that coding bugs are the most common. Most likely, the bug you
find is your own doing, so you have to fix it.

rule 2: I will remain calm and remember
the mental game of debugging
Remind yourself of the tips for keeping a positive mindset and being patient.
First, take a deep breath, and then recite a positive mantra. Staying calm, attack
the problem patiently, and use the problem-solving approaches. (Screaming at the
screen does not work.) Keep in mind that if you can’t find the problem, you can

debug one problem and
(maybe) debug all

problems

When you’re debugging software,
if you fix the problem, you usually

fix it for every copy of the soft-
ware. Unfortunately, this isn’t true

for solving problems such as fix-
ing a car. Pushing a solution for

an automotive design flaw to all
owners of the car is difficult. For
this reason, some programmers

distinguish between “debugging”
and “troubleshooting,” with trou-

bleshooting referring to fixing a
particular instance of a program.
The distinction isn’t critical, how-

ever, because you’re always
working on a particular instance

of software, no matter how much
you modify the original design or
how much you apply the solution

to other instances.

sleeping on the job

Did you know that Thomas
Edison, shown in Figure 12-3,

used this approach? He was con-
vinced that the unconscious mind
had answers the conscious mind

couldn’t think of. So he took naps
while holding a metal ball bear-

ing in his hand. He fell asleep
thinking of the problem, and

when his hand relaxed, the ball
dropping to the floor startled him
into waking up, and then he often

had the answer he was looking
for. This method was so successful
that he talked about it frequently,

inspiring many others to try it.

Figure 12-3, Thomas Edison in his lab

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

12

prob lem so lv ing and debugging 415

find someone else who might, or you can take a different path around the
problem. Don’t give up easily. Knowing when to say “Enough is enough” is good,
but you don’t want to end up with three half-finished programs. Remember that
leaving things to the last minute isn’t the best way to stay calm. In addition,
software is complex to debug, but this complexity also means there are many
ways to solve a problem. Complexity has its virtues, so focus and breathe.
Sleeping on the problem might help, too, but remember that it’s focus
and breathe, not focus and snore !

rule 3: I will use the scientific method
and problem-solving approaches
Remember the approaches you’ve learned for uncovering the origins of an error:
straw man arguments, rules of thumb (heuristics), and following a procedure.
Review the steps of the scientific method, too:

1. Observe.

2. Create a theory.

3. Test the theory.

4. Repeat Steps 1 to 3.

rule 4: I will read the manual
After writing code, one thing most programmers don’t want to do is read a
manual. Reading it is important, however. You want to avoid problems that
happen when you don’t understand what you’re working with. Read whatever
the pertinent manual is, whether it’s help pages for the programming language
you’re using, HTML definitions at the World Wide Web Consortium (W3C)
Web site, documentation for borrowed code, or online discussion boards, blogs,
and wiki posts. Of course, manuals, no matter what form they take, are created
by people and likely have their own errors. Having said that, there’s a good
chance you’ll find information in the manual that you need. Read the manual
so that you know how the system or programming language is supposed to
work and how the tools you’re using to fix the problem work.

rule 5: I will make it fail
If something fails once, it will probably fail again. However, you might have
trouble re-creating a bug so that you can figure out how to fix it. Intermittent
bugs are especially difficult to trace. In this case, you have to force the program
to fail so that you can examine how it fails, determine why it fails, and look for
ways to fix it. Just keep running the program repeatedly and making changes
one at a time (see Rule 7) until it “breaks.”

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

n o t e

416 chapter twelve

Other methods include starting over and re-creating the program, which might
involve restarting the computer and running other programs (if other programs
were running when the problem occurred). Another method that’s helpful is
having a way to automate the process of running the program repeatedly with
slight variations in input each time, usually with a script. For a program that
asks users to enter an address, for instance, you can create a script that enters
this data automatically each time the program runs instead of having to type
an address manually. This method requires recording what’s happening (see
Rule 9). You have to look for all external effects on the program, including user
input. When you’ve collected and recorded enough information, you should be
able to see what’s going on when bugs occur and, just as important, when they
don’t occur. After you’ve built and used a debugging tool, such as a script, don’t
throw it away. It could be useful in the future.

rule 6: I will look before I assume
In a company with programmers and testers, the blame for errors often falls on
testers, but chances are, the problem isn’t caused by testers (see Rule 1). Just as
you shouldn’t make assumptions about the source of a bug, you shouldn’t as-
sume you know what caused the failure and fix something that isn’t even
broken. Double-check that what you’re seeing is actually happening.

This rule doesn’t mean that a good guess isn’t useful. It is. However, you need
to focus your debugging efforts by examining what’s working and not working
in the code. The best way to see what’s going on is to use available debugging
tools, such as including a simple print statement that shows the value of an
array’s index as the program runs through a loop. You can even build print
statements into a program and turn them on and off as needed. If you’re
concerned about ruining your program during testing, make one or more
copies for experimentation. Using descriptive naming conventions for these
copies is useful for version control purposes. You might name one
myProg_trial1_readLoopError, for example.

A word of caution: The Heisenberg uncertainty principle might come into

play. In other words, measurement of the system actually affects the system.

rule 7: I will divide and conquer the problem
There are a number of ways to divide and conquer problems, such as starting
with the low-hanging fruit, narrowing the search, and creating easy-to-spot pat-
terns. These methods are explained in the following sections.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

12

prob lem so lv ing and debugging 417

start with the low-hanging fruit

Often you have many bugs and even bugs hiding behind other bugs. For exam-
ple, you might have a major one that crashes the program and another minor
one that formats output oddly sometimes. You might assume that these bugs
can’t possibly be related and decide you’ll correct the minor bug later because
it’s an easy fix, but there’s a good chance the bugs are related. Clean up the
low-hanging fruit—that is, the obvious, easily fixed problems—and you
have a good chance of correcting more serious bugs. As you gain experience,
you’ll learn to recognize bugs that are likely to cause other bugs and will know
to correct them first. Memory allocation problems can cause havoc in several
places in a program, for example.

narrow the search with continual approximation

The Occam’s razor principle states that the simplest explanation for a phenome-
non is most likely the correct explanation. Engineers often follow the similar
“Keep it simple, stupid” (KISS) rule because complexity inevitably leads to
making the process of finding a problem and its solution more difficult.
Complexity is already a characteristic of most programs, so you have to follow
the KISS rule as best you can and realize that Occam’s razor can be used
proactively—that is, breaking a problem down into parts to find a simple
phenomenon (bug).

To do this, you zero in on the problem by narrowing the search and using ap-
proximation continually. You use this technique naturally. If someone asks you
to guess a number from 1 to 10 and tells you whether you’re too high or low,
you should be able to guess the number with only a few tries: “5?” “Too low.”
“7?” “Too high.” “6?” “Yup.” Of course, first you need to determine the range
of possible causes. Is the bug occurring in the hardware, platform, browser, or
program logic, or is it a syntax error? (Remember the categories of bugs.) Is the
problem the called function or the calling function? If you assume everything in
the program is involved, you have a big range of possible causes to work with.
However, with approximation, you can narrow the range down quickly.

Breakpoints can help with this approach. Say you’ve determined that the pro-
gram crashes. You can insert a piece of code called a breakpoint at a location in
the program, and then run the program again. Does it crash before the break-
point? If so, put in a new breakpoint about halfway to the original point. Does
the program crash before this new breakpoint? If not, put in a new breakpoint
about halfway between this one and the first one, and continue dividing and
approximating until there’s nowhere left for the bug to hide.

create easy-to-spot patterns

Another technique is using data in tests that gives you easy-to-spot patterns.
If the real database content is too complex, for example, create a test database

breakpoint – A stop
command inserted to
prevent the program from
executing past that point

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

n o t e

418 chapter twelve

with similar but fewer records, or create an input file with the same line of text
used everywhere—maybe “All work and no play make Jack a dull boy.” This
approach can make problems jump out more obviously. When you run the
program and it loops through a print statement, displaying this line of text
constantly, if you suddenly see the statement “ou,mnzxcvoiiaefeopu,” you’ve
seen the program fail and can pinpoint the problem.

rule 8: I will isolate changes
Confronted with a persistent bug, inexperienced programmers often panic and
start throwing everything but the kitchen sink at the problem. In the process,
the code that started out well structured and documented winds up being a
mess, and they no longer remember what changes they made and when.

If you make a change to try to fix the problem and it doesn’t work, don’t leave
the change in the program. Take it out, go back to the original program, and
try the next fix. In other words, change one thing at a time. Even though this
guideline is a basic of the scientific method, it’s amazing how often it’s ignored.
If you’re getting bad output from a stream of data in a database, test with only
one changed field in the database, and keep the other fields the same. Change
the fewest lines of code possible, and back out if this change does nothing.

Changing everything at once only confuses the issue and makes returning

to the program’s original conditions difficult.

As mentioned, you can have more than one version of a program for debugging
purposes. Running both simultaneously and comparing the differences can be
helpful, but make sure the two versions are mostly the same, with only one
small difference. Comparing the versions by examining output files or run logs
can get tedious, however. To make it easier, you can send output from the two
versions to different files and then run a program that compares them, such as
the UNIX diff command.

You can write an entire program and then debug it, but generally, an iterative
approach is better. In other words, write a program component and debug it,
write another component and debug it, and so forth. With this approach, you
need to work out a framework for your program that indicates where you’ll
place components after you’ve written them. This method can save you a lot of
debugging time.

Iterative program development has another benefit: giving you a baseline for
debugging. You can ask, “What have I changed since the last time the program

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

12

prob lem so lv ing and debugging 419

worked?” Then you can go back to that version and start over. Having a debug-
ging log (see Rule 9) is critical for this task. Keep in mind that the version
immediately preceding the problem version might still have problems, so you
might have to use the technique of forcing it to fail. Isolating changes with iter-
ative development and testing is a good way to apply the scientific method,
however.

rule 9: I will write down what I do
As mentioned in the previous guidelines, keeping a record of the changes
you have made (a debugging log) and keeping versions of the program you
have created are critical. Version control software, such as Microsoft Visual
SourceSafe, helps with keeping a debugging log, although you can do it manu-
ally with a simple text file or spreadsheet. Keeping a log electronically is best so
that it can be shared with others in a programming department or team.
(Remember to use descriptive filenames to help you keep track of program ver-
sions.) Generally, you should write down the changes you make, in the order in
which you’ve made them, and the results of these changes. Getting into this
habit is good practice for the real world because most managers require pro-
grammers to keep this type of log.

Sometimes it’s the most minor change that ends up causing a problem, so the
more details you include in your log, the better. Table 12-1 shows an example
of an entry in a debugging log. Notice that it includes the program version and
the result.

Table 12-1, FtoC_versionX.src debug log, 5-17-10

what did I do? program version what happened?

Wrote program. Version 0 Syntax error at line 15.

Examined line 15; Version 1 Program crashed.
added semicolon at
end of line.

Added breakpoint at Version 3 Program crashed.
line 30.

Added breakpoint at Version 3b Program ran to breakpoint.
line 15.

(continued)

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

420 chapter twelve

Table 12-1, FtoC_versionX.src debug log, 5-17-10 (continued)

what did I do? program version what happened?

Looked at lines 15 to Version 4 Program didn’t crash but
30 and noticed memory address output was displayed
allocation line was with tabs between characters.
overwriting program
memory. Changed
the value of the
last_mem_location
parameter from 3200
to 3400 and removed
breakpoint.

Hard-coded value of Version 5 Printed A as the output.
the memory address as
one character: A.

Hard-coded value of Version 5b Printed A, a tab, and another
the memory address as A as the output.
two characters: AA.

Noticed a tab character Version 5c Printed AA as the output
in the print statement correctly.
and removed it.

Removed the hard- Version 6 Working!
coded value AA.

After you write down events and results, you can begin to see correlations. For
example, the problem discovered in Table 12-1 is a tab character in the print
statement. The programmer narrowed down the problem by hard-coding a
recognizable small data value (AA, in this example). When the same failure
happened, the programmer realized the problem was the print statement, not
the data. Other programmers can use this log as a model for repair or an insight
into the program. Remember the problem-solving approach of following a
procedure? Creating a procedure usually starts with writing down the problem
and its solution.

Novice programmers often wonder why they should write anything down, but
there are good reasons for doing so. First, in the real world, chances are you
don’t get to work on only your own programs. Wouldn’t it be nice if other pro-
grammers had documented their code? Second, the programs you write run on
a variety of operating systems and interact with other software and hardware
you didn’t design for. Wouldn’t it be nice if the programmers of this other

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

12

prob lem so lv ing and debugging 421

software had documented their code? Third, you might not have documented
the program well, and now that a few weeks have gone by (or maybe one tough
night at the Hard Rock Cafe), you no longer understand the reasoning behind
some of your code. Wouldn’t it be nice if you had documented your code?

rule 10: I will check the fuel level
If you call a help desk about problems with your printer, the first questions
you’re asked are typically “Is the printer on?” and “Is it connected to the com-
puter?” You might think these questions aren’t necessary, but in problem
solving, starting with the simplest and most likely problems is best. If your car
stops running, you don’t check the axles first; you check the fuel level. Similarly,
when debugging software, start with the most likely problems and move up
from there: coding (syntax errors), logic problems, compatibility issues, and
architecture problems.

At each step, you should make sure your assumptions are correct—that you’re
starting with the conditions you think you are. For example, when debugging
software, first you should verify that you’re running the program you think you
are. Next, you should make sure you’re starting the program with the correct
initial conditions. With programs running on browsers, for example, often you
need to reset the system or the browser. You might need to log off and then log
back on or refresh the browser.

Stepping back and checking the fuel level includes checking that your debugging
tools are working correctly. If you’re using a device to check the electrical cur-
rent, for instance, first test it on a circuit you know is working and powered on.
Similarly, check print statements outside the problem area to make sure they work.

rule 11: I will get another perspective
Learning how to solve problems yourself is always good, of course, but some-
times getting input from other people can save you a lot of time and
frustration. Just the process of explaining your problem out loud to someone
else can give you a flash of insight. Maybe students in computing courses
should try talking to themselves out loud when solving problems, although this
method might make lab periods a little noisy!

The point is that getting another perspective, even just as a sounding board, is
helpful. Taking advantage of others’ experience is useful, too. Even if the people
you’re consulting don’t know the specific technology or programming language
you’re using, they might have run across similar problems or have a fresh ap-
proach. When you ask for another perspective, keep in mind that you should
report exactly what’s happening, not your theory about why it’s happening. You
might think that eliminating what you’ve already tested is helpful, but it lessens
your chances of getting an unbiased opinion. Stick to the facts.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

n o t e

422 chapter twelve

When you ask someone else to look at your problem, provide as many

details as possible. Vague statements, such as “It doesn’t work,” don’t

motivate people to help you.

rule 12: I will check that the problem is fixed
Needless to say, you have to check that your fix worked. You can’t just assume
that inserting a semicolon was the solution. You have to test to verify that the
missing semicolon was indeed the problem. One advantage of software is that
you can test both working and nonworking versions easily to verify the solu-
tion. For example, you add a new array endpoint, and the program works. You
take it out, maintaining the same conditions elsewhere in the code, but the pro-
gram doesn’t work. You put it in again, and the program works. After this
testing, you can be confident that you’ve solved the problem. In other words,
make the program fail (see Rule 5), and then make it fail again.

Unfortunately, bugs don’t go away by themselves. If they do seem to solve
themselves, that usually means the program conditions aren’t the same, and
you’ll probably see the bugs again. Occasionally, someone else makes a change
that fixes the bug, such as updates to a programming language. This doesn’t get
you off the hook, however. You have to know how the bug was fixed to be confi-
dent it won’t return. If the language changes again in the future, the bug might
return, but your code should be robust enough to handle it. Additionally, if you
can’t fix a bug, at least put in some method for tracking it in case the problem
happens when the program runs. Known bugs can at least be managed some-
times. It’s the unknown ones, the surprises, that really cause problems. Also, be
honest. Nothing bugs a professor or client more than the programmer trying to
hide something.

rule 13: I will ask three questions
You should ask three questions every time you fix a bug to make sure you’re not
just treating the symptoms. You want to fix the underlying cause. These three
questions can help you pinpoint underlying problems to prevent other bugs
from occurring in the future:

• Is this mistake occurring anywhere else? For example, if you discover you
didn’t create an array index systematically, maybe you’ve made similar errors
in other array indexes, even though they didn’t result in a noticeable bug.

• What next bug is hidden behind this one? This question reminds you of the
low-hanging fruit problem: Bugs can act like red herrings and distract you from
other bugs. So if you’ve been careless with how array indexes read from and

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

12

prob lem so lv ing and debugging 423

write to the array, maybe you’ve been careless in writing the print statement
that references arrays. In addition, how many little changes have you made to
make things come out right? Maybe it’s time to think of rewriting the code a
bit and eliminating all the bandages you’ve added to get the program to run.
Maybe you haven’t tested some parts of the code because you assumed they
would work the same way they did before you started adding fixes.
Go back and look at these parts of the code.

• What should I do to prevent similar bugs? Answering the first two questions
can help you answer this one, but you should go further. At what stage of
program design and implementation was the bug introduced? Ask more
“Why?” questions. Perhaps the language you’re using is prone to allowing
certain types of bugs. Verification tools, such as the W3C validator, that
check syntax were created to help with investigating the cause of bugs. You
might also want to look into creating new testing processes, such as devising a
test specifically for array indexes.

the rules in action
Seeing some of these rules in action is helpful. This section uses some typical
stories as examples and then discusses which rules are applicable. In addition, in
all these stories, aspects of the scientific method of proposing a theory and test-
ing it have been followed. The stories you see here are real, but the names have
been changed to protect the guilty and innocent alike.

Story 1: A student asked me why his picture wasn’t showing up on
his Web page. He had tried the Web page on his PC, and it worked,
so he loaded the page on the server we’re using. I asked, “Where’s
the picture file?” Frustrated, he responded, “Right here, on my com-
puter!” I told him the picture file needs to be on the server. He
uploaded it, but he still couldn’t display the picture. The problem
was he had changed the filename to include spaces, and the server
was running Linux. I’d told my students that in Linux, spaces in
filenames aren’t typical and could cause problems. Of course, if
you’re used to Windows, you use spaces in filenames all the time.
The student changed the spaces to underscores, but he also changed
uppercase letters in the filename to lowercase letters, and Linux is
case sensitive.

This problem starts with Rule 10: The student didn’t step back, ask what he
was actually testing, and look for the simplest solution to the problem.
(Following Rule 2, staying calm, might have helped, too.) The problem was
caused by a platform bug: differences in how Linux and Windows handle
filenames. Following Rule 4, reading the manual, would also have helped
this student.

editors, debuggers, and
programming
environments

Print statements and breakpoints
have been mentioned as useful

debugging tools, and you can
enter them with a simple text
editor. However, programming

tools, such as the Firefox
JavaScript debugger or the

Microsoft .NET programming
environment, make your job even
easier. They format code to make
issues stand out more clearly; for
example, color-coding is used for

variables, constants, and so on.
These tools make it easy to put in

breakpoints and get visual feed-
back when the program runs. You
can also view the assembly code

a compiler generates. All the
guidelines and methods discussed

in this chapter are valid debug-
ging tools, but the right

programming tools make them
easier to follow.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

424 chapter twelve

Story 2: I was working on a program and wondered why a variable
wasn’t changing. I’m new to programming in PHP, so I assumed
that variable scope (where in the program a variable is visible) was
the same as in other languages I’ve used. I kept banging away at it,
changing different parts of the program one at a time and seeing it
break repeatedly. Finally, I asked a coworker for help, who suggested
I look up variable scope in PHP. Sure enough, my assumptions were
wrong. It took about 5 minutes of looking up information to solve
the problem versus the 45 minutes I had spent changing the code
every which way.

In this example, the programmer did some good debugging work. By testing it
repeatedly and not assuming the variable had changed, he followed Rule 6,
looking before assuming. By trying to make it fail and changing things one at a
time, he followed Rule 5, making it fail, and Rule 8, isolating the changes.
Finally, he even followed Rule 11, getting another perspective. However, Rule
4, reading the manual, ended up being the key. If he had understood the lan-
guage better, he wouldn’t have assumed that variable scope worked the same as
in other languages.

Story 3: I decided to write a little client/server game as a way to
learn about sockets. Based on what I’d read, I assumed the process
should go like this: I send a message to the server. It responds “I’m
here.” Then I send the message “Here’s the work to do.” The server
responds with “Working” or “Here’s the answer.” However, it didn’t
work that way. The server responded with one message: “I’m here
and here’s the answer.” Now it appeared to be working the way I’d
assumed it should, but the response didn’t match what I’d read in
the manual, so I had to experiment.

Sometimes the manual isn’t complete, or worse, it’s wrong. In this case, you
have to go beyond the manual and find other expertise as well as digging into
the problem yourself. The programmer followed Rule 4, but when confronted
with evidence contradictory to what he had read, he started dividing and con-
quering the problem (Rule 7).

Story 4: I had to write an ASCII program for converting file types.
It worked flawlessly, so I took it to my boss, and he gave me a 2.5
GB file. Well, the program wouldn’t work. It took me a while to
realize that the file was too big. I had to rewrite the program com-
pletely because no one told me the program had to handle such a
large input. Of course, we were both at fault. I should have asked,
but my boss should have told me.

This programmer is correct: Getting accurate requirement specifications is
crucial. She was able to solve the problem, but following Rule 4 (in this case,
understanding the requirements) would have helped her remember to ask about

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

12

prob lem so lv ing and debugging 425

limits on input file size. This situation involves Rule 1, too. She should have
owned the problem and asked the right questions. Clients (and bosses) are no-
toriously bad at giving you complete information.

Story 5: My mom called me and complained that she couldn’t enter
her password for her e-mail account. My first question was “Can
you enter text anywhere else?” Turns out she couldn’t. My next
thought was that the keyboard wasn’t hooked up. I knew she had a
wireless keyboard, so I told her to try resetting it, and if that didn’t
work, try replacing the batteries. It worked!

This story is a great example of Rule 10, checking the fuel level. Instead of wor-
rying about the program his mom was trying to use, the son went back to the
basics: Can anything be typed? When he realized his mom couldn’t use the key-
board at all, he followed Rule 4, reading the manual. In other words, he knew
his mom had a wireless keyboard. By following Rule 10 again (literally—
because the keyboard had run out of battery “fuel”), he was able to solve the
problem.

one last thought
Print the rules, and post them near your computer. Even experts can use re-
minding once in a while. This chapter is one you can return to after reading
other chapters. For example, when you read Chapters 14 and 15, if you get
frustrated about a program that just won’t run right, come back here and reread
some tips. In the world of debugging, remember that it’s mind over (virtual)
matter. Breathe deeply, and stay positive.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

426 chapter twelve

Agans, David J. Debugging. Amacom, 2006 (ISBN 0814474578).

Bezroukov, Nikolai. “A Second Look at the Cathedral and the Bazaar”
(www.softpanorama.org/Lang/debug.shtml).

Burns, David. “The Mental Game of Debugging”
(www.softpanorama.org/Lang/debug.shtml).

Frensch, Peter A. and Joachim Funke (eds.). Complex Problem Solving: The Euro-
pean Perspective. Lawrence Erlbaum Associates, 1995 (ISBN 0805813365).

Gladwell, Malcolm. Blink: The Power of Thinking Without Thinking. Back Bay
Books, 2007 (ISBN 0316010669).

Krantz, Steven G. Techniques of Problem Solving. American Mathematical
Society, 1997 (ISBN 082180619X).

Rice, David. Geekonomics: The Real Cost of Insecure Software. Addison-Wesley,
2007 (ISBN 0321477898).

Van Vleck, Tom. “Three Questions About Each Bug You Find”
(www.multicians.org/thvv/threeq.html).

r e f e r e n c e s

c h a p t e r s u m m a r y

• Problem solving is inevitable, and learning how to do it well is a skill you can
use in every area of your life.

• Remember that debugging can be fun, especially for people who enjoy myster-
ies and puzzles. Think of it as a mental game. Develop a positive mindset and
stay calm.

• Categorizing bugs in a hierarchy from easiest to most complex to solve helps
you determine what kind of bug you’ve found and how difficult it will be to
correct.

• Software problems can be difficult to solve for a number of reasons, but these
reasons aren’t excuses for poor programming practices. Careless programming
can have a bigger impact than just causing an error when a program runs.

• Some general problem-solving approaches that can be applied to almost any
problem are setting up straw man arguments, using rules of thumb (heuris-
tics), and following a procedure.

• Computing professionals use the scientific method to solve problems: observ-
ing the problem, proposing a theory, testing the theory, and repeating these
steps.

• The Thirteen I’s are useful guidelines for what you should remember when
debugging.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

www.softpanorama.org/Lang/debug.shtml
www.softpanorama.org/Lang/debug.shtml
www.multicians.org/thvv/threeq.html
http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

12

prob lem so lv ing and debugging 427

breakpoint (417)

debugging (413)

k e y t e r m s

inductive reasoning or
scientific method (412)

1. What are some less quantified problem-solving approaches that have been
discovered in studies since the 1970s?

2. Describe three techniques for developing the right mindset for solving
problems.

3. Which type of bug is the most difficult to find and fix?

4. Which type of bug is the easiest to find and fix?

5. Explain how logic bugs and bad data bugs are related.

6. Explain how compatibility, architecture, and coding bugs are related.

7. Describe some problem-solving approaches you can use for any problem.

8. What are the steps in the scientific method?

9. Explain what “I Will Own the Problem” means.

10. Describe the approach of iterative program development, and explain its
benefits.

11. What’s one reason for having more than one version of a program?

12. What code technique is useful with continual approximation?

13. List three different forms in which you can find a manual for help in de-
bugging.

14. What information should you include in a debugging log?

15. What’s the main reason for asking three questions after you’ve found the
cause of a bug and fixed it?

1. After doing the practice exercises on software engineering in Chapter 13,
find five exercises where you could apply the Thirteen I’s. For each one,
state the rule, and give examples of how you could have followed it.

2. A programmer reports this problem with an HTML program: “In the line
break section, I tried using the file from the <pre> section as a base and

t e s t y o u r s e l f

p r a c t i c e e x e r c i s e s

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

428 chapter twelve

just modifying the text with <p> and
 tags. Well, that didn’t work be-
cause it messed up the structure of the <pre> block, and all I wanted it to
do was insert line breaks. I ended up reworking the entire program and re-
moving the <pre> block.” What kind of error is it? What rules were
applied, and which should have been applied earlier?

3. A student reports this problem when using HTML and JavaScript:
“On the assignment with preloaded images, I had to rewrite the example
from the book. I had a problem with the syntax for linking the source file
to the <form> element. I solved the problem by using this syntax:
document.images.img3.src = (source of file).” What kind of error is it?
What rules were applied, and which should have been applied earlier?

4. A programmer reports this problem when using PHP: “It didn’t take me
long to find out that if you use flat files to read and write, you should
change their settings. They’re set to read, not write, so just click Properties
to change their settings. To save time, if I saw an error I didn’t understand,
I Googled it.” What kind of error is it? What rules were applied, and
which should have been applied earlier?

1. A student reports this problem when using HTML and JavaScript: “I had
some issues with the date display exercise. I finally realized I’d forgotten to
increase the image array’s size after I added the dots and slashes!” What
kind of error is it? What rules were applied, and which should have been
applied earlier?

2. A programmer reports this problem when using PHP: “In NetBeans and
(I’m assuming) most other development environments, the project folder
and the server source folders must have the same name, or the program
won’t work. I discovered this by accident when I was trying to create my
project for the umpteenth time.” What kind of error is it? What rules were
applied, and which should have been applied earlier?

3. A student reports this problem when using HTML and JavaScript: “This
assignment has been nothing but trouble. I had some problems getting
things to display correctly in both IE and Firefox and having things disap-
pear when I clicked an option button. The Web site resource has helped a
little but has mostly been a headache.” What kind of error is it? What rules
were applied, and which should have been applied earlier?

4. A student reports this problem when using HTML: “When building my
home page, I couldn’t get the background color to change until I put a # in
front of the value. Now it works.” What kind of error is it? What rules
were applied, and which should have been applied earlier?

5. A programmer reports this problem when using XML: “I forgot to put the
end tag on one of my XML tags, and everything quit working. Took me for-
ever to figure it out, and I had to use IE as a debugger.” What kind of error
is it? What rules were applied, and which should have been applied earlier?

d i g g i n g d e e p e r

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

12

prob lem so lv ing and debugging 429

1. With good software design, do you think bugs can be eliminated? Why or
why not?

2. Can skills in problem solving be learned, or is problem solving an
inherent talent?

3. Do any of the Thirteen I’s seem contradictory? If so, why?

4. Could you argue that because programmers use the scientific method
constantly, they’re as well trained as scientists?

1. Try opening your favorite Web page in two different browsers and on two
different operating systems. Do you find any problems in how the Web
page opens and performs? Do you notice any differences when opening it
on different browsers and operating systems?

2. Find Web sites with statistics on error rates for different platforms,
browsers, programs, and languages. Does open-source software live up to
its hype of making the task of finding and fixing bugs easier?

3. Many examples of solved problems in programming are on the Internet.
Find discussions of some of these problems, and then categorize the prob-
lems based on what you’ve learned in this chapter. What rules were applied
in fixing these problems?

4. Numerous Web resources on problem solving are available. Find three, and
compare their approaches to solving problems. Summarize which approach
you find most useful and why.

d i s c u s s i o n t o p i c s

I n t e r n e t r e s e a r c h

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

c h a p t e r

so f tware engineer ing

13

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

i n t h i s c h a p t e r y o u w i l l :

• Learn how software engineering is used to create applications

• Learn some software engineering process models

• Understand how a design document is used during software development

• Review the steps for formulating a design document

• Learn how Unified Modeling Language (UML) diagrams can be used as a blueprint for creating an
application

• See some pitfalls in developing software, and learn how to avoid them

• Understand how teams are used in application development

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

I’ve got a little problem with procrastination that I’ve been meaning to take care of for a while. I’m not sure
how I’ve made it through school so far. I can’t tell you how many times I’ve stayed up all night working on a

term project or research paper that was due the following day.

Unfortunately, I’ve found that the last-minute routine doesn’t work in the computer world. Software isn’t
created overnight (although sometimes it functions as though it is). An intricate process goes

into designing and creating a program.

First, it’s important for the team to get together and argue for hours about which is better: Windows or Linux.
This step serves no purpose, but it’s a lot of fun. (Hint : Linux vs. Windows

debate != interesting date conversation.)

Next, coming up with a programming strategy is important. How will the project be divided up among teams?
Will UML (Unified Modeling Language) be used? Does the customer need a prototype? Will the programming

teams be the same as those for Call of Duty?

After all these decisions are made, it’s time to get to work. It’s exciting when the pieces come together
and the program works, although sometimes it’s more exciting when the pieces come together

and the program doesn’t work. (The Computer Throw and Monitor Kick could be Olympic events.)

Finally, one day the program is finished, or so you think. It’s then sent to a small group of customers for
what’s known as a “beta test.” No matter how well you think you’ve programmed, the beta testers will find

errors. Eventually, you find all the bugs, and the software is sent out to customers. They have a
special ability to find errors that a normal person would never dream of.

Support Technician: What seems to be the problem?

Customer: Um, yeah. When I enter the Pledge of Allegiance backward into the Date box, I get an error.

The process is a lot of work, but it’s also a lot of fun. There’s nothing as satisfying as seeing someone use the
program you wrote with your own two hands—other than finally going to sleep after staying up all night

working on a research paper, of course.

432 chapter thirteen

the lighter side of the lab
by spencer

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

s o f t w a r e e n g i n e e r i n g

Every day you’re faced with the task of defining a project. Whether it’s mowing the lawn,

buying groceries, or writing a program, you need to define the project’s scope before you

begin the work.

For example, a neighbor hires you to mow his lawn. You show up bright and early, and after

three hours of grueling work, you finish the job. You ring the doorbell, expecting praise for

your good work and a fistful of hard-earned cash. The neighbor opens the door, looks at the

lawn with a sour expression, and says, “That’s not how I wanted it done!” So off you go,

sweating, pushing, and pulling the lawn mower, which feels heavier with each passing

moment. Again, you trudge to the door and ring the doorbell. The neighbor comes to the

door and again you hear “That’s not what I wanted!” Finally, you scream, “How do you want

your lawn mowed?” The neighbor explains that the correct way to mow the lawn is by

pushing the mower diagonally rather than horizontally across the yard. He releases you from

your duty without pay and swears to never hire you to mow the lawn again. Dejected, you

leave the lawn-mowing business and join a traveling circus.

The moral of this story is, of course, that you must find out exactly what’s required before

you start the job—a principle you might have already discovered applies to programming,

too. Just because you have problems making your program meet all the requirements you

have been given, you shouldn’t give up and change your major to basket weaving. All you

need to do is design the project properly before you start writing any source code.

It’s not enough to know a programming language and be able to write code. Software

engineering enables you to design your programs and communicate with clients and other

team members—essential elements of writing applications.

why you need to know about...

so f tware engineer ing 433
Clic

k t
o b

uy N
OW

!PD
F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

434 chapter thirteen

software engineering –
The process of producing
software applications,
involving not just the pro-
gram’s source code but also
associated documentation,
including UML diagrams,
screen prototypes, reports,
software requirements,
future development issues,
and data needed to make
programs operate correctly

end user – Someone or
something that needs the
program to perform a func-
tion or meet a need and
determines the program’s
required functionality

software development life
cycle (SDLC) – A model that
describes the life of the
application, including all
stages involved in develop-
ing, testing, installing, and
maintaining a program

n o t e

what is software engineering?
Yogi Berra said, “You’ve got to be very careful if you don’t know where you’re
going because you might get there.” For any application to be successful, you
must have a map outlining what should be accomplished. Designing a project
requires incorporating software engineering skills to meet the end user’s
requirements. Software engineering is the process of producing software
applications. It involves not just the program’s source code but also associated
documentation, including UML diagrams, screen prototypes, reports, software
requirements, future development issues, and data needed to make programs
operate correctly.

An end user is the driving force behind software development. You might have
heard that programmers are often frustrated by end users and consider them
demanding or stupid, but end users serve an important purpose. End users are
the ones who need the program to perform a function or meet a need, and they
determine the program’s required functionality. They’re the ones who know
what they need but don’t have the resources or knowledge to create a product
that helps them achieve their goals. However, keep in mind that an end user
(also called “client” or just “user”) doesn’t always have to be a person. An end
user could be a piece of machinery or even a task to be accomplished.

A major part of software engineering is the process of designing, writing, and
producing software applications that are based on the needs of end users. As
time goes by, end users’ needs might change. In fact, their need for the applica-
tion might even disappear, making the application obsolete. Therefore, there’s a
constant need to communicate with end users to make software applicable to
their needs.

The terms “software,” “program,” and “application” are often used

interchangeably.

sof tware development life cycle
During the life of a program, you continue to maintain, fix, and improve it.
The software development life cycle (SDLC) includes several elements:

• Project feasibility —Determining whether the project is worth doing and
specifying its advantages and disadvantages

• Software specifications —Determining specific functions of the software and
any constraints or requirements

• Software design and implementation —Designing and writing the application
to meet the software specifications

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

13

so f tware engineer ing 435

• Software validation —Testing the application to ensure that it meets the
software specifications

• Software evolution —Modifying or changing the application to meet changing
customer needs

Different models of the software development process can be used to represent
software functionality, such as the following:

• Waterfall —The fundamental processes in creating the program are repre-
sented as phases. The output from each phase is used as the input for the
next phase.

• Build and fix (or evolutionary) —The developer writes a program and contin-
ues to modify it until it’s functional.

• Rapid prototyping —This process uses tools that allow end users to work with
prototypes of program screens and other interfaces. These prototypes can
then be used to build the final product.

• Incremental —The application is developed and released in a series of software
releases.

• Spiral —This model starts with an initial pass, using the waterfall method.
After an evaluation period, the cycle starts again, adding new functionality
until the next prototype is released. The process resembles a spiral, with the
prototype becoming larger and larger until all functionality has been com-
pleted and delivered to the end user.

• Agile—This method is used for time-critical applications. It’s less formal, has
a reduced scope, and encourages frequent inspection and adaptation. Tasks
are carried out in small increments with minimal planning. Two well-known
agile methods are scrum and extreme programming (XP). Scrum includes a
“sprint,” in which a team creates an increment of usable software. This
method allows end users to change their minds about the application’s
requirements. XP includes four basic activities: coding, testing, listening, and
designing. This method incorporates user stories (written by end users to
describe what the application needs to do) and spike solutions (answers to
tough technical or design problems).

Each model varies in the steps needed to complete the development tasks. This
chapter focuses on the waterfall model (shown in Figure 13-1), a widely used
model that has been around since 1970. The waterfall model resembles the
process of building a house. You start by excavating the area where the founda-
tion will be placed. You can’t pour the foundation until the excavation process
has been completed. After the foundation is laid, you can then proceed to the
next process, framing the house. The process of finishing one step before
moving on to the next one continues until the house is finally completed.

prototype – A standard or
typical example that gives
end users a good idea of
what they will see when
their application is
completed

waterfall model – An SDLC
approach involving sequen-
tial application development
with processes organized
into phases; after a phase is
completed, a new one starts,
and you can’t return to the
previous phase

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

436 chapter thirteen

The waterfall model follows a similar approach. The first step is gathering all
the requirements for the project. The second step is designing the system and
software. After all the requirements have been defined and the project has been
designed, it’s time to build and implement the application. After the applica-
tion is finished, it must be tested and then finally put into operation and
maintained to meet users’ needs.

Software need not become obsolete. Instead, it can be modified to meet end
users’ changing needs. Over time, the needs that used to be important might no
longer be part of the picture. A program’s requirements and functionality can
change, and the software can be changed to fit.

Luckily, software engineers are prepared to deal with change because they have
a set of “blueprints” for their software products, called a design document.

creating the design document
A design document is sometimes compared to a thesis in size. It can be quite
large because it details all the application’s design issues, including screen layouts,
colors, reports, security, paths for files, online help, user documentation, future
plans, and more. Every aspect of the application should be documented and
maintained in a file or folder.

An advantage of using a software development environment as your application
development tool is that you can prototype screens and reports without writing
a single line of source code. In other words, you can sit down with end users

design document – A
document that details all
the design issues for an
application

Figure 13-1, The waterfall model of software development

requirements
analysis

system design

program design

write source code

testing

installation

maintenance

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

13

so f tware engineer ing 437

and interactively design all the screens and reports to their specifications, in-
cluding text, color, and field location. For instance, you have been asked to
write an application to help technicians keep track of laboratory test results.
You can sit down with the end users and have them help you design the input
screen’s appearance by specifying fonts, colors, and locations for input areas.
The end users can also use a word-processing program to design sample
reports as prototypes for the reports you create in the application. All this
information gives you a head start in creating the application and making
sure it looks pleasing to the end users.

Another important reason for using a design document is that it serves as a
blueprint. If everyone agrees on the design document as the correct way of
doing the work, there should be no surprises in the final product. If one party
says something was done incorrectly, both parties can return to the design
document to resolve the dispute.

The process of creating a design document is based on good communication
with end users in determining the application’s needs and requirements (see
Figure 13-2).

Figure 13-2, The process of creating a design document

learn the current
system and needs

create UML diagrams

create a data dictionary

design reports

structure the application’s logical flow

start building the prototype

put all the pieces together

To help you better understand the process, the following case study walks you
through the seven steps of creating a design document.

step 1: learn the current system and needs
You’re the president and programmer at Over Byte, Inc. The owner of the
music store Toe-Tappin’ Tunes, Mr. B. Bop, comes to you with a proposal for
an application to manage the store’s media inventory. Learning the end user’s or
client’s current system and needs is your first task.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

438 chapter thirteen

Unified Modeling Language
(UML) – A software model-
ing process for creating a
blueprint that shows the
progam’s overall functional-
ity and provides a way for
the client and developer to
communicate

n o t e

n o t e

n o t e RULE: Learn the end user’s current system and needs.

First, you have to spend some time with Mr. Bop and find out how he cur-
rently handles his inventory. What are his needs? What is his goal for using a
computer-based inventory system? You can even assign him the task of writing
a list of reports he wants the application to generate. Then have him send you a
copy of the reports so that you can review them before your next meeting.

Your job is to document the meeting’s main points and come up with solutions
or suggestions to address the issues of security, colors, printing, and other
standard application factors. You don’t have to write down every word of the
meeting, but do take notes that can be used as a reference later when you begin
creating the design document.

RULE: Document the information the client gives you.

Essentially, you become a detective in trying to determine what the user really
wants. If a system is already in place, you can spend time learning how it’s
used and discovering its good points and bad points. You should also talk to
the people who will actually be using the product to make sure the application
you’re developing meets their needs. In other words, you have to keep digging
for information.

After you have a good handle on what the user really wants, you should write
the project’s objectives (or an introduction), specifications, and requirements
(see Figure 13-3). This part of the design document is an overall guide for the
major tasks that need to be accomplished.

RULE: Write objectives, specifications, and requirements.

step 2: create UML diagrams
After the objectives and requirements have been defined, it’s time to start creating
diagrams to illustrate what the program is supposed to do. Unified Modeling

Language (UML) enables software developers to create diagrams included in the
blueprint that show the program’s overall functionality and provide a way for the
client and developer to communicate. UML is a visual modeling approach to
specifying the system functionality that’s needed to create a product that meets
the project requirements. The diagrams are created before any source code is
written and help the software developer see what needs to be accomplished.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

13

so f tware engineer ing 439

Figure 13-3, A design document includes objectives, specifications, and requirements

1. Introduction

1.1. Purpose

1.1.1. This document lists all software requirements for the creation and
implementation of a Fantasy Basketball Web site. It defines the feasibility study,
operational requirements, algorithms, databases, user interfaces, error systems,
help systems, cost analysis, and supporting diagrams.

The intended audience for this document is the end user or client, development
team, project manager, and any other stakeholders in the system.

1.2. Terms

• League Owner: The creator of the league
• Commissioner: The person responsible for overseeing league actions
• Team Owner: Any person who owns a team in the specified league
• Team: Consists of 12 players, each playing in the position of guard, forward, or

center
• User: Any person who registers to play in a league of Fantasy Basketball

1.3. Scope

1.3.1 The users of this product are the participants in the Fantasy Basketball game.
Users can create their own league or participate in an established league.

1.4. Overview

1.4.1. This product enables people to create leagues and organize teams by letting them
manage and follow their teams through a basketball season. This product is Web
based and requires a server, an Internet connection, and a Web browser. Every
night, basketball statistics are downloaded to the server. These statistics are then
updated throughout the league teams to determine a team’s final score for a
specific game.

2. Specifications

2.1. ...

3. System Requirements

3.1. ...

n o t e There’s a common perception among end users that software is cheap to

produce and easy to modify. After you have gained more experience with

software engineering, you’ll find that this perception is false. Software can

be complex and take many hours to produce. Time is translated into

money spent by the company or lost by the developer in creating a

program.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

440 chapter thirteen

Figure 13-4, Creating UML diagrams in Microsoft Visio

UML

UML helps conceptualize and
illustrate software design. Its

developers, Grady Booch, James
Rumbaugh, and Ivar Jacobson,

submitted their UML concept to
the Object Management Group
(OMG) in the late 1990s. OMG
has taken over maintenance of
the product. For more informa-

tion, refer to www.uml.org.

UML provides many types of diagrams for explaining the different parts of a
system. Microsoft Visio is one tool for creating UML diagrams and other types
of diagrams that are useful to programmers (see Figure 13-4).

The following are some types of UML diagrams and their uses:

• Class —Shows how different object classes relate to each other
• Object —Gives details of an object created from a class
• Use case —Describes a system’s behavior from a user’s standpoint
• State —Shows an object’s particular state at any given time
• Sequence —Shows how one class communicates with another by sending

messages back and forth
• Activity —Shows activities that occur in a use case or in an object’s behavior
• Component —Shows how system components relate to each other
• Deployment —Shows the physical architecture of a computer-based system

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

www.uml.org
http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

13

so f tware engineer ing 441

Figure 13-5, Use case diagram for the music inventory application

employee

log in

music inventory

maintain artists

maintain albums

update inventory

run reports

log out

Each type of UML diagram serves a specific purpose in defining a system’s
functionality from the client’s viewpoint. For example, you’re asked to create
an application to help the Toe-Tappin’ Tunes music store. The use case dia-
gram (see Figure 13-5) shows the inventory application’s overall functionality
and lists the main tasks the application needs to perform and the system needs
to support.

The class diagram shows what object-oriented classes need to be included when
creating the application (see Figure 13-6). It also shows how the classes relate to
one another. In essence, it can be used as an object-oriented programming
(OOP) blueprint for creating source code built on the class relationships.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

442 chapter thirteen

The UML sequence diagram (see Figure 13-7) shows what types of messages
are passed back and forth between the classes specified in the class diagram.UML tools

Many tools can be used to
create UML diagrams, such as

Rational Rose and Microsoft
Visio. Several free UML tools can

also be downloaded from the
Internet, such as Visual Paradigm
and ArgoUML. You can find these

free tools and many others by
using your favorite Internet

search engine.

Figure 13-7, Sequence diagram for the music inventory application

Customer

Place Order

Confirm Order

Select Albums

Order

Display Album Info

Return Selections

Album

Update Inventory

Inventory

Figure 13-6, Class diagram for the music inventory application

Manager

Report Catalog

Artist

Album

Employee

Person

PersonInventory

Inventory

Each type of UML diagram describes different object-oriented functionality in
a system. Developers can use these visual models as a blueprint when writing
the actual source code. UML tools enable you to create a UML diagram in

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

13

so f tware engineer ing 443

data dictionary – A docu-
ment describing the type
of data being used in the
program, showing table
definitions, indexes, and
other data relationships

n o t e

n o t e

n o t e

much the same way that you might create a drawing with a program such as
Paint. Each type of diagram has defined images that you can drop onto the
workspace to represent different functionality.

step 3: create the data dictionary
You know the program incorporates a database if the user wants to store
information. Unless a database is already in place, it’s your job to help define
the structure of the database by creating a data dictionary. This task might be a
secondary role for you. The primary person in charge of the database might be
the database administrator (DBA). If the database is already in place, you
should review it for accuracy by comparing it with your meeting notes and the
project’s objectives, specifications, and requirements.

RULE: Determine whether a database is needed; if so, create a data

dictionary.

If a database isn’t in place and you’re responsible for creating the database struc-
ture, you can review any reports the end user has provided to devise a list of
data tables to use in the application.

The process of creating a data dictionary (also referred to as "preparing
for normalization") is explained in more detail in Chapter 6, “Database
Fundamentals.”

RULE: Use information from the end user to summarize the current system

and organize a brief plan for the new application.

Before you meet with the end user again, review the reports so that you know
what type of information needs to be stored and can design the necessary tables to
be used in the application. This information is what drives the application. After
all, what good is an application if it can’t retrieve the information end users need?

RULE: Review end users’ reports to find possible tables and elements for a

data dictionary.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

444 chapter thirteen

Figure 13-8, Creating a data dictionary

Music Inventory Data Dictionary
Database is MIToeTappin written in Oracle 11g

Table: Artist

 Indexes: ByCode Artist_CD
 ByName Artist_NM

 Use: This table contains all the music artists.

Field Description
ARTIST_CD Unique code identifying the record
ARTIST_NM Artist name

Table: Inventory

 Indexes: ByCode Media_CD
 ByType Media_Type

 Use: This table contains all the music items in the store’s inventory.

Field Description
MEDIA_CD Unique code identifying record
MEDIA_TYPE Media type (CD, tape, album, and so on)
ON_HAND Quantity on hand
MRP Minimum reorder point
COST Store’s cost
PRICE Retail price

The data dictionary becomes a schematic describing the type of data used in
the program. Both software engineers and end users can use this document to
clarify the data available for use in reports, screens, file transfers, and other data
operations.

step 4: design reports
It’s time to meet with Mr. Bop and review your ideas for helping the store bet-
ter maintain the media inventory. Bring along a notebook or desktop computer
loaded with your development software. Sitting down with end users at the
computer might seem like a major task, but it helps you create a program that
specifically meets their needs.

Create a data dictionary of the tables by listing the table name, the order (or
indexes) in which data is sorted, a description of the table’s use, and a comment
for each field in the table (see Figure 13-8).

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

13

so f tware engineer ing 445

Figure 13-9, Example of a report created with a report generator

Music CD Catalog
ToeTappin’ Tunes

Sorted by Artist and Song Title

Artist Name Song Title

ANGELS OF THE SILENCES
MR. JONES
RECOVERING THE SATELLITES
TIME AND TIME AGAIN

RECOVERING THE SATELLITES
AUGUST AND EVERYTHING AFTER
RECOVERING THE SATELLITES
AUGUST AND EVERYTHING AFTER

CD Title

Print Date 1/16/2010

COUNTING CROWS

BLUES BEFORE SUNRISE
HEY HEY
HOOCHIE COOCHIE MAN
LAYLA
TEARS IN HEAVEN

ERIC CLAPTON UNPLUGGED
ERIC CLAPTON UNPLUGGED
ERIC CLAPTON UNPLUGGED
ERIC CLAPTON UNPLUGGED
ERIC CLAPTON UNPLUGGED

ERIC CLAPTON

CONDITIONING
LOOK MAMA
NEW SONG
PEARL IN THE SHELL
WHAT IS LOVE?

HUMAN'S LIB
BEST OF HOWARD JONES
BEST OF HOWARD JONES
BEST OF HOWARD JONES
BEST OF HOWARD JONES

HOWARD JONES

BIRDLAND
BOY FROM NEW YORK CITY
JAVA JIVE

THE MANHATTAN TRANSFER ANTHOLOGY
THE MANHATTAN TRANSFER ANTHOLOGY
THE MANHATTAN TRANSFER ANTHOLOGY

MANHATTAN TRANSFER

n o t e

Start by reviewing the data dictionary and explaining what data will be stored.
Ask the user whether any other data needs to be kept. If you haven’t planned
the database tables before you start the project, you’re asking for trouble and are
likely to miss a deadline.

One way you can include the end user in the design process is with an inte-
grated development environment (IDE), which contains design tools and
wizards that make application development easier.

RULE: Let the user help you design the reports.

For example, you can use a report wizard or a report generator, such as the one
shown in Figure 13-9, to generate prototypes of the reports Mr. Bop needs to
have in the application.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

446 chapter thirteen

flowchart – A combination
of symbols and text that
provides a visual description
of a process

n o t e

When you examine a report, you see a snapshot of data that should exist in
your application. Each column in the report might represent a field or column
in a table. Each row of data in the report represents a record found in the table.
You can sit down with the end user and design the reports interactively by
using these reporting tools.

step 5: structuring the application’s
logical flow
Now that the data structure is in place and the reports have been designed, it’s
time to move on to the application’s logical flow.

RULE: Create a logical flow before you begin writing source code.

The application’s logical flow details the main functionality of the system and
the relationship of the tasks to be completed. You can use a flowchart for this
task. Although some developers skip this step, it’s always a good idea to sketch
out or write down how the system should work before you start typing lines of
source code.

Some developers like to use formal flowchart diagrams. The example in
Figure 13-10 shows how a student might drive to school.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

13

so f tware engineer ing 447

The symbols in the flowchart represent different functions in a program.
Figure 13-11 shows some symbols you might encounter in a flowchart.

Figure 13-10, Flowchart example

yesdoes the
car start?

call friend

remove key

release
brake

put key
in ignition
and turn

no

put in drive
drive to
school

carefully

get out
of car

start

stop

driving to school flowchart

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

448 chapter thirteen

Some developers use pseudocode, which is a description of the program logic
written in human language. Here’s some sample pseudocode for the process of
starting your car:

Start

Put the key in the ignition and turn

If the car does not start, call a friend to take you to

school

Else if the car does start

Release the brake

Put the car in drive

Drive to school carefully

End if

Remove key

Get out of car

Stop

You learn more about pseudocode in Chapter 14, “Programming I.”

Figure 13-11, Flowchart symbols

starts or ends the program flow

a task to be performed

document that can be read

display data

get input

make a decision

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

13

so f tware engineer ing 449

n o t e

n o t e

However you do it, you should create some kind of formal definition of how
the system is supposed to work before you start typing the source code. Time
spent thinking and designing before using the keyboard saves a lot of time later
when you have to debug and maintain the program.

step 6: start building the prototype
Because the opening screen is the first thing the end user sees, and it forms the
user’s first impression of your program, it must reflect the user’s goals and the
program’s main function. Opening screens can be clever, cute, serious, or whatever
the end user wants to make the application appealing. A good way to make sure
you create appealing screens is to include the end user in the design process. For
example, Mr. Bop’s music store focuses on disco music, so his opening screen
should be representative of his store and the program’s major task.

After designing the opening screen, you should take it to the end user for
approval. Then it’s time to move on to the data input screens. In this case,
Mr. Bop wants to be able to update the inventory status, track purchase infor-
mation, maintain employee information, and set up some form of program
security. You also know that he needs a set of routines to manage data in tables.

Asking the end user more questions can reveal possibilities for information you
never thought you had to worry about. For example, by continuing to have an
open dialogue with the client, you might discover new items that need to be
incorporated in your application, such as artists, media produced by each artist,
types of media, and so on.

RULE: Ask the end user as many questions as possible until you’re

confident that you have a good understanding of the program’s main

functionality.

One way to increase your productivity and include the end user in the applica-
tion’s design is to use some sort of form generator to create prototypes of each
screen you and the end user have decided to include in the application.
Remember: Not one line of code should be written until the user has agreed to
the specifications and approved the screen prototypes.

RULE: Don’t write any source code until the project specifications are

approved!

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

450 chapter thirteen

n o t e

n o t e

As mentioned, a prototype gives end users a good idea of what they’ll see when
the application is completed. It’s not the final product, ready to go. It’s more of
an overview of what screens and reports will look like and what the general flow
of the application will be.

Let end users help determine the colors, text, position of fields, and other
factors so that they play an important role in determining the application’s
look and behavior when it’s finished. By including end users, you’re building
their sense of ownership of the product.

RULE: Let the user help you design the screens.

The more work end users do, the better the application will be when it’s finished.
In addition, users will like the application more because they had a major part in
developing it.

step 7: putting all the pieces together
Almost all the pieces of the application design have been put together, and it’s
time to thank end users for their time and head back to your office. Take all the
information you have gathered and create the design document. Much of this
process is simply putting together the pieces you already have, along with dates,
timelines, and price estimates.

RULE: Be realistic in defining project completion dates.

Be careful when giving dates and price estimates to make sure they’re realistic
and feasible. Remember that end users will hold you to dates and figures you
give, so you have to take the time to be accurate in your estimating process.
End users want that application, and they want it now. If they add more details
to the application, simple logic says the date of completion should be extended.
End users don’t always think that way, however. Although they might say,
“Yeah, yeah, we know you’ll need more time to complete the project if you add
these other details,” they often remember only the date on your first estimate.

The design document should contain the following items:

• Header page describing the contents
• Project objective
• Defined terms related to the project
• Feasibility study
• Project specifications and requirements
• Project cost analysis

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

13

so f tware engineer ing 451

n o t e

• Data dictionary
• Copies of screens (or prototypes)
• Copies of reports
• Diagrams (UML diagrams and flowcharts of all business processes)
• Plans to test the software after it’s written
• Plans to gather user feedback about the application’s functionality
• Notes from meetings

You can also include information such as employee bios and company profiles
or other material you think is appropriate for readers to understand the key players
involved in the application and how the project’s objectives will be accomplished.

Don’t forget this important part of the design document: a place for end users
to sign, indicating they have read the document and accept it as the basis for
creating the program. If you have a signature in the design document, you can
use it as a contract for work.

Almost always, something changes after the design document is signed. Whether
it’s a new item the end user wants to include or an item the application designer
forgot, the document probably needs to be amended. In this case, you don’t
need to start over, designing all the screens and placing copies of reports, screens,
menus, and tables in a document. Simply create an addendum detailing the new
items. The end user should be required to sign an agreement to modify the
deadline and your fee, if necessary, because the project scope has changed.

RULE: Have end users sign the design document to indicate they agree to

the deadline defined by the project scope.

If the application isn’t finished by the deadline because the end user has made
frequent changes in the project scope, documenting these changes at least
protects your reputation (and perhaps your job) in your own company.

avoiding the pitfal ls
After looking at the process of software engineering and all the rules involved in
creating a design document, you might feel a little hesitant. What if the project
fails miserably? What might go wrong, and what can you do to help your pro-
jects succeed? The next sections warn you about some common problems and
pitfalls and tell you how to avoid them.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

452 chapter thirteen

scope creep – Occurs when
new changes are added to
a project constantly, thus
changing the proposed
deadline so that the project
is never completed; instead,
it’s in a constant improve-
ment mode

n o t e

userphobia
What if the end user messes up the whole process? One of the biggest mistakes
you can make when designing an application is to be “userphobic.” Userphobia
is the fear that if you include end users in the design process, the application
will be a failure.

Some programmers have the attitude that end users have no idea what’s needed
in creating an application to meet their requirements. Remember that end users
are sitting in the driver’s seat, however. It’s their application. If they don’t like
yellow text on a blue background, you should change to whatever colors they
want. Just make sure you document everything.

Sometimes the user’s ideas aren’t workable, however. If end users want something
in the application that simply can’t be done, tell them honestly it isn’t possible.
Don’t get in the habit of saying, “Sure. No problem. I can do anything. I am
Zeus, master of the keyboard!” Treat end users as you would any customer.
Whether they’re outside contacts or in-house employees, they are still considered
customers and have all the rights and privileges customers should have.

Remember to keep the lines of communication open with end users. Let them
know what’s happening. A weekly update informing them of your progress on
the application is often a good idea. An informed end user is a happy end user.

RULE: Keep the lines of communication open with end users.

too much work
Another problem you might run into is the “heap on the work” syndrome. For
example, a manager gives a programmer a project deadline but later gives the
programmer more work that has a higher priority than the first project. Of
course, the manager specifies that the first deadline can’t change. In this situa-
tion, the manager is setting the programmer up for failure on both projects.
You, as the programmer, need to be assertive and explain to your manager what
will happen to the first project’s deadline if the second project takes priority. By
doing so, you can save yourself a lot of frustration. Again, protect yourself by
documenting everything.

scope creep
Another pitfall that can affect whether you meet your deadline is called scope

creep. It occurs when the end user keeps adding functionality to the application
after you have already agreed on the project specifications and requirements,
thus changing the deadline. This process of making changes and extending the

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

13

so f tware engineer ing 453

project manager – Leader
of the software develop-
ment team; responsible for
choosing the right players
for the right positions and
making sure the project is
on schedule

gold plating – Adding
unnecessary features to
the project design

deadline continues until finally a manager steps in and asks, “Will this project
ever be completed?”

To avoid scope creep, one common tactic is using a phased approach. Any
changes the user wants that have a major impact on the project’s deadline can
be put into a second phase. The first phase can continue as planned. After it’s
finished, tested, and delivered to the end user, you can begin phase two. As
the program is being used, the end user might find other problems or issues
that need to be addressed. They can also be placed in phase two or, if needed,
pushed into phase three.

The main point is that you need to deliver something to the end user on schedule!
Let end users start working with the product while you continue to make other
changes. In addition, sometimes software engineers add their own unnecessary
features to the design, even though the end user hasn’t approved the addition. This
problem is called gold plating.

the project development team
An application can be developed by one developer or a team of developers.
Many software development departments support team development because it
allows team members to run the IDE on their workstations while storing the
necessary tables on a network.

To help you understand how a successful team is built, the next sections outline
the players who can be included in the team, their roles, and how they interact
with other members of the team and with clients.

project manager
The project manager is the team leader and is responsible for choosing the
right players for the right positions. The project manager is also responsible for
determining the project’s risks, costs, and schedule of tasks. In addition, the
project manager pulls together all the project pieces and incorporates them into
the design document.

Determining risks and costs usually requires experience. Scheduling tasks and
keeping up with team member responsibilities are generally done by using pro-
ject management software, such as Microsoft Project (see Figure 13-12). With
this type of tool, managers can track the different tasks that need to be com-
pleted, who’s assigned to each task, the status of tasks, and the costs associated
with each task.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

454 chapter thirteen

Figure 13-12, Project management software helps a manager keep track of the project’s status

database administrator
(DBA) – Person assigned the
role of creating and main-
taining the database
structure

n o t e

database administrator
The person assigned the role of creating the database is often referred to as the
database administrator (DBA). Creating the database involves taking the infor-
mation from design meetings with end users and creating a data dictionary. As
you’ve learned, a data dictionary serves as a map for the structure of tables. It’s
created by reviewing the screens and reports the end user wants to include in
the application and determining which fields are essential to the application.

Have only one person in charge of creating and maintaining databases to

reduce confusion and errors.

The DBA’s job is not only to create any databases needed by the project, but also
to maintain them and manage changes and updates to data stored in the files. If
all programmers on the team were allowed to change the database structure, the

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

13

so f tware engineer ing 455

software developer (or
programmer) – Person re-
sponsible for writing source
code to meet the end user’s
functional requirements

tester – Person responsible
for making sure the pro-
gram functions correctly
and meets all the functional
requirements specified in
the design document

n o t e

application would be heading down the path to failure. Too many DBAs in the
programming kitchen spoil the application.

sof tware developers (programmers)
Teams include one or more software developers (also called programmers) who
are responsible for writing the source code. Many times, developers are also
involved in creating UML diagrams. The developer turns the design document
into a tangible product.

Developers use software development tools and logical skills to create programs
that meet the project requirements and objectives. The source code they write
also incorporates class, use case, and sequence UML diagrams.

client (end user)
The client or end user is the driving force behind the project, the one who has
a need that can be met by the project development team. The client can be
internal (works for the same company as the software developers) or external
(doesn’t work for the company creating the program).

Clients usually know what they want but often don’t know how to explain it to
developers. Similarly, developers usually know how to meet the client’s needs
but often don’t know how to communicate the process to the client.

Clients know what they want. Your job as the software developer is to

help them communicate their needs and translate those needs into a

software development project.

tester
Every program has to be tested. An untested program is a program that’s
doomed to fail. Many companies have a quality assurance (QA) department
responsible for turning out good products. The development team is responsi-
ble for testing its program before it’s turned over to the QA team. The QA team
then puts the program through a series of tests and reports the results to the
software developers, who fix the problems, test the program again, and deliver
it to the QA team for another round of testing.

The role of tester is one of the most critical roles in application development.
Not only should developers test the application as it’s being written, but at least
one or two people, including the end user, should be designated as testers. Too
often a product is written and presented to end users without being tested
thoroughly. This oversight results in wasted time and lowers users’ confidence

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

456 chapter thirteen

customer relations repre-
sentative (or support
technician) – Person respon-
sible for interacting with
testers, developers, and end
users during the product’s
creation and early release
and on an ongoing basis
with end users as long as
the product is being used

in the application (and its developers). If an application has too many bugs, end
users will stop using it and seek a different means of accomplishing the job.
This could mean reverting to the previous way of handling day-to-day opera-
tions or finding another developer for the application. Either way, insufficient
testing can blemish your reputation for reliability and jeopardize your career.

Here are a few pointers on testing:

• Make sure you run the application through a series of tests that mimic the
end user’s environment, including monitors, CPUs, printers, and other
hardware.

• Make sure programmers have developed the application to handle any
situation that might come up. Some developers insist that end users would
never try to do something a certain way because it just isn’t logical. If anyone
can break the application, end users can, so put yourself in their place and try
to test situations that aren’t always logical.

• Keep a log of errors encountered during testing and after the application’s
release. Record the date the error occurred, a description of the error, the
procedure you think created the bug, what was done or needs to be done to
fix the problem, and who is responsible for handling the error.

Some day, you might end up in the following situation. An end user calls the
developer and in a panicked voice says, “I just had a problem while I was
using the application!” The developer chokes down the question “Why me?”
and asks the end user to explain the process that resulted in the error and
describe the error information that appeared on the screen. It’s now the end
user who chokes down the question “Why me?” and informs the developer
that the information wasn’t kept. A wave of relief passes over the developer as
the popular technical support response “Call me if it happens again” echoes
through the phone receiver. The developer hangs up the phone, exclaiming
“Whew! Dodged that bullet!” This situation occurs every day. As a developer,
you shouldn’t be afraid of errors. Instead, be thankful the end user has found
them and is willing to help you solve the problem.

customer relations representative
The customer relations representative (or support technician) is the interface
between testers, developers, and end users during the product’s creation and
early release. After the early release stage, you might want to create a help desk
to handle calls about using the application or errors users have encountered.

no bugs?

No application is bug free. You
should tell this to end users when

the application is being created,
delivered, and tested. Be happy

when end users find bugs. Thank
them for letting you know, fix the

problem fast, and hope that the
bug is the last one you

encounter!

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

13

so f tware engineer ing 457

n o t e

n o t e

generator of installation media
After the application is completed, tested, and debugged, it’s time to create the
media (usually CDs or DVDs) to install on the end user’s machine. This task is
not a full-time job, so the customer relations person might be able to handle it.
This role requires interacting with developers to make sure all necessary files are
included. Many IDEs include a utility for creating installation media, which
makes the task easier.

Make sure to scan for viruses before copying files to any installation

media!

installer of the application
It’s show time! After the installation media have been created, it’s time to install
the program on the end user’s machine. Customer relations representatives
should also take on the role of installer because they already have a good rela-
tionship with end users. After the installation process, the installer should stay
with end users while they test-drive the application. Take them on a guided tour
of the application, showing all the bells and whistles the application has to offer.

Train end users well so that they can train other end users.

If end users don’t feel comfortable using the application, you might need to
schedule additional training sessions. After one user in a department is trained,
that user can train other users in his or her own department.

one last thought
Good design results in good programs. If you skip some steps in creating an
application or cut corners, you’ll probably see the results in poor performance,
unmet client needs, or a project that runs over budget and over schedule. The
project manager’s main responsibilities are to build a team that can work well
together and to keep the project on schedule and within budget. By making
sure the project follows all the steps outlined in the design document and goes
through a thorough testing cycle, the team can ensure that the program meets
the client’s needs.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

458 chapter thirteen

• Software engineering involves many different steps to create an application
that meets an end user’s needs.

• The process of building an application is accomplished by following a software
development life cycle (SDLC) model.

• Each SDLC model provides a different way of outlining the steps for creating
a software product.

• A design document is created as a blueprint for software development and
outlines an application’s functionality.

• Several steps should be followed when creating a design document: researching
end users’ needs; communication; logical design of screens, reports, and data
structures; and all other steps that must take place before any source code is
written.

• Unified Modeling Language (UML) is a tool that enables developers and end
users to illustrate an application’s functionality.

• There are several types of UML diagrams, each serving a particular purpose or
describing a part of the project being developed.

• Using reports and a data dictionary can help a developer find any oversights in
the project’s design.

• Software development is often a team effort; building a team involves knowing
the specific roles of each member.

• Team members often include a project manager, database administrator,
developers/programmers, clients/end users, testers, and customer relations
representatives.

• After the application has been developed, installation media must be
generated.

• After the application is installed on the client’s system, spend some time
training end users, who can in turn train other end users.

customer relations representative
(or support technician) (456)

data dictionary (443)

database administrator (DBA) (454)

design document (436)

end user (434)

flowchart (446)

gold plating (453)

project manager (453)

k e y t e r m s

c h a p t e r s u m m a r y

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

13

so f tware engineer ing 459

prototype (435)

scope creep (452)

software developer (or programmer) (455)

software development life
cycle (SDLC) (434)

software engineering (434)

tester (455)

Unified Modeling Language (UML)
(438)

waterfall model (435)

1. Describe what the process of software engineering includes.

2. What is a design document, and how does it affect software engineering?

3. Write the pseudocode steps for a program that processes a savings deposit
in an ATM.

4. Write the pseudocode steps for a program that processes a savings with-
drawal from an ATM.

5. How can UML help a developer create a program that meets an end user’s
needs?

6. How is a data dictionary used in software development?

7. What is a prototype, and how is it used in software engineering?

8. What are some mistakes you can make in designing and developing a
software program?

9. Describe the steps in the waterfall SDLC model.

10. List each software development team role and describe the job function.

11. Draw a flowchart for using a microwave to heat a TV dinner for
2 minutes.

12. Write the pseudocode for using a microwave to heat a TV dinner for
2 minutes.

13. Draw a flowchart for making a purchase on the Internet.

14. Write the pseudocode for making a purchase on the Internet.

15. Draw a flowchart and write the pseudocode for an application that allows
a professor to keep track of the following information for each student:
10 homework assignments, 4 quiz scores, and 2 test scores. The application
should calculate the average grade for each type of information (home-
work, quizzes, and tests), and then calculate a final grade by averaging all
three average scores.

t e s t y o u r s e l f

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

460 chapter thirteen

1. End users need to be told what they want and how the program should
work.

a. True
b. False

2. Which is not included as a task of software engineering?

a. Communicating with clients in meetings
b. Designing screens
c. Writing the application
d. Creating a design document
e. None of the above

3. A design document is used as:

a. A way to bill the client more
b. A blueprint that shows an application’s functionality
c. A replacement for pseudocode when writing a program
d. None of the above

4. Which is not part of the SDLC?

a. Project feasibility
b. Software design
c. Software implementation
d. Software proposal to client
e. All of the above

5. Which is not a valid software development model?

a. Waterfall
b. Degradation
c. Evolution
d. Spiral
e. Incremental

6. UML was designed to:

a. Assist developers in creating visual models of the application’s functionality
b. Assist developers in designing screens and reports
c. Incorporate object-oriented design into application development
d. Replace the outdated notion of pseudocode

7. The best way to write a good program is to have an initial meeting with
the end user to find out the requirements for the project, go back to your
office and write the program, and then deliver the finished product for in-
stallation.

a. True
b. False

p r a c t i c e e x e r c i s e s

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

13

so f tware engineer ing 461

8. The document responsible for describing the type of data stored in the
database is called the:

a. Design document
b. Data dictionary
c. UML diagram
d. SDLC
e. None of the above

9. Including end users during the entire design process is recommended.
In fact, you can even let them help design screens and reports.

a. True
b. False

10. A ——— is used as a visual model for describing a program’s logical steps.

a. Flowchart
b. Class diagram
c. Use case diagram
d. Design document
e. None of the above

11. A ——— is a standard or typical example of how something might work,
but without all the built-in functionality.

a. Flowchart
b. Prototype
c. Design document
d. Data dictionary
e. None of the above

12. Which should not be included in the design document?

a. Project objectives and requirements
b. Cost analysis
c. Feasibility study
d. Copies of screens and reports
e. None of the above

13. Scope creep is good for a project because it’s one of the software develop-
ment life cycles.

a. True
b. False

14. If end users or testers find a bug in the application, you should find out
why they insist on breaking the program and get them some training so
that they will stop making it crash.

a. True
b. False

15. The tester’s role is not as critical as other team roles and should be the first
role eliminated if the project is behind the scheduled completion date.

a. True
b. False

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

462 chapter thirteen

1. Which member of the project development team has the most important
role and why?

2. Which software engineering step do you consider the most important and
why?

3. Do you think UML is a viable way of doing software engineering, and will
more software development departments adopt it? Why or why not?

4. What do you think the biggest challenge is in software engineering?

5. The biggest problem with creating a design document is the time spent
in determining the client’s needs, researching, and organizing. How can
you convince your employer or client to pay for the time spent in creat-
ing a good design document, even if it means delaying the project’s
completion date?

1. Research and describe the SDLC processes covered in this chapter.

2. What are some project management software packages on the market? Give
a brief description of each product along with the vendor and cost.

3. What are some software packages on the market for generating reports?
Give a brief description of each product along with the vendor and cost.

4. What are some software packages on the market for flowcharting? Give a
brief description of each product along with the vendor and cost.

5. Why do you think it’s so important to get the end user to sign the design
document agreeing that the design meets the project’s requirements? What
would you do if the requirements changed after the document had been
signed?

d i g g i n g d e e p e r

d i s c u s s i o n t o p i c s

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

13

so f tware engineer ing 463

1. What are the number of available jobs and the average salary in your state
or province for software engineers?

2. What are the number of available jobs and the average salary in your
state or province for developers with UML skills?

3. Find three free UML software packages and list links to their Web sites.

4. Find three Web sites with material on teaching software engineering skills,
and summarize the material on these sites.

5. What are some newer software development models currently being
discussed?

I n t e r n e t r e s e a r c h

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

c h a p t e r

programming I

14

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

i n t h i s c h a p t e r y o u w i l l :

• Learn what a program is and how it’s developed

• Understand the difference between a low-level and high-level language

• Be introduced to low-level languages, using assembly language as an example

• Learn about program structure, including algorithms and pseudocode

• Learn about variables and how they’re used

• Explore the control structures used in programming

• Understand the terms used in object-oriented programming

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

I wrote my first program when I was 12 years old. My dad showed me how to fire up Basic in DOS, and I
followed along with an example in a book. After just three or four hours, I had a program that asked “What is

your name?” The user could then enter a name such as “Spencer,” and the program displayed “Hi, Spencer!”
Needless to say, I gave up programming for a number of years.

Then one day, my dad offered to pay me actual money to program some reports for him. If I hadn’t had the
brain of a teenager at the time, I might have been smart enough to realize there must be a reason my dad didn’t
want to program the reports himself. Having the brain of a teenager, however, I probably thought he wanted me

to do it because he couldn’t figure it out himself.

I spent the next few weeks converting between inches and twips to program the correct x and y coordinates
where the report text should print. I suppose there are more tedious jobs in the world, such as searching for a

grain of salt in a bag of sugar. After this experience, I might have hung up my programming hat completely if it
weren’t for the encouraging words from a caring father—and the massive paycheck.

I started reading how-to books on programming and taking lessons from my dad. Soon I was promoted from
programming reports to working on a program’s actual functionality. I’ve been programming ever since. Those
who have never programmed can’t comprehend the feelings that accompany compiling a program you wrote

with your own two hands for the first time—and getting 162 compile error messages. It brings tears to my eyes
just thinking about it.

Then you start the debugging process. You and your coworkers laugh at the level of stupidity that must have gone
into the errors you made. One by one, you fix each error. And then one day, it happens: You compile the program,

and no error messages appear. You recompile it because you think the computer must have made a mistake. When
you still get no error messages, you jump up and down like a 5-year-old on Christmas morning. (This process is usu-

ally followed by your hard drive crashing and the realization that you forgot to make a backup.)

In spite of it all, programming is actually a great job. There’s nothing like the sense of satisfaction in seeing
someone using a program and realizing “Hey, I wrote that!” In fact, if you’re interested in some programming

work, give me a call—I’ve got some reports that need to be programmed.

466 chapter fourteen

the lighter side of the lab
by spencer

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

p r o g r a m m i n g

You’ve probably heard the story about the foolish man and the wise man who wanted to

build houses. The wise man built his house on rock, and the foolish man built his house on

sand. When the rain came, the house built on sand washed away, but the house built on rock

was intact because it was built on a firm foundation.

The moral of this story applies to programming, too. Programs are used constantly, even

in places you might not have thought of, such as cars, space shuttles, ATMs, and even

microwaves. If these programs weren’t built on a firm foundation of structured logic, your

microwave would burn your food, the space shuttle wouldn’t launch, the ATM would give

your money away to other people, and your car would sit in the driveway gathering dust.

Being a programmer involves responsibility: You’re responsible for developing a quality

product that might possibly mean the difference between saving or destroying lives.

Would you want to fly in a plane if the navigation system’s programmer hadn’t structured

the program on a firm foundation of quality principles?

Learning solid programming practices is essential to your future computing career and to

the people who will benefit from the programs you produce. Building a strong foundation

requires learning the basic language constructs and knowing how to use them when writing

a program. If you can learn how to write structured, logical programs that other software

developers can read and understand, you can become an asset to any organization. Good

programming skills are acquired through diligent practice as well as a lot of trial and error.

You can think of it as learning a foreign language: You can learn all the basics of a language,

but if you don’t practice using it, you’ll never speak it fluently. Learning a programming

language means practice, practice, and even more practice!

why you need to know about...

programming I 467
Clic

k t
o b

uy N
OW

!PD
F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

468 chapter fourteen

n o t e

what is a program?
So many programs are used every day that trying to list them all would be mind-
boggling. Focusing on what a program is and what it can do is much easier. A
program is simply a collection of statements or steps that solves a problem and
needs to be converted into a language the computer understands to perform
tasks. These statements are usually written in a language that’s understood by
humans but not computers. They’re entered as a logical ordered set (also called
an algorithm). For the computer to execute the algorithm, the statements must
be converted into a language the computer understands by using an interpreter
or a compiler.

The only language the computer understands is binary, consisting of

1s and 0s.

An interpreter is a separate application needed for a program to run. Its
purpose is to translate the program’s statements, one by one, into a language
the computer can understand. A compiler, on the other hand, reads all the
program’s statements and converts them into computer language. The result is
an executable file that doesn’t need an interpreter.

Programs are developed to help people perform tasks, so programmers should
communicate with users of a program to make sure the program meets their
needs. A program might perform calculations, gather information, or process
information and display the results. Programs are used to make vehicles run
efficiently, operate an appliance, or even map out directions for your next
family vacation. They’re used everywhere, and people rely on them
functioning correctly.

When a program doesn’t perform accurately, there can be two possible causes:
A piece of logical functionality was left out of the program, or the program has
one or more statements containing logical errors. A program that doesn’t have
full functionality or doesn’t have the functionality users need can be corrected
by following software-engineering practices, such as getting input from users
who requested the program. Think of writing a program as putting together all
the pieces of a puzzle. To put all the pieces in the right spots, you need to
know what pieces are available and understand how they fit with other pieces.

Putting programs together was discussed in Chapter 13, “Software
Engineering.”

program – A collection of
statements or steps that
solves a problem and needs
to be converted into a
language the computer un-
derstands to perform tasks

algorithm – A logically
ordered set of statements
used to solve a problem

interpreter – An application
that converts each program
statement into a language
the computer understands

compiler – An application
that reads all the program’s
statements, converts them
into computer language,
and produces an executable
file that doesn’t need an
interpreter

eeaasstteerrnn rroooottss

The word “algorithm” came
from Mohammed ibn-Musa

al-Khwarizmi (c. AD 780 to 850),
a mathematician and a member
of the Baghdad royal court. His

book later introduced algebra to
the West.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

14

programming I 469

I speak computer
The first step in programming is to determine what language you want to use
to communicate with the computer. As stated, computers speak only one
language—binary. All programming languages end up in binary, so you can
focus on choosing a programming language that suits your preferences and
the task the program should accomplish.

Choosing a programming language can be like trying to choose an ice
cream flavor. There are so many to choose from, and all of them can satisfy your
need for ice cream. Here are a few of the programming flavors you can choose:

• Ada
• Assembly
• C, C++, and C#
• COBOL
• FORTRAN
• Delphi (Pascal)
• Java and JavaScript
• Lisp
• Perl
• Smalltalk
• Visual Basic

No single language is considered the best. Each has its own strengths and weak-
nesses. For example, when you’re trying to determine which language is best for
the task, you might consider the following:

• Assembly language works well when you want to control hardware.
• COBOL was first used in business applications and continues to be popular

in business.
• FORTRAN is geared toward engineering and scientific projects.
• Java and JavaScript are well suited for Internet applications.
• Lisp is well known for working with artificial intelligence.
• Pascal was created to teach people how to write programs.
• Smalltalk was created to assist developers in creating programs that mimic

human thinking.
• Visual Basic was developed to provide a simple yet powerful GUI programming

environment.

LLaaddyy AAddaa

The Ada programming language
was named after Ada Byron

(1815–1852), daughter of the
poet Lord Byron. She was a math-

ematician and is considered the
first programmer. She wrote to

Charles Babbage about his
Analytical Engine and suggested

ideas for an engine that could
calculate Bernoulli numbers.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

470 chapter fourteen

n o t e

The following are examples from a simple program that displays “Computer
Scientists Are Wired!” in a variety of languages.

Ada:

with TEXT_IO; use TEXT_IO;

procedure Wired is

pragma MAIN;

begin

PUT ("Computer Scientists Are Wired!");

end Wired;

Assembly language:

mov ah,13h

mov dx,0C00H

mov cx,30

mov al,00

mov bh,00

mov bl,1fH

mov ah,13H

lea bp,[Msg]

int 10H

int 20H

Msg: db 'Computer Scientists Are Wired!'

EXE_End

C:

#include <stdio.h>

main()

{

printf("Computer Scientists Are Wired!\n");

}

Dennis Ritchie developed C in the early 1970s for UNIX while working at

AT&T Bell Labs. Its predecessor, B, was based on the BCPL language.

C++:

#include <iostream>

int main(int argc, char *argv[])

{

cout << "Computer Scientists Are Wired!\n";

}

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

14

programming I 471

n o t e

n o t e

C++ was written by Bjarne Stroustrup at Bell Labs in 1983 and is an

extension of C.

COBOL:

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. WIRED.

000300* DATE-WRITTEN. 12/15/10 16:09.

000400* AUTHOR GREG ANDERSON

000500 ENVIRONMENT DIVISION.

000600 CONFIGURATION SECTION.

000700 SOURCE-COMPUTER. RM-COBOL.

000800 OBJECT-COMPUTER. RM-COBOL.

000900

001000 DATA DIVISION.

001100 FILE SECTION.

001200

100000 PROCEDURE DIVISION.

100100

100200 MAIN-LOGIC SECTION.

100300 BEGIN.

100400 DISPLAY "Computer Scientists Are Wired!" LINE 12

POSITION 25.

100500 STOP RUN.

100600 MAIN-LOGIC-EXIT.

100700 EXIT.

COBOL, an acronym for Common Business-Oriented Language, was

developed in 1959 by a group called the Conference on Data Systems

Languages (CODASYL).

Delphi (Pascal):

Program Hello (Input, Output);

Begin

Writeln ('Computer Scientists Are Wired!');

End.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

472 chapter fourteen

n o t e

n o t e

n o t e

n o t e

Delphi is object-oriented Turbo Pascal and was released by Borland

Software, Inc., in 1995. Pascal was developed in the early 1970s by

Niklaus Wirth to provide more structure in programming and as a method

for learning the concepts of programming.

FORTRAN:

PROGRAM WIRED

PRINT *,'Computer Scientists Are Wired!'

STOP

END

A team of programmers at IBM, led by John Backus, developed FORTRAN

(an acronym for FORmula TRANslation) in 1957.

Java:

class Wired {

public static void main (String args[]) {

System.out.print("Computer Scientists Are Wired!");

}

}

Java evolved from the Oak language, developed in 1995 at Sun

Microsystems. It was created as a platform-independent language.

Lisp:

;;; Common LISP

(defun wired ()

(print "Computer Scientists Are Wired!")

)

List Processing Language (Lisp) was based on John McCarthy’s work at

IBM. It was created to support artificial intelligence and released in the

mid-1960s.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

n o t e

low-level language –
A programming language
that uses binary code for
instructions

machine language – The
lowest-level programming
language, which consists of
binary bit patterns

assembly language –
A programming language
that’s one step up from
machine language; it
assigns letter codes to
each machine-language
instruction

assembler – A program that
reads assembly-language
code and converts it into
machine language

high-level language –
A programming language
written in a more natural
language that humans can
read and understand

high-level language

low-level
languages

assembly language

machine language

hardware

Figure 14-1, Different types of programming languages

14

programming I 473

Smalltalk:

Transcript show:'Computer Scientists Are Wired!';cr

Smalltalk, an object-oriented programming language, was developed

at Xerox PARC by Alan Kay, Dan Ingalls, Ted Kaehler, Adele Goldberg,

and others during the 1970s.

Before you decide which programming language you prefer, you need to research
them a little more. First, you should decide whether a low-level or high-level
programming language is right for you. A low-level language gives instructions
to a CPU or piece of hardware in binary code understood by computers, but not
by humans. The lowest-level language is machine language, in which instruc-
tions are encoded as binary bit patterns. In fact, the only instructions a
computer ever carries out are in machine language.

An assembly language program is one step up from machine language, in that
it assigns letter codes to each machine-language instruction. A program called
an assembler reads assembly-language code and translates it into machine
language. A high-level language is more user friendly because it uses a more
natural language that humans can understand. High-level languages, such as
C++ or Java, require a compiler or an interpreter to translate the code into
machine language. High-level languages can also be used on many different
types of computers, making them more platform independent. Figure 14-1
shows how these different types of programming languages are grouped.

The following sections give you a taste of how a low-level language works,
using assembly language as an example, and then you’re introduced to how
high-level languages work. In Chapter 15, you delve into high-level languages
more by looking at Java and C++ examples. An introduction to every program-
ming language would take an entire library full of books! As a computing

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

474 chapter fourteen

ggoo ffoorr aa ddrriivvee

Many of these languages offer
free or trial versions you can take
for a test drive. Make sure you do
before you make a commitment.

n o t e

professional, you’ll likely work with many different languages and discover for
yourself what “flavor” you prefer.

low-level languages
Machine language uses only binary numbers, so few people code in this lan-
guage. However, speaking in binary on a date might help you find your true
love! This chapter doesn’t go into detail on how machine language works, but
you learn about assembly language, which simulates machine language but is
written with more English-like statements. As with machine language, each
assembly-language statement corresponds to one machine instruction. Assembly
language produces programs that are usually smaller and run faster than pro-
grams in higher-level languages. It’s a powerful language, and almost anything
you can do on a computer can be written in this language, which isn’t always
the case with other languages. Assembly language is closely tied to the CPU
type, and assemblers have been written for every type of CPU.

The 808x architecture of early Intel processors is used to illustrate

assemblers in this chapter because it’s fairly simple.

assembly-language statements
In Chapter 3, you learned about the registers in a CPU, which are special
memory locations for storing information programs can use. The registers
AX, BX, CX, and DX are called general-purpose registers (GPRs) and are
used mainly for arithmetic operations or accessing an element in an array.
The 808x architecture also has special-purpose registers: pointer registers,
segment registers, and a flags register.

Assembly language consists of text instructions that are converted one by one
into machine (binary) instructions. Take a look at the following example. As
you read the assembly code, you might think it seems cryptic. A disadvantage
of assembly language is that it can be hard to read and understand.

;NASM-IDE ASM Assistant Assembler Project File

[BITS 16] ;Set code generation to 16-bit mode

%include 'exebin.mac'

EXE_Begin

[ORG 100H] ;Set addressing to begin at 100H

cls: mov ah,06

mov cx,0000

mov dx,184fH

mov al,00

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

14

programming I 475

ggeett oonn yyoouurr ccaassee

Some assemblers are case sensi-
tive, meaning that a lowercase

“a” is different from an uppercase
“A.” For example, the word “wst”

isn’t recognized as being the
same as “WST.” You need to

know whether your assembler is
case sensitive.

syntax – Rules for how a
programming language’s
statements must be
constructed

n o t e

mov bh,1fH

int 10H

mov dx,0C22H

lea bp,[Hi]

mov cx,12

wst: mov al,00

mov bh,00

mov bl,1fH

mov ah,13H

int 10H

cmp dh,0Ch

jnz stop

inc dh

lea bp,[Bye]

mov cx,8

jmp wst

stop: int 20H

Data:

Hi: db 'How Are You?'

Bye: db 'Goodbye!'

EXE_End

Clear as mud? After you understand the syntax of a language, however, it
doesn’t seem as cryptic. By learning assembly language, you reap the rewards
of fast executing code and the power to do anything you want in a computer
system. Another problem with using assembly language is that it takes a lot of
programming to accomplish very little. Also, the assembler for a particular
CPU can be used only on that CPU, and assemblers for different CPUs have
very different syntax.

In assembly language, each programming statement, or instruction, performs a
task. The following sections explain some of these instructions.

mov

The mov instruction moves values around. For example, the following state-
ment tells the assembler to move the value of 8 into the CX register:

mov cx, 8

Assembly statements are read from right to left.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

476 chapter fourteen

You can move a value from memory to a register, from a register to memory,
or from register to register. For example, the following statement tells the
assembler to move the value stored in the CX register to the DX register:

mov dx, cx

This statement doesn’t delete the value stored in CX. The CX register still has
the value 8, but now the DX register has the value 8, too. So the mov statement
actually copies values instead of moving them.

add

The add instruction takes a value on the right and adds it to the value on the
left. In the following example, the first statement moves the value 3 into the
CX register. The second statement moves the value 8 into the DX register.
The last statement adds the value in the CX register (3) to the value in the DX
register (8), resulting in the value 11 being stored in the DX register.

mov cx, 3

mov dx, 8

add dx, cx

inc

The inc instruction adds 1 to the register being used. The following statement
takes the value in the DX register, which is currently 11 after the previous add
instruction, and increases (increments) it by 1:

inc dx

The DX register then contains the value 12.

sub

The sub instruction tells the assembler to subtract one number from another
number. In the following example, the first statement moves the value 4 into
the CX register, and the second statement moves the value 7 into the DX regis-
ter. The last statement subtracts the value in the CX register (4) from the value
in the DX register (7) and places the result (3) in the DX register.

mov cx, 4

mov dx, 7

sub dx, cx

After these three statements execute, the CX register still contains the value 4,
but the DX register contains the value 3 (in other words, DX = DX - CX).

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

14

programming I 477

cmp

The cmp instruction tells the assembler to compare two values. It works like
a sub instruction but doesn’t store the result in a register. Instead, the result
is used to set flag bits in the flags (FL) register. If the result of the compare
equals 0, the zero (ZR) flag is set to a binary 1, and the sign (SF) flag is set
to 0 (meaning a positive number). If the result of the compare is a
negative number, the ZR flag bit is set to a binary 0, and the SF flag is
set to 1 (meaning a negative number).

In the following example, the first statement moves the value 4 into the CX
register. The second statement moves the value 7 into the DX register. The
last statement compares the value of the DX register with the value of the
CX register.

mov cx, 4

mov dx, 7

cmp dx, cx

If DX - CX = 0, the ZR flag is set to 1. You can then use this comparison to
determine whether to jump to a different location in the program with a condi-
tional instruction, such as jnz.

jnz

The jnz instruction tests the value of the ZR flag maintained by the system. If
it’s set to 1, it tells the system to jump somewhere else in the program, much
like a “go to” statement in other programming languages. If it isn’t set, the as-
sembler continues to process the code on the next line. The following example
shows the jnz instruction added to the previous example:

mov cx, 4

mov dx, 7

cmp dx, cx

jnz stop

The jnz instruction checks the ZR flag that might have been set during the
cmp instruction. If the flag is set to 1, it tells the system that the cmp instruc-
tion evaluated to 0 and it should jump or pass control to a section in the
program labeled “stop.” If the ZR flag is set to 0, it means the cmp instruction
didn’t evaluate to 0 when the two registers were compared.

Are you a master assembly programmer yet? Don’t worry. Learning a new lan-
guage takes practice, and low-level languages are harder to understand and learn
because they’re oriented more toward hardware than human speech. Now that
you have seen how a low-level language works, it’s time to get an overview of
high-level languages.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

478 chapter fourteen

high- level languages
With high-level programming languages, you can write programs that aren’t as
dependent on the type of computer or CPU, and the statements are easier to
write, read, and maintain than with low-level languages. Also, you can accom-
plish much more with a single statement in high-level languages than in
low-level languages. Unlike assembly languages, there’s not a one-to-one rela-
tionship between a statement and a binary instruction. However, high-level
language programs generally run slower because they must be compiled or in-
terpreted. Some popular high-level languages were included in the list earlier in
this chapter, such as Java, C++, Delphi, and C#.

Over the years, these languages have developed and become more powerful yet
maintained the capability to promote productivity and flexibility. Many of these
languages (as well as some assemblers) incorporate some form of integrated

development environment (IDE). An IDE provides several tools that programmers
can use to write program code more easily. Figure 14-2 shows an example of
Visual Studio .NET, a Microsoft IDE.

integrated development
environment (IDE) – An
interface provided with
software development lan-
guages that incorporates all
the tools needed to write,
compile, and distribute
programs; these tools often
include an editor, a com-
piler, a graphical designer,
and more

Figure 14-2, An IDE makes software development easier

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

14

programming I 479

structure of a program
Before you begin to write a program in any programming language, you need
to know how the program should work and how the language syntax should be
incorporated. As you learned earlier, the syntax is a formal definition of how
statements must be constructed in the programming language. As with any
language, you have to learn not only the vocabulary, but also the rules for
using the vocabulary.

When you learn a foreign language, you must start at the beginning—the
alphabet, numbers, simple phrases—and then move on to grammatical rules
and conjugating verbs. You can apply this same process to learning a program-
ming language. Before you use a programming language’s syntax, however, you
need to understand how a program is structured. As discussed in the following
sections, a program’s structure is based on algorithms, and it’s often represented
with pseudocode.

algorithms

With any kind of problem, you have to figure out what method you’re going
to use to solve it. For example, if you’re trying to get an A in an introductory
computer science course, you need to follow a plan that might include attend-
ing lectures, taking notes, reading the chapters, doing the assignments, and
studying for quizzes and exams.

You can break down each task in your plan into smaller subtasks. For example,
for the task of taking notes, a subtask might be making sure you have paper
and pencils. Another subtask might be learning some abbreviations for the
topics in the course so that you can take notes faster and more efficiently.

For many tasks, you can plan a series of logical steps to accomplish them.
Algorithms boil down to thinking logically about the solution to a problem.
In programming, an algorithm consists of steps you need to follow to solve
the problem. To convert an algorithm into programming statements, you need
to represent the steps in some format. Programmers often use pseudocode,
discussed next, for this purpose.

pseudocode

Pseudocode is a detailed yet readable description in human language that de-
scribes an algorithm so that it can be converted into programming statements.
The description is in a human-understandable format but follows the steps of
a program. Pseudocode can be considered a template for what needs to be
converted into programming language syntax.

that (inter)face is
familiar

Companies that develop pro-
gramming language packages

are working to create standard
interfaces to their languages. For
example, Microsoft Visual Studio

.NET incorporates an IDE that
allows software engineers to

write statements in C++, Visual
Basic (VB), or C# in the .NET

environment, using the same IDE
interface for all three languages.

This feature saves time and
money because developers have

to learn only one software
development tool.

pseudocode – A readable
description of an algorithm
written in human language

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

480 chapter fourteen

For example, the following pseudocode describes the algorithm for entering a
student’s grades and calculating the final average:

FIND/ADD STUDENT:

Search for a student

If the student is not found, add student

Display the student information

INPUT GRADES:

Prompt the user to select which grade to enter

(assignment, quiz, or test)

Accept the input and store it in the database

Prompt the user to see whether more grades need to be

entered

If so, return to the first prompt asking for a grade

Continue this process until there are no more grades to

be entered for the student

CALCULATE FINAL GRADE:

Calculate the final grade

First calculate the assignment average

Apply the appropriate weighting

Calculate the quiz average

Apply the appropriate weighting

Calculate the test average

Apply the appropriate weighting

Add up all the weighted averages

Compare the result with the grading scale

Print the student's final average

Store the average and letter grade in the database

This example shows how breaking the task into smaller subtasks makes it easier
to define the steps needed for solving the problem. There are no formal rules
for writing pseudocode, but you need to consider whether the information
you’re providing is enough to explain the process to someone who has no
experience with solving this type of problem.

How do you learn how to write pseudocode and think logically? Again, the
answer is practice. Many professors require students to write pseudocode before
they start entering programming statements, but it’s not because they love to as-
sign busywork (even though you might suspect they do). It’s because they know
students need practice in thinking logically and putting problem-solving steps
in writing before they start programming.

Here’s another example of how to start defining an algorithm with pseudocode.
Suppose you want to write a program to convert the temperature in degrees
Celsius to degrees Fahrenheit or vice versa. (Figure 14-3 is a chart you can use
as a reference for checking that the program calculates conversions accurately.)

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

14

programming I 481

In this case, as with many programming problems, you need to determine what
formulas to use in your algorithms.

Celsius Fahrenheit
0 C 32.0 F
1 C 33.8 F
2 C 35.6 F
3 C 37.4 F
4 C 39.2 F
5 C 41.0 F
6 C 42.8 F
7 C 44.6 F
8 C 46.4 F
9 C 48.2 F
10 C 50.0 F
11 C 51.8 F
12 C 53.6 F
13 C 55.4 F
14 C 57.2 F
15 C 59.0 F
16 C 60.8 F
17 C 62.6 F
18 C 64.4 F
19 C 66.2 F
20 C 68.0 F
21 C 69.8 F
22 C 71.6 F
23 C 73.4 F
24 C 75.2 F
25 C 77.0 F
26 C 78.8 F
27 C 80.6 F
28 C 82.4 F
29 C 84.2 F
30 C 86.0 F

Figure 14-3, A temperature
conversion chart

n o t e Make sure any formulas you use in an algorithm are accurate! Any

mistakes could make the program useless and possibly even disastrous.

Start with the formulas needed in the algorithm:

• Fahrenheit to Celsius: Celsius temp = (5/9) * (Fahrenheit temp - 32)
• Celsius to Fahrenheit: Fahrenheit temp = ((9/5) * Celsius temp) + 32

After the formulas have been proved correct, you can begin outlining the steps
to write a program that gets input from the user, calculates the conversions, and

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

482 chapter fourteen

then displays the results to the user. Here’s the pseudocode you can use to solve
this problem:

Menu:

Do you want to perform a conversion?

If Yes then

Which conversion do you want to perform?

If Celsius to Fahrenheit then

Go to the Fahrenheit section

If Fahrenheit to Celsius then

Go to the Celsius section

Else If No then

Exit the program

Celsius:

Ask the user for a temperature in Fahrenheit

Apply the formula Celsius temp = (5/9) * (Fahrenheit

temp - 32) to the entered temperature

Display the result, saying Fahrenheit temp ##

converted to Celsius is XX

Return to the Menu section

Fahrenheit:

Ask the user for a temperature in Celsius

Apply the formula Fahrenheit temp = ((9/5) * Celsius

temp) + 32 to the entered temperature

Display the result, saying Celsius temp ## converted

to Fahrenheit is XX

Return to the Menu section

By the time you have completed the pseudocode, the program is basically writ-
ten in a human-understandable language.

choosing the algorithm

You can often perform a task in many different ways, but one way is usually
more effective than others. Your job as the programmer is to determine which
algorithm is best for the project. For example, you want to go to Disney World
during spring break and are trying to determine the best way to get there. What
are some algorithms you could use for solving this problem? You can always fly,
with the advantage of arriving in a short time but the disadvantage of a high
cost. You can drive, with the advantage of a lower cost but the disadvantages of
more time and wear and tear on your car. You can hitchhike, with the advan-
tage of an even lower cost but the disadvantages of more time and safety risks.
You can walk, with the advantage of a low cost but the disadvantage of a very
long time (and sore feet).

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

n o t e

14

programming I 483

n o t e

Each algorithm for getting to Disney World solves the problem, and each has
advantages and disadvantages. The critical issue is selecting the algorithm that
works best for your purposes.

The selection of an algorithm can be based on a multitude of

deciding factors. Spending time investigating all the options

before you begin creating the algorithm is wise.

testing the algorithm

Before you get too excited and start typing your program code (called “source
code”), you should test the algorithm and pseudocode you have written. For
this task, pretending you’re an end user who isn’t knowledgeable about the pro-
gram helps you write a program that’s easier to use. For the previous program,
the user might not know anything about temperature conversions, for example.
Putting yourself in the user’s shoes also helps you predict possible mistakes users
might make.

Make sure you write your pseudocode and test the algorithm before you

begin writing the source code.

Look at the part of the algorithm that takes the temperature value the user en-
ters. It makes a big assumption—that the user enters a numeric value. What if
the user enters a letter instead? There could be trouble right here in pseudocode
city! Maybe the pseudocode needs to be altered as follows to confirm that the
user has entered a valid numerical value:

Celsius:

Ask the user for a temperature in Fahrenheit

If the value entered is numerical

Apply the formula Celsius temp = (5/9) * (Fahrenheit

temp - 32) to the entered temperature

Display the result, saying Fahrenheit temp ##

converted to Celsius is XX

Else

Display a message stating that the value entered is

NOT allowed

Return to the Menu section

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

484 chapter fourteen

Fahrenheit:

Ask the user for a temperature in Celsius

If the value entered is numerical

Apply the formula Fahrenheit temp = ((9/5) * Celsius

temp) + 32 to the entered temperature

Display the result, saying Celsius temp ## converted

to Fahrenheit is XX

Else

Display a message stating that the value entered is

NOT allowed

Return to the Menu section

You can take this pseudocode one step further. Instead of having the Celsius
and Fahrenheit routines display an error message, you can add a new section
that handles any errors that occur. If an error occurs, you send control of the
program to this new section. After the error message has been displayed and the
program has handled the error, program control returns to where it left off, as
shown in the following example:

Celsius:

Ask the user for a temperature in Fahrenheit

If the value entered is numerical

Apply the formula Celsius temp = (5/9) * (Fahrenheit

temp - 32) to the entered temperature

Display the result, saying Fahrenheit temp ##

converted to Celsius is XX

Else

Go to Error

Return to the Menu section

Fahrenheit:

Ask the user for a temperature in Celsius

If the value entered is numerical

Apply the formula Fahrenheit temp = ((9/5) * Celsius

temp) + 32 to the entered temperature

Display the result, saying Celsius temp ## converted

to Fahrenheit is XX

Else

Go to Error

Return to the Menu section

Error:

Display a message stating that the value entered is

NOT allowed

Return to the Celsius or Fahrenheit section,

depending on which section was in use

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

14

programming I 485

Testing the algorithm and expecting the worst to happen can help ensure that
you create well-formed pseudocode from correct logic.

syntax of a programming language
After defining an algorithm and testing the logic thoroughly, you can begin
translating the algorithm into statements in a specific programming language.
Writing a program can be compared with following a recipe (the algorithm
and pseudocode) to combine all the ingredients in the correct order so that
you produce a culinary masterpiece (a program). A programming language con-
sists of many different ingredients that can be used to create your application,
and as the “chef,” you need to know what ingredients are available and how they
should be combined. Some of the ingredients you can use are the following:

• Variables
• Operators
• Control structures
• Objects

Using these ingredients allows you to build a program, but you need to know
why and when to use them. Otherwise, it’s like throwing a random bunch of
ingredients from your refrigerator into a pot and hoping you cook something
edible.

variables
Remember the old saying “Different strokes for different folks”? It’s true for
programming, too, as there’s no one way to write a program. Even though pro-
grammers differ in style or preference, however, they all use variables.

A variable is a name used to identify a certain location in the computer’s
memory. Some programmers use variables to hold running totals; others might
use variables to keep track of a company name. The type of program deter-
mines what types of variables need to be created, modified, and maintained.
It’s possible to write a program that doesn’t use variables, but you’ll probably
use variables in all your programs.

When the variable is defined, the type of data that can be stored in that memory
location is specified. By using the variable name, you can access the memory
location’s contents and use its value in your program. A variable name is simply
an easy way to access computer memory without having to know the actual
hardware address.

For example, you’re trying to change the oil in your car. You need to find the
oil plug, so you pull out your handy-dandy engine diagram. It doesn’t have
descriptive labels for each item, however; instead, it shows part numbers. You
see two items that might be plugs, so you guess which one is the oil plug and

mmaakkee iitt mmeeaanniinnggffuull

When displaying an error mes-
sage, make sure it describes the

problem that occurred. For
example, instead of just saying

the value entered isn’t allowed,
your error message could say

“The value entered is not a valid
number. Please choose between

0 and 100.”

variable – A name used to
identify a certain location
and value in the computer’s
memory

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

486 chapter fourteen

identifier – Name of a
variable

n o t e

n o t e

dive under the engine. As you remove the plug and the fluid begins draining,
you notice that instead of the usual dirty black color your oil is, it’s purple.
What started off being an oil change has unexpectedly turned into a transmis-
sion fluid replacement because the plugs in the diagram had numbers instead
of names. If you think of the plugs as variables, you can see why using a
variable’s name (instead of its hardware address) prevents the problem of
accessing the wrong memory location and using a value that doesn’t apply to
the programming situation. For this reason, in a high-level language, the
variable name is also called an identifier.

identifiers and naming conventions

The identifier is used to access the memory contents associated with a variable.
When deciding on an identifier, be sure to use a name that describes the data
being stored. For instance, if you’re storing a person’s salary, a variable labeled “x”
isn’t descriptive. It does nothing to help others understand or maintain the
program. Some companies don’t have variable-naming standards, so their pro-
grammers have free rein in choosing whatever variable names they want. One
company’s data-processing staff thought using variable names such as Fred,
Wilma, and Barney was funny, but it caused some problems when they had to
debug and maintain the programs.

When choosing a name, you should also make sure it’s not being used by

an instruction in the programming language, which causes an error when

you try to run the program.

You can use more than one word for a variable’s identifier, if you like. One
standard (created by Sun Microsystems, the inventor of Java) suggests making
the first character of the first word lowercase and the first character of subse-
quent words uppercase, as in numCookiesBought.

If you follow the Sun standard, it’s better not to use an underscore for the first
character, although doing so isn’t illegal. One-character names, such as “k,”
shouldn’t be used except for variables in which you simply discard the value.
Overall, giving your variables meaningful names is best.

For ease of reading, many programmers separate words with an

underscore (_), as in num_Cookies_Bought.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

14

programming I 487

operators – Symbols used to
indicate data-manipulation
operations

operators
In many high-level languages, operators are used to manipulate the data stored
in variables. Operators are classified by data type. One operator might work with
numbers, and another operator might be designed to work with characters.

math operators

The mathematical operators are addition (+), subtraction (-), multiplication (*),
division (/), and modulus (%). The % (modulus) operator returns the remainder
when performing division. There are also shortcuts you can use for math opera-
tors, listed in Table 14-1.

Table 14-1, Standard mathematical operators

operator description

+ addition

- subtraction

/ division

% modulus or remainder

* multiplication

+= addition and then assignment

-= subtraction and then assignment

*= multiplication and then assignment

/= division and then assignment

%= modulus and then assignment

increment and decrement operators

Two of the most common programming instructions you use are incrementing
and decrementing values in variables. Many languages have increment and
decrement operators that perform this task so that you don’t have to write the
entire statement. For example, the ++ operator adds 1 to the value of a variable
(called “incrementing”). The -- operator, or decrement, subtracts 1 from the
value of a variable.

In the following example, the increment operator takes the value stored in the
iCount variable (5), adds 1 to it, and stores the value 6 in the iResult variable:

iCount = 5

iResult = ++iCount

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

488 chapter fourteen

The decrement operator takes the value stored in the iCount variable (5),
subtracts 1 from it, and stores the value 4 in the iResult variable:

iCount = 5

iResult = --iCount

There are two types of increment and decrement operators: pre and post. The
pre operator places the ++ or -- symbol before the variable name. Having the
operator in front of the variable name informs the system that the increment or
decrement should be the first thing to happen in that line of source code:

• Preincrement: ++variable
• Predecrement: --variable

The post operator places the ++ or -- symbol after the variable name. Having
the operator after the variable name informs the system that the increment or
decrement should be the last thing to happen in that line of source code:

• Postincrement: variable++
• Postdecrement: variable--

To see how these operators work, take a look at this preincrement example:

iCount = 5

iResult = 0

iResult = ++iCount

In this example, the variables are initialized (meaning values are assigned to
them), and then the variable iCount is incremented to the value 6, which is
assigned to the variable iResult. Here’s another example of the pre operator:

iCount = 5

iResult = 0

iResult = ++iCount + 10

In this example, after the variables are initialized, the variable iCount is prein-
cremented to 6 (because the pre operator is used), which is then added to 10
and stored in iResult (16).

Now look at this postincrement example:

iCount = 5

iResult = 0

iResult = iCount++ + 10

Because the post operator is used, first the addition between the variable iCount
with the value 5 and the number 10 takes place. This sum of 15 is then stored in
the variable iResult. After everything else on the line is completed, the postin-
crement of the variable iCount occurs, changing it to the value 6.

““pprree”” iiss rruuddee

Remember that “pre” contains
the letter “r,” which stands for

“rude“—meaning it always goes
first. No matter where the pre

operator is located in the code
line, it’s processed first, ahead of

anything else in the line.

““ppoosstt”” iiss ppoolliittee

Remember that “post” contains
the letters “po,” which stand for

“polite“—meaning it always lets
everything else in the code line go

first. No matter where the post
operator is located in the code

line, it’s processed last.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

14

programming I 489

relational operators

The main purpose of relational operators is to compare values. The standard re-
lational operators are listed in Table 14-2.

Table 14-2, Standard relational operators

operator meaning

!= not equal to

< less than

> greater than

<= less than or equal to

>= greater than or equal to

== equals

To understand these operators, look at this example of variable declarations and
initializations:

iFirstNum = 15

iSecondNum = 10

iFirstNum > iSecondNum results in a true.

iFirstNum < iSecondNum results in a false.

iFirstNum != iSecondNum results in a true.

After making these comparisons, or relations, you can use the result to deter-
mine what other action you want to take in the program.

logical operators

The main function of logical operators is to build a truth table when compar-
ing expressions. An expression is simply a programming statement that returns
a value when it’s executed. Expressions usually use relational operators to com-
pare variable contents or values. Table 14-3 shows the standard logical
operators.

You learned about truth tables in Chapter 3, “Computer Architecture.”

nnoo ssttrriinnggss aattttaacchheedd

The == operator is a comparison
operator, but it should never be

used to compare one string (a
group of characters) with

another. If you use the == opera-
tor on strings, it compares

whether one string points to the
same memory location as

another string. Instead, use the
equals() method with any

variable you have declared as a
string, as in this example:

String sFirst = "Math";

String sSecond =

"Physics";

Results:

sFirst.equals(sSecond)

results in a false.

expression – A statement
containing a combination
of values that's interpreted
and computed to produce
another value

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

490 chapter fourteen

Table 14-3, Standard logical operators

operator meaning

! not

&& and

|| or

Table 14-4 shows how logical operators might be used in a program, given the
following variables:

iFirstNum = 15

iSecondNum = 10

iThirdNum = 20

iFourthNum = 15

Note that these expressions use Boolean variables, which means the expression
can be evaluated to a true or false value. Boolean values are used with logical
operators to determine what action to carry out. For example, if there’s a potato
chip in the bag (true), you’ll eat the chip; if there’s no potato chip in the bag
(false), you won’t eat anything.

Table 14-4, Boolean expressions

expression value explanation

(iFirstNum >= iSecondNum) && T and T equals T (15 >= 10) and
(iThirdNum >= iFourthNum) (20 >= 15)

(iFirstNum <= iSecondNum) && F and T equals F (15 <= 10) and
(iThirdNum >= iFourthNum) (20 >= 15)

(iFirstNum == iSecondNum) && F and F equals F (15 == 10) and
(iThirdNum == iFourthNum) (20 == 15)

(iFirstNum != iSecondNum) && T and T equals T (15 != 10) and
(iThirdNum != iFourthNum) (20 != 15)

(iFirstNum >= iSecondNum) || T or T equals T (15 >= 10) or
(iThirdNum >= iFourthNum) (20 >= 15)

(iFirstNum <= iSecondNum) || F or T equals T (15 <= 10) or
(iThirdNum >= iFourthNum) (20 >= 15)

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

precedence – The order in
which something is exe-
cuted; symbols with a
higher precedence are exe-
cuted before those with a
lower precedence

* / %

++ --

+ -

> >= < <=

== !

= += -= *= /= %=

Figure 14-4, Order of relational and mathematical
precedence

14

programming I 491

Table 14-4, Boolean expressions (continued)

expression value explanation

(iFirstNum == iSecondNum) || F or F equals F (15 == 10) or
(iThirdNum == iFourthNum) (20 == 15)

(iFirstNum != iSecondNum) || T or T equals T (15 != 10) or
(iThirdNum != iFourthNum) (20 != 15)

precedence and operators
The order in which operators appear can determine the output. For instance,
the following line outputs 14, not 20:

2 + 3 * 4

Even though it seems that 2 + 3 (equals 5) times 4 results in 20, the answer is
really 3 * 4 (equals 12) + 2, which is 14. Why? Because operators have a
precedence, or level of hierarchy. In other words, certain operations are per-
formed before other operations. In this case, multiplication takes precedence
and is performed before addition. Figure 14-4 shows the order of precedence of
operators, with the highest (first performed) at the top of the pyramid.

n o t e Remember that parentheses have the highest precedence, so anything

inside them is evaluated before any other operator.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

492 chapter fourteen

Using the order of precedence, see whether you understand the output in the
following examples:

(2 + 3) * 4 outputs 20

2 - 5 * 2 outputs -8

control structures and program flow
All high-level languages use a variety of control structures. A control structure is
an element that dictates a program’s flow and enforces modular structured
programming.

If you don’t follow structured programming practices, your programs can end
up looking like “spaghetti code,” that is, source code that breaks the program’s
modular structure and flow (see Figure 14-5). The name “spaghetti code” is
used because finding the beginning and ending of a spaghetti noodle in a bowl
is almost impossible. Instead of following a controlled flow of execution,
“spaghetti” program flow leaps from one area to another and is extremely hard
to follow. In fact, trying to maintain spaghetti code is like trying to empty a
bathtub full of water with a sieve.

control structure – An in-
struction that dictates the
order in which statements
in a program are executed

oonnee bbiittee aatt aa ttiimmee

Modular structured programming
divides a programming project
into smaller, more manageable

pieces so that the program is eas-
ier to design, maintain, and

debug. Remember the old saying:
“How do you eat an elephant?

One bite at a time.” If you try to
digest the whole thing in one sit-

ting, you’ll be unsuccessful.

Login

New
 U

se
r

Edit User Store changes

Figure 14-5, Spaghetti code makes your program harder to maintain and debug

In high-level programming languages, four types of control structures are used:

• Invocation
• Top down
• Selection
• Repetition

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

14

programming I 493

Each control structure performs a specific task in a program, and control struc-
tures work together and can be nested within other control structures. If used
correctly, these control structures provide the tools for creating a program with a
logical flow of execution. Even with all the tools available, programmers can still
ignore control flow and write a flawed program.

You learn more about these control structures in Chapter 15,
“Programming II.”

invocation

Invocation is the act of calling something. For example, you might decide that
certain tasks in your program could be reused in another program. Obviously,
you’d rather not rewrite this code from scratch in other programs. In this case,
you can copy the code for a specific task (called “functionality”) to a file and
name it descriptively. When you write a new program, you can “call” (invoke)
this piece of code without having to rewrite it, which saves time and money in
program development. After this piece of code has been used, control can be
passed back to the original program location to continue.

top down (also called sequence)

The top-down control structure is used when program statements are executed
in a series, from the top line to the bottom line one at a time. So the first state-
ment to be executed is the first line in the program. Each statement is executed
in sequential order, starting with the first line and continuing until the last line
is processed. This control structure is the most common, found in every
programming language.

The top-down control structure is implemented by entering statements that
don’t call other pieces of code, as with invocation. Instead, they simply execute
the current line and proceed to the next line. The other control structures do
something to change the flow of this basic top-down structure, such as direct-
ing program flow to another block of code or location in the program, and
generally provide a way to return control back to the top-down structure.

selection

Up to now, you have learned that statements can be executed in sequential
order, and you can execute statements kept in other locations in the application
by using invocation. Sometimes, however, you need the program to make a
choice (selection) depending on a value or situation.

Making and evaluating selections in a program is a standard part of most pro-
grams you’ll write. In the following example, if an employee’s job level is equal
to “Manager,” the salary increase is equal to the salary times .08. If the job level
isn’t equal to “Manager,” use a .03 salary factor. The program has to determine
what the job level is and then carry out code based on that job level.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

494 chapter fourteen

Salary Increase:

If Job Level = "Manager" then

salary = salary * 1.08

else

salary = salary * 1.03

Remember the algorithm for converting Fahrenheit and Celsius temperatures?
This algorithm also involves selection: If the user selects Celsius, one thing hap-
pens; if the user selects Fahrenheit, something else happens:

Convert to Celsius:

Ask the user for a temperature in Fahrenheit

If the value entered is numerical

Apply the formula Celsius temp = (5/9) * (Fahrenheit

temp - 32) to the entered temperature

Display the result, saying Fahrenheit temp ##

converted to Celsius is XX

Convert to Fahrenheit:

Ask the user for a temperature in Celsius

If the value entered is numerical

Apply the formula Fahrenheit temp = ((9/5) * Celsius

temp) + 32 to the entered temperature

Display the result, saying Celsius temp ## converted

to Fahrenheit is XX

repetition (looping)

The last control structure, repetition, is used when source code is to be repeated.
It’s often referred to as “looping” and is commonly used with databases or when
you want an action to be performed one or many times. The standard repetition
constructs are the for, while, and do-while statements.

When you want to repeat a series of statements a known number of times, you
use the for statement. The while statement can also be used to process a se-
ries of statements a certain number of times. The do-while statement is used
mainly when processing a table or if you want the loop to execute at least one
time. The for and while loops might not even execute, depending on the
condition expression in the loop.

ready, set, go!
Now that you’ve learned some building blocks—variables, operators, and con-
trol structures—you’re probably wondering what the next steps are to start
programming. In this section, Java is used to show examples of programming
code because it’s a widely used language and is fairly easy to learn. First, you
need the Java software package. There are many different vendors of Java, but
Sun Microsystems offers a free version, and you can download Java and the Java

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

14

programming I 495

Developer’s Toolkit at www.sun.com. This toolkit gives you all the tools you
need to compile and run Java programs.

After you have downloaded and installed Java, the next step is choosing an edi-
tor, the interface used for entering code. Some Java packages include an IDE
containing a program editor, compiler, debugger, and many more tools. You
don’t need all these tools to learn how to write Java programs, although they
do make application development easier and faster.

Java programs can be written in any text editor, including Windows Notepad.
Just make sure you save your program with the .java file extension. After enter-
ing the program in a text file, you can compile it from the command prompt
with the javac command, like this:

javac MyProg1.java

This command compiles the MyProg1.java program and determines whether
there are any syntax errors. If there are errors, open your text file, fix the prob-
lems, save the changes, and recompile.

After the compile works, you’re ready to try out your program. To run a Java
program, you use the java command:

java MyProg1

Before you start writing and compiling code, however, continue reading to
learn more about the fundamentals of how Java and other object-oriented lan-
guages work.

object-or iented programming
Now that you have the skills for writing simple pseudocode for programs, you
can learn about the concepts behind object-oriented programming (OOP). In
object-oriented programming, an object isn’t simply a noun (person, place, or
thing); it includes the qualities of an object, what it does, and how it responds
or interacts with other objects. Objects in OOP can have three distinct features:
characteristics, work, and responses. As an example, say you have an alarm
clock, called the Alarm object. The Alarm object, as with any object in OOP,
has the following features (see Figure 14-6):

• Characteristics—The Alarm object has different characteristics or attributes,
such as color, wake time, current time, selected radio station, and so on.

• Work—The Alarm object performs some work, such as displaying the current
time and ringing annoyingly when you’d rather sleep.

• Responses—The Alarm object responds to certain events. When your wake-up
time is reached, the alarm goes off, or when you hit the snooze button, the
alarm “sleeps” for another five minutes.

object-oriented program-
ming (OOP) – A style of
programming that involves
representing items, things,
and people as objects in-
stead of basing program
logic on actions

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

www.sun.com
http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

496 chapter fourteen

Most high-level languages, including Java, support object-oriented program-
ming. Each object in Java incorporates the three features described earlier. For
example, the string data type you learned about is actually an object, one of
many in Java.

OOP can be defined as being able to represent part of the program as a self-
contained object. The hardest parts of learning OOP are taking the time to
create objects and use them in your application and trying to determine what
needs to be an object and what can remain as simple source code.

The main advantages of using an OOP language are reusability and maintain-
ability. If a certain item can be used in many programs, writing the supporting
code again for every new program wastes time. For example, you wrote the
source code to represent a person as an object, and it worked well when you in-
cluded it in a program. Later, you had to write another program, but you had to
be more specific and represent a student instead of a generalized person. Because
you know the source code for a person works, and a person’s characteristics are
very similar to those of a student, you just need to add items that are specific to
a student, such as GPA, grade level, and schedule. Because the person object was
reused, you were able to decrease the amount of time writing source code.

Maintaining source code is also easier with OOP because programs can be
divided into smaller, more manageable pieces. Say you want to modify how a
student logs in to a system. Without OOP, you would have to track down
every location in the source code where a student could log in and change the

Work:
 • Display current time
 • Play radio station
 • …etc

Responses:
 • When alarm time reached,
 play alarm
 • When Snooze button pressed,
 delay alarm for 5 minutes
 • …etc

Characteristics:
 • Color
 • Current time
 • Wake time
 • Station tuned to
 • …etc

Object: Alarm

Figure 14-6, An object has characteristics, work, and responses

learning about objects

The best way to learn what
objects are available is to read

the online help included with
many software packages or

search the Internet for tutorials.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

14

programming I 497

code in each location. By representing items as objects, you have to change the
source code in only one location. The object handles the rest because the code
is contained in the object.

how OOP works
To understand the principles of object-oriented programming, imagine you
work for a toy company, and your division is responsible for creating action
figures. This week, you’re supposed to create a kung-fu action figure. The com-
pany could give you and every employee in the division a piece of plastic and
tell everyone to carve the figure, but management would have to price the
figure absurdly high to ensure that it still makes a profit, after paying all the
employees. What if you make a mistake and have to get another piece of
plastic? What a waste of time and money! The company won’t stay in business
very long with this approach. For the company to be profitable, it needs to
create a mold (called a class or template in object-oriented terminology) so
that the figure can be mass-produced economically and efficiently.

making the mold

The mold for action figures is probably just a skeleton or the basic outline of a
finished product. It won’t have all the characteristics (attributes) of a kung-fu
fighter, for example. The mold just describes the basic type of figure you’re go-
ing to create: two arms, a head, two legs, a certain height, and so on. In other
words, the mold defines the figure’s attributes.

creating the figure

To create the action figure, you must pour plastic into the mold. You might
use different colors of plastic in different parts of the mold to create attributes
such as hair color and eye color. The plastic is then formed to the shape of
the mold. It might not be completely functional, but it has the general ap-
pearance of the figure you’re creating. In other words, the mold defines what
the plastic will be.

putting the figure to work

In addition to having attributes, the figure can perform some work or action.
For instance, it can stand, the arms and legs can move, the head can turn, and
so on. The figure’s work and how it responds to certain actions are defined by
the type of mold you used. For instance, because you used the kung-fu mold to
create the figure, when you pull the arm back and release it, the arm shoots for-
ward with a powerful karate chop. In other words, the figure responds to the
event of pulling the arm back with a specific action.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

498 chapter fourteen

Now that you have seen how the process of creating an action figure can be
compared with creating an object, you can carry the analogy a little further to
learn more about OOP terminology (see Figure 14-7):

• The mold or template for creating the figure is called a class. It defines the
figure’s characteristics, work, and responses.

• The figure is called an object. It’s created based on the mold, or class.
• The creation process is called instantiation. Instantiation is simply creating an

object and assigning it memory resources. The method used to instantiate an
object in a class is called a constructor.

• A characteristic of the figure is called a property or an attribute. It defines
what the object looks like.

• The work performed by an object is called a method. It performs a task and
is linked to a class.

• An object’s response to some action taken by the end user or system is called an
event or event handler.

class – A template for
defining new object types
and their properties (char-
acteristics or attributes) and
behaviors

object – A self-contained
entity consisting of both
data and procedures

instantiation – The process
of creating an object based
on a class and assigning
memory to it

constructor – A special
method for instantiating
an object

property or attribute –
Characteristic of an object

method – The work per-
formed by an object; a
function defined in a class

event – An action or occur-
rence recognized by a class

event handler – How a class
responds to an event

Class
(mold)

Creation

Defines:
 • Characteristics (properties or
 attributes)
 • Work (methods)
 • Responses (events or event handlers)

Creating an object = instantiation

object of class kungFuFigure

Figure 14-7, Making a plastic figure shows OOP concepts in action

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

14

programming I 499

All these items describe the basic functioning of OOP. Your job, as the pro-
grammer, is deciding what items in the program need to be represented by an
object and what can be represented by standard source code. The items you
want to represent by an object are those the system might require and those you
know will be reused in other programs.

After an object is created by using a class, it has access to all the properties,
methods, and events defined for the object type. To access information for
an object, use the object name, followed by a period and the qualifier. For
example, the following Java code can be used to access an object containing a
character string and the equals() method:

String sFirstName = "Joe";

String sLastName = "Blow";

if (sFirstName.equals(sLastName))

System.out.println("The last name equals the first

name. Strange!");

The call to equals() represents calling a method in the String class.

As another example, here’s the parseDouble() method (part of the Double
class) that was used in the temperature conversion program:

String sInput = "98.6";

double dFahrenheit = 0.0;

dFahrenheit = Double.parseDouble(sInput);

inheritance
Take a moment to think about who you look like. If you look like your father
or mother, it’s because you inherited traits from your parents. Similarly, in pro-
gramming, “child” objects can inherit properties, methods, and events from
“parent” objects. This process is called inheritance.

In programming, inheritance is the creation of an object from a parent class. A
newly created object receives everything (properties, methods, and events) from
the parent class that isn’t declared as private, and it can add other capabilities
the parent doesn’t have. As shown in Figure 14-8, inheritance promotes code
reusability. If the base class (the Person class, in the figure) has already been
created and tested, whenever you need a new class with similar characteristics,
work, and responses as in the Person class, you have a head start in creating
your new class.

inheritance – The process
of creating more specific
classes based on generic
classes

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

500 chapter fourteen

The general class is called the base class or parent class. The more specific
classes created through inheritance are called subclasses and inherit everything
the parent class has.

Some inherited classes that can be based on a Person class might include
Student, Employee, Manager, Salesperson, and Customer. The real
power of inheritance comes from creating a general class and then making it more
specific to meet your needs. In this way, most of the work is already done, and
you’re simply reusing source code with slight modifications.

Calling a method is a chain reaction. Suppose your neighbor asks you to mow
his lawn, but you don’t know how to mow a lawn. If the lawn isn’t mowed,
your neighbor is going to be disappointed. What are you going to do? You
might go to your parents and explain the situation. If your parents know how
to mow a lawn, they explain it, and the lawn gets mowed. If your parents don’t
know how to mow a lawn, they go to their parents (and so on).

This example describes the process of calling methods. If a method is called
from within a subclass and the subclass doesn’t contain it, it’s passed up the
chain to the parent and continues until the method is located and executed or
an error is generated.

What’s nice about object-oriented languages is that you don’t have to be con-
cerned with what’s been inherited from which class because the help
documentation makes it seem as though all the information found in a class
was written for that class, even though much of the information was received
through inheritance. Do you care that a class has inherited a property instead
of the property being written from scratch? Suppose you inherited a million
dollars and want to put it in the bank. Is the bank manager going to say “Wait
a minute! Is this inherited money? Get out of here! We don’t take inherited
money!” In reality, the bank manager will probably say “Welcome! What can
I get you? Would you like a toaster to take home?”

Person

Employee Student Customer

Manager Salesperson

Figure 14-8, Inheritance promotes code reusability

base (or parent) class – A
general class from which
other classes can be created
via inheritance

subclass – A more specific
class based on a parent
class and created via
inheritance

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

14

programming I 501

One of the biggest questions is “Why do you want to subclass?” You subclass an
object when it doesn’t do everything you want it to do, but you know you’ll
reuse it in other situations. Think of it this way: You’ve been asked to clean
your room, but you don’t want to spend a lot of time cleaning. As a matter of
fact, you’d rather have somebody else do the work. You call your mom for help,
but she makes the bed differently than you do: She pulls the sheets and bed-
spread over the pillow and then tucks them under. So what do you do? You
let Mom make the bed her way, and then you come in and pull the sheets
and bedspread off the pillow. In other words, you’re able to use most of the
“parent class” of cleaning your room, with one modification to how the bed is
made—the “subclass.” In a programming example, you might subclass a Close
button from the parent class, Button. This way, you just have to make minor
changes in the button’s attributes or behavior instead of re-creating all the code
for the Button class from scratch.

encapsulation
Another advantage of OOP is that you don’t need to know how everything
works to use it because of encapsulation, which is the process of one object
hiding its operations from other objects. For example, your monitor hides its
operations from the CPU. If something happens to the monitor, you fix it or
replace it. You don’t have to do anything to the CPU. Similarly, when you
want to print a document, do you really think about packets of data being sent
to the printer, or do you just want the document to print? Encapsulation hides
the details and does the work. Encapsulation also helps cut down on the
chance of errors occurring because programmers can’t make changes to the
parts of an object’s source code that are hidden.

polymorphism
To promote reusability and flexibility, OOP supports using the same expression
to denote different operations, a capability called polymorphism. For example, a
program has objects representing a word-processed document, a report, and an
e-mail. Each object can be printed. If you click the Print menu item, the object’s
contents should be sent to the printer and printed. Polymorphism states that
even though the objects are different, all can use the print operation. Each object
has the capability to make a call to an operation, and the system determines at
runtime how the operation is performed. Another example of polymorphism re-
lates to geometric shapes. If you have objects representing squares, triangles, and
circles and want to send them to the output device and display them, you
should be able to call a draw operation for any of these objects.

You can use many different classes, methods, and events in Java programming,
and you’ll become more familiar with them if you take the time to practice a lot.

encapsulation – The process
of hiding an object’s opera-
tions from other objects

polymorphism – An object’s
capability to use the same
expression to denote differ-
ent operations

JJaavvaa aanndd OOOOPP

Java follows the OOP model
closely. Everything in Java

revolves around classes, proper-
ties, and methods. The sooner you

start using OOP in Java, the
sooner you know the available

classes and can reduce the num-
ber of code lines you have to

write because you’ll be able to
reuse objects.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

502 chapter fourteen

choosing a programming language
Now you can revisit the earlier question about which programming language
to use. Java has been used in many of this chapter’s examples, but as you’ve
learned, each language has advantages and disadvantages. Take the time to
choose carefully. Before you dive headfirst into the high-level programming
language waters, check for rocks! Try demo versions of different languages and
see whether you like what they have to offer. Talk to others who have experi-
ence with a certain language and ask about its pros and cons. You should also
consider these other factors:

• Functionality—Does the language allow you to do everything you want to do
(such as creating database and Web applications)?

• Vendor stability—Is the company backing the language financially stable? Will
the language be around for the long haul?

• Popularity—How many books on the language do you see at the bookstore?
Having many books available usually means the language is popular and has a
lot of support.

• Job market—How many and what types of jobs are related to the language
you want to use?

• Price—How much does the language’s software package cost?
• Ease of learning—How long does it take to learn the language before you’re a

productive developer?
• Performance—Will programs created with the language have suitable response

times and processing times?

Never choose a language simply because someone else says it’s good. Choosing a
language is like choosing a car: You have to test-drive a lot of them before you
know which one you like. Compare a language with your criteria to make sure it
fits your needs. Keep in mind, too, that you shouldn’t get complacent after you
choose a language and think you’ll never have to learn another one. The world
of programming changes constantly, and unless you continue increasing your
skills and learning new technology, your skills will become outdated quickly.

one last thought
A program does whatever you tell it to do. You can write a program that plays
your favorite music or calculates how much money you need to pay your bills,
for example. In most cases, if the program doesn’t work correctly, it’s the fault of
the programmer, not the computer. In programming, the key word is responsi-
bility. As a programmer, you can create new programs to help society, but you
can also write a program with serious negative ramifications, such as allowing a
breach in security. This chapter is just a stepping stone to learning how to pro-
gram. The ball’s in your court now. If you want to become a good programmer,
have patience and practice, practice, and practice!

pprraaccttiiccee,, pprraaccttiiccee,,
pprraaccttiiccee

Learning the many different
statements in a programming lan-

guage takes a lot of practice
before you’re fluent. To stay flu-

ent, you have to use the
language often. This advice

applies to any programming lan-
guage. Fortunately, there are

many resources to help you while
you’re learning. You can find free
tutorials on the Internet and buy

books showing you how to use
the available objects and libraries.
Remember that much of the work

in writing programs has already
been done by someone else. You
just need to know where to find
the resource and how to use it.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

14

programming I 503

• A program is only as good as the programmer who wrote it.

• Programs are used everywhere and in almost everything you do.

• A program can be interpreted or compiled.

• Low-level languages are more closely related to the machine language a com-
puter understands. Assembly language is a low-level programming language.

• High-level languages are more closely related to human language.

• Algorithms are created to solve problems with a logical method.

• Programmers use pseudocode to map out how a program is supposed to work.

• Creating an algorithm is one of the most important steps in writing a program.

• Variables are temporary storage locations and are used in programs for perform-
ing calculations and storing information.

• Programming languages use mathematical, relational, and logical operators.

• Four types of control structures are used in a program: top down, invocation,
selection, and repetition.

• Object-oriented programming (OOP) allows programmers to reuse code and
makes programs easier to maintain.

• OOP creates classes, which are like templates or molds for creating objects.

• Objects can have properties, methods, and event handlers.

• Java follows the OOP model closely.

• To become a good programmer, you must practice, practice, and practice
some more.

c h a p t e r s u m m a r y

algorithm (468)

assembler (473)

assembly language (473)

base (or parent) class (500)

class (498)

compiler (468)

constructor (498)

control structure (492)

k e y t e r m s

encapsulation (501)

event (498)

event handler (498)

expression (489)

high-level language (473)

identifier (486)

inheritance (499)

instantiation (498)

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

504 chapter fourteen

1. What is an algorithm?

2. Write an algorithm for calculating your checkbook balance.

3. Write the pseudocode for a program that can calculate your checkbook
balance.

4. Write an algorithm for operating a gas pump when filling up a car.

5. Write the pseudocode for a program that maintains a gas pump’s operation.

6. Write an algorithm for calculating your final grade, based on information
in your course syllabus.

7. Write the pseudocode for a program that calculates your final grade,
based on your course syllabus.

8. Write the pseudocode describing how to play tic-tac-toe.

9. Write the pseudocode describing how you get to school.

10. Write the pseudocode describing how you complete a 3 � 3 sudoku puzzle.

integrated development
environment (IDE) (478)

interpreter (468)

low-level language (473)

machine language (473)

method (498)

object (498)

object-oriented
programming (OOP) (495)

operators (487)

polymorphism (501)

precedence (491)

program (468)

property or attribute (498)

pseudocode (479)

subclasses (500)

syntax (475)

variable (485)

t e s t y o u r s e l f

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

14

programming I 505

1. Which is not an example of a high-level programming language?

a. Ada
b. Boolean
c. C++
d. Java

2. Which of the following converts source code into a computer language and
results in an executable file?

a. Compiler
b. Interpreter
c. IDE
d. Algorithm

3. Which of the following translates a program’s statements, one by one, into
a language the computer can understand?

a. Compiler
b. Interpreter
c. IDE
d. Algorithm

4. Pseudocode should be written after the source code to ensure that the
program was written correctly.

a. True
b. False

5. Which is not a type of programming language?

a. Low-level
b. Assembly
c. High-level
d. Machine
e. None of the above

6. The only language computers can understand consists of 1s and 0s.

a. True
b. False

7. All languages include an integrated development environment (IDE).

a. True
b. False

8. What is a name used to identify a specific location and value in memory?

a. Variable
b. Operator
c. Control structure
d. Object

p r a c t i c e e x e r c i s e s

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

506 chapter fourteen

9. What is the final result of the expression 5 + 2 * 4 - 2?

a. 26
b. 11
c. 9
d. 0
e. Can’t be determined

10. What is the final result of the expression 5 % 4 + 3 - 2?

a. 2
b. 6
c. 1
d. 0
e. Can’t be determined

11. The postincrement operator increments the variable and then processes the
remainder of the statement.

a. True
b. False

12. The preincrement operator increments the variable and then processes the
remainder of the statement.

a. True
b. False

13. Which is not a type of control structure?

a. Invocation
b. Top down
c. Algorithm
d. Selection
e. Repetition

1. What language is considered the most complex to learn? Why?

2. What integrated development environments can be used for Java?

3. What integrated development environments can be used for C++?

4. What is the specialty of each high-level language listed in this chapter?

5. What is a disadvantage of each high-level language listed in this chapter?

d i g g i n g d e e p e r

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

14

programming I 507

1. What are the advantages and disadvantages of OOP languages?

2. Find a business in your area, or a department at your school, that hasn’t
switched to using an object-oriented language, and ask about the
reasons for not making this change.

3. How could a programming language be made easier to use? What would
the language look like? Why hasn’t someone already developed a language
like it?

4. What is the future of COBOL? Is there a need for programmers to learn
this language? Why or why not?

5. What are some common tasks that require thinking in terms of an algorithm?

1. What are some famous banking errors caused by bugs in programs?

2. Search the Internet or ask software developers to find out whether learning
object-oriented programming is worth the effort. Why or why not?

3. Does a programming language ever really “die”? If so, which languages are
no longer used? What process do software developments follow when the
languages they’re using become obsolete?

4. What are some suggested standards for pseudocode? If you could create
your own standard, what would it be?

5. Research the term “embedded software.” Describe what this term means,
and explain what programming languages are used for it.

d i s c u s s i o n t o p i c s

I n t e r n e t r e s e a r c h

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

c h a p t e r

programming I I

15

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

i n t h i s c h a p t e r y o u w i l l :

• Gain an understanding of the basics of high-level programming languages, using Java and C++ as
examples

• Learn about variable types in Java and C++ and how they’re used

• Explore the different control structures in Java and C++

1439080356_ch15_REV2.qxd 12/4/09 7:26 AM Page 509

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Many years ago, my dad shared some words of wisdom with me: “Son, a good computer programmer is lazy.”
(Coincidentally, it was the same day I decided I wanted to make a living as a computer programmer.) He makes

a good point. Here’s an example to describe what I’m talking about:

Recently, I came home to discover that my dad had spent many hours on his latest “home improvement” project.
He had screwed a hook into the frame of the back patio door, and then screwed in two or three hooks along the

top of the door. He tied some fishing line to the hook in the frame, ran the line through the hooks on the door,
and then tied some weights on the other end. Like you, I wondered what this contraption did—until I noticed our

dog approaching the door, which had been left ajar, from the backyard. He pushed the door open with his nose,
and I watched as the weights pulled the line to shut the door neatly behind him. I realized we would no longer
have to get up from the couch and trek the 10 feet to shut the door after the dog came in. (Needless to say, my

dad is an excellent programmer!)

My dad’s point was that good computer programmers are willing to spend massive amounts of time and effort to
automate a process so that they won’t ever have to do that task again. Obviously, he was being a little facetious;

programming is actually hard work.

For example, I once spent two weeks debugging one simple error. I was creating an install disk, and every time I
got to a certain point in the installation process during testing, I got an error. I tried everything I could think of
to fix it. I burned about 100 test install CDs. I went through the installation code line by line, retraced my steps,
and modified every setting I could find. I paced the room and beat my head on the keyboard out of frustration.

After literally 80 hours of debugging, about the time I was considering changing my major to psychology, it
occurred to me that the error might not be in the installation wizard but in my code. (Hard to believe, I

know.) After about 30 seconds of looking at my code, I found the error. To “save time,” I had copied and
pasted a section of code from one part of my program to another. Unfortunately, the variable I was using was

named “gsDPath” in one part and “DPath” in the other, and the install program didn’t recognize it. (Laziness
did not work out so well in this case.)

Now that you have a little programming under your belt, you’ll understand these next statements:

if (two_Letter_Error == two_Weeks_Worth_of_Work)

{

pink_slip;

}

else

{

you_did_not_let_your_boss_know_about_the_error;

//This is the option I took.

}

Well, I’d better get back to work on my latest project. I call it the Automatic Lighter Side Writer.

510 chapter f i f teen

the lighter side of the lab
by spencer

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

p r o g r a m m i n g l a n g u a g e s

During the Depression, a family struggling to survive wanted to provide opportunities for

their children to develop their talents. The father often skipped meals and took on extra jobs

to pay for his daughter’s piano lessons. Despite these sacrifices, he wanted to give his daugh-

ter the opportunity because he knew how much music meant to her.

Time went by, and the daughter married and had a family of her own. Her father was visit-

ing one day and noticed a piano in her house. He had fond memories of her practicing daily,

so he asked her to play him a song. Embarrassed, she said she hadn’t played for a long time,

but he persuaded her to play. As she stumbled through the song, she noticed her father

becoming more emotional. She was touched, thinking that she and her father were sharing

a special moment. By the time she finished the song, her father was sobbing. She turned to

him and said, “I hope you liked that, Dad.” He replied, through tears, “I can’t believe it. All

that money down the drain!”

Students invest a lot of time, money, and effort learning computer programming languages.

However, the only real way to learn is through practice, practice, and more practice. If you

want to learn Java or C++, you can’t stop your learning after you finish reading this chapter.

You must sit down at the computer and practice the concepts frequently.

why you need to know about...

programming I I 511

Java and C++ programming
languages
As you learned in Chapter 14, you can choose from a wide variety of program-
ming languages to develop software. Your choice of language should be based
on what tasks the program needs to perform, your programming skills, the pro-
gram’s lifetime (how long it will be used), and the complexity of the software
you’re designing.

C++ and Java are widely accepted in industry and academia. Both languages
support an object-oriented environment and can be used on different operating
systems. Either language gives you a strong foundation for learning how to
program and can be a springboard to other languages.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

512 chapter f i f teen

learning to cook with Java and C++
As discussed in Chapter 14, you can use the following ingredients to write
programs:

• Variables
• Operators
• Control structures
• Objects

Java and C++ are high-level programming languages, meaning you can inter-
act with a computer without having to speak in binary 1s and 0s. Java,
designed for Internet use, was introduced by Sun Microsystems in 1995. It
was intended for small tasks or small applications (called “applets”), without
the need to write an entire program. However, Java has become a full-blown
programming language and the language of choice to develop applications for
communication devices and media, such as PDAs, cell phones, the Internet,
and networks.

The main advantages of Java are the following:

• It uses familiar syntax—Its syntax is similar to the popular C++ language but
easier to use.

• It’s very portable—You can run a Java program written for one operating sys-
tem on other operating systems without recompiling it. This advantage is the
most important one for software developers.

• It’s powerful—It has an extensive library of classes and routines to do most of
the necessary programming tasks.

• It’s popular—Java is widely used in many different computing environments
and is currently one of the most popular languages.

C++, created in 1983 by Bjarne Stroustrup at Bell Labs, was based on C,
which was used to develop UNIX. Stroustrup added features to the C lan-
guage and called it “C with Classes,” which later became known as C++. C++
is an object-oriented programming language that provides reusable and ex-
tendable source code, so modifying software is easier. It maintains the basics
of the C language but offers simplified memory management and access to
low-level memory.

Because Java and C++ are such popular and widespread languages, often used
in schools to teach programming skills, both languages are used in this
chapter to illustrate programming concepts. The building blocks you learn
with these languages can be used in almost every other high-level language.
Also, people with knowledge of both languages are in high demand because
so many companies are using these languages.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

15

programming I I 513

declaration – A statement
that associates an identifier
with a variable (or an
action or another
programming element)

reserved word – A keyword
with a specific instructional
meaning; the name can’t be
used for a variable because
the programming language
is already using it as an
instruction

n o t e

variables
Just as ingredients can affect how a dish you’re preparing turns out, variables
have specific effects on a program’s outcome. Before you can use a variable in
your program, it must have an identifier, or name. Associating an identifier
with a variable is called declaring a variable, so a declaration is a statement
that associates an identifier with a variable (or an action or another
programming element that can be given a name).

When you declare a variable, you specify its attributes, which define how the
variable is processed. Some attributes are as follows:

• Identifier (name)
• Type (character, numeric, Boolean, and so forth)
• Content

For example, the following statement can be used to declare a variable for
storing the integer number of tickets bought:

int numTicketsBought;

Java and C++ are case-sensitive languages, so make sure you’re consistent

with naming conventions. For example, “Amount” isn’t the same as

“amount.” The same letter case must be used every time you use a variable.

variable naming conventions
The rules for declaring a variable in Java or C++ are as follows:

• Use only letters, underscores, and numbers.
• Begin the name with a letter.
• Avoid Java and C++ reserved words that have specific programming

meanings.

variable types
All variables in Java and C++ are strongly typed, meaning you must declare the
type of data a variable can hold. Many data types are used in Java and C++, and
not all are discussed in this introductory chapter. However, you learn about the
major data types. In Java, six data types are number related, one is character re-
lated, and one is for true and false (Boolean). C++ uses many of the same data
types as Java but adds a data type for signed or unsigned numbers. A signed

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

514 chapter f i f teen

variable includes positive and negative values, and an unsigned variable includes
only positive values. This is the syntax for declaring a variable:

type variableName;

integer data types

Integer data types are used for positive and negative whole numbers. Table 15-1
shows the Java integer data types, and Table 15-2 shows some C++ integer data
types for working with positive and negative whole numbers.

Table 15-1, Java integer data types

data type storage requirement values

int 4 bytes -2,147,483,648 to 2,147,483,647

short 2 bytes -32,768 to 32,767

long 8 bytes -9,223,372,036,854,775,808L to
9,223,372,036,854,775,807L
(Long integers have the suffix L.)

byte 1 byte -128 to 127

Here are some examples in Java:

int studentTickets;

short studentFees;

long studentTuition;

byte studentGrade;

Table 15-2, C++ integer data types

data type storage requirement values

short int 2 bytes -32,768 to 32,767

unsigned short int 2 bytes 0 to 65,535

int 4 bytes -2,147,483,648 to
2,147,483,647

unsigned int 4 bytes 0 to 4,294,967,295

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

15

programming I I 515

The following are some examples in C++:

int studentTickets;

short int studentFees;

unsigned int totalPoints;

floating-point data types

Floating-point data types are used for positive and negative numbers that can
also have decimals. Tables 15-3 and 15-4 list some examples of floating-point
data types in Java and C++.

Table 15-3, Java floating-point data types

data type storage requirement values

float 4 bytes 3.4E +/- 38F (approx. 6 to
7 significant digits)

double 8 bytes 1.7E +/- 308 (approx.
15 significant digits)

Table 15-4, C++ floating-point data types

data type storage requirement values

float 4 bytes 3.4E +/- 38F (approx.
7 significant digits)

double 8 bytes 1.7E +/- 308 (approx.
15 significant digits)

long double 16 bytes 1.2E +/- 4932 (approx.
19 significant digits)

Here are some examples of declaring variables in both languages:

float salary;

double billGatesSalary;

character data type

The character (char) data type is used in Java and C++ for variables that hold
only one character (see Tables 15-5 and 15-6).

Unicode

Unicode was discussed in
Chapter 7. It’s a 16-bit character

set that defines 34,168 unique
characters and control codes.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

516 chapter f i f teen

Table 15-5, Java character data type

data type storage requirement values

char 2 bytes Character is enclosed in single quotes
and stored as Unicode.

Table 15-6, C++ character data types

data type storage requirement values

char 2 bytes -128 to 127

unsigned char 2 bytes 0 to 255

Here’s an example of declaring the char type:

char studentMiddleInit;

Boolean data type

The Boolean data type is used for only one of two values: true or false. In
Java and C++, you can’t associate a number with a Boolean value. In other
languages, such as Visual Basic, you use the numeric value 1 to mean true
and the value 0 to mean false. Java and C++ simply rely on a “true” or “false”
value (see Tables 15-7 and 15-8).

Table 15-7, Java Boolean data type

data type storage requirement values

boolean 1 byte true or false

Table 15-8, C++ Boolean data type

data type storage requirement values

bool 1 byte true or false

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

when is a quote not
a quote?

In both Java and C++, ‘a’ is not
the same as “a” because the

value enclosed in single quotes
is a character, and the value
enclosed in double quotes is

a string.

15

programming I I 517

n o t e

In Java, a Boolean variable declaration looks like this:

boolean deserveRaise;

In C++, it looks like this:

bool deserveRaise;

string data type

The char data type is used to recognize one character, which is enclosed in single
quotation marks. If you want more than one character, such as a student’s name,
you need to use the string data type. A string variable can be used to store a piece
of information that isn’t a number and contains more than one character.

Strings are declared by using double quotes. Even if only one character is
enclosed in double quotes, it’s still considered a string. String variables use the
String or string keyword. Notice in the following examples that the
keyword is capitalized in Java but not in C++:

String sName; //Java String

string sName; //C++ string

In Java, the String keyword is the only one that’s capitalized for data types.

The preceding statements declare a string variable called sName that contains
no characters, so it’s considered an empty string. In the following statements,
the characters enclosed in double quotes are the contents of the string variable
sName:

String sName = "Joe Blow"; //Java

string sName = "Joe Blow"; //C++

The plus (+) operator works a little differently with strings than with numeric
values. It’s a concatenation operator, meaning it combines one string with an-
other. The following statement (in Java and C++) takes the value stored in
sFirstName (Joe), adds the string ", ", and then adds the value stored in
sLastName (Blow), resulting in the variable sFullName containing “Blow, Joe”:

//Java example

String sFirstName = "Joe";

String sLastname = "Blow";

String sFullName;

sFullName = sLastName + "," + sFirstName;

concatenation – The process
of combining or joining
strings into one value

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

518 chapter f i f teen

n o t e

//C++ example

string sFirstName = "Joe";

string sLastname = "Blow";

string sFullName;

sFullName = sLastName + "," + sFirstName;

Integer and character data types are also referred to as “scalar,” meaning

they reference a specific value. Strings are a combination of values, so they

can’t be represented by scalar values.

Hungarian notation
Another standard for variable identifiers is called Hungarian notation. Charles
Simonyi, a Microsoft programmer, decided that adding a letter at the beginning
of an identifier to indicate its data type would be helpful. For instance, a vari-
able named bBirth indicates a Boolean value. Table 15-9 shows Hungarian
notation for other data types.

Table 15-9, Hungarian notation examples

notation data type example

c char cMiddleInit

f float fSalary

i int iStudentCount

li long integer liSecondsLived

si short integer siStudentsPaid

Just because a variable uses Hungarian notation doesn’t mean it must contain
the specified data type. It’s used only for the sake of readability. Java and
C++ compilers ignore the name when determining whether programming
statements are valid. They’re concerned only with naming rules, such as
whether reserved words are used in a variable name and whether the variable
is used correctly.

variable content
When a variable is declared, you can assign it a value immediately by using the
equal sign (=). Assigning a value to a variable is called variable initialization,

Hungarian notation –
A variable-naming method
that adds a letter at the
beginning of a variable
name to indicate its
data type

variable initialization –
Supplying a value when a
variable is first declared

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

15

programming I I 519

better safe...

No matter which programming
language you use, initializing

variables to some starting value is
wiser than wondering whether
the system is going to initialize

them. In programming, follow the
principle “Better safe than sorry.”

n o t e

or “initializing a variable.” You don’t always have to initialize a variable, but
sometimes if you don’t, the programming language assigns it a default value.

For example, the following statements use Hungarian notation to declare a
variable called iStudentCount and assign it a value of 456:

int iStudentCount;

iStudentCount = 456;

You can also initialize a variable on one line:

int iStudentCount = 456;

When you assign a value to a character variable, it should be enclosed in single
quotes:

char cMiddleInit;

cMiddleInit = 'S';

If you prefer, you can combine these statements on one line:

char cMiddleInit = 'S';

When you assign a value to a string variable, it should be enclosed in double
quotes:

//Java

String sMiddleName;

sMiddleName = "S";

//C++

string sMiddleName;

sMiddleName = "S";

Again, you can combine the statements on one line:

String sMiddleName = "S"; //Java

string sMiddleName = "S"; //C++

Make sure you use blank lines and spaces to help make your source code

more readable.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

520 chapter f i f teen

n o t e

n o t e

Java and C++ control structures
and program f low
As you learned in Chapter 14, the four types of control structures are invocation,
top down, selection, and repetition. Using these control structures correctly
helps make a program readable and easier to maintain.

Java examples in this chapter were compiled with JGrasp, and C++

examples were compiled with Dev-C++.

As mentioned in Chapter 14, you can download a free version of Java and

the Java Developer’s Toolkit at www.sun.com. Many different versions of

C++ are available; you can download a free version at www.bloodshed.net/

devcpp.html.

invocation
Every Java or C++ program has a block of code called the main() function that
tells the operating system it’s the starting point. A function performs a task and
can, if needed, return a value. For example, take a look at this source code in
the Save_Ferris.java file:

public class Save_Ferris

{

public static void main(String[] args)

{

System.out.println("I could have been the Walrus!");

}

}

The first two lines are a statement to the compiler declaring that the following
source code is part of the Save_Ferris program:

public class Save_Ferris

{

You can put the opening brace ({) at the end of the first line, but putting it on
a separate line improves readability. The opening brace indicates that there’s a
block of code associated with the Save_Ferris Java program. Any opening brace
must have a closing brace paired with it. The public keyword tells the Java

function – A block of code
that performs a task and
can return a value

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

www.sun.com
www.bloodshed.net/devcpp.html
www.bloodshed.net/devcpp.html
http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

15

programming I I 521

scope – Where source code
can be seen and whether
other programs can see
and use it

parameter – A received
value assigned to a variable;
used by a block of source
code

the main() function

The Java main() function
doesn’t return a value, so it must
be declared to return void. Other

languages, such as C and C++,
allow main() to return a value

to the operating system.

n o t e

compiler that this source code can be seen by any other program that wants to
use it and is included with the Save_Ferris program. The class keyword iden-
tifies what type of source code is being used.

The next line of code promotes modular programming by breaking down parts
of the program into blocks:

public static void main(String[] args)

{

This block of code is called main and, as mentioned, it’s the starting point for
any Java program. Again, the public keyword indicates the scope of the source
code, meaning where code can be seen. Public scope means the source code is
visible for any other program to use.

The static keyword indicates that the function belongs to a class. In this
example, the main() function belongs to the Save_Ferris class. The void
keyword indicates that the main() source code isn’t going to return anything
to the operating system when it has finished running. It still displays output
onscreen, but it doesn’t return anything for the operating system to use.

In Java, make sure you use the standard naming convention of capitalizing

the first letter of each word in a function name (except in the main()

function).

The words inside parentheses—String[] args—are used as data receivers
when the program runs. When a Java program runs, it can receive parameters

(values). To pass parameters as values, simply enter them on the same line after
the Java program name. For example, if you want to pass the number 10 to a
Java program called “hello” containing this line, enter the following:

C:\>hello 10

This line runs the Java program and passes the value 10 to the variable called
args of type String.

C++ also has a main() function in every program. However, software
engineers often have to include other files of source code to perform common
tasks, such as displaying information onscreen. Notice the #include
statements in this example:

#include <cstdlib>

#include <iostream>

using namespace std;

int main()

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

522 chapter f i f teen

n o t e

{

cout << "I could have been the Walrus!\n";

system("PAUSE");

return 0;

}

In C++, many of the statements you use are contained in “include” files.

The standard include files you should use in programs are cstdlib and

iostream. They give you access to statements such as cout and cin.

Like Java, C++ can also have words inside parentheses, such as int argc,
char *argv[], to indicate parameters that receive data when the program
runs. These parameters allow users to pass data to main() and then use the
data in the program:

//C++ main receiving parameters

int main(int argc, char *argv[])

top down (or sequence)
The top-down control structure is used when program statements are executed
in sequential order, starting at the top and working down to the bottom. In
other words, statements are carried out one after another. The following source
code in the Add_It_Up.java and Add_It_Up.cpp files shows examples of the
top-down control structure:

//Java example

public class Add_It_Up

{

public static void main(String[] args)

{

int iFirstNum = 15;

int iSecondNum = 10;

int iThirdNum = 20;

int iFourthNum = 15;

int iResult = 0;

iResult = iFirstNum + iSecondNum;

System.out.print("15 + 10 = ");

System.out.println(iResult);

iResult = iThirdNum - iFourthNum;

System.out.print("20 - 15 = ");

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

15

programming I I 523

n o t e

System.out.println(iResult);

System.out.println("Have a nice day!");

}

}

//C++ example

#include <cstdlib>

#include <iostream>

using namespace std;

int main()

{

int iFirstNum = 15;

int iSecondNum = 10;

int iThirdNum = 20;

int iFourthNum = 15;

int iResult = 0;

iResult = iFirstNum + iSecondNum;

cout << "15 + 10 = " << iResult << endl;

iResult = iThirdNum - iFourthNum;

cout<< "20 - 15 = " << iResult << endl;

cout<< "Have a nice day!\n";

system("PAUSE");

return 0;

}

Here’s the output generated by the preceding code:

15 + 10 = 25

20 - 15 = 5

Have a nice day!

Don’t forget to end a block of code with a closing brace (}). Every opening

brace must be paired with a closing brace.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

524 chapter f i f teen

In a top-down control structure, the first statement to
be executed is the first line in the program. In the ex-
ample, int iFirstNum = 15; is the first statement
executed. Next, control is passed to the next line,
which declares and initializes the variable
iSecondNum. This process continues until all the vari-
ables are declared and initialized. Then the
mathematical operations begin. First, the contents of
iFirstNum are added to iSecondNum and stored in
iResult with the line iResult = iFirstNum +
iSecondNum;. Second, the system displays a string of
characters onscreen with the Java line
System.out.print("15 + 10 = "); or the C++
line cout << "15 + 10 = " << iResult <<
endl;. The program flow continues until no more
lines are left to process.

Each statement is executed in sequential order, starting
with the first line and continuing until the last line is
processed. This control structure is the most common,
found in every programming language. The top-down
control structure is implemented by entering state-
ments that don’t call other pieces of code, as with
invocation. Instead, they simply execute the current
line and proceed to the next line.

Before continuing with the other control structures,
you need to know how to use indenting and line

breaks to make code more readable, discussed in the following section.

blocks of code
A sequence of several statements can be enclosed with opening and
closing braces to indicate that they’re related to each other in function-
ality and constitute a block of code. This format helps make your
program more readable and accurate. (Leaving out braces can actually cause
your program to function incorrectly, as you see in later code examples.)
Here’s an example of using braces to create a block of code:

{

statement 1;

statement 2;

}

compiling the program

To compile and run a Java program, make sure the public class
name matches the filename where you’re saving the source code;

the filename must have the extension .java. To make matters
simpler, you can use the following statements with Java

programs you create in this chapter’s exercises:

public class Java_Name

{

public static void main(String[] args)

{

put your source code here

}

}

Whatever name you substitute for Java_Name should be the same
name as your source code file. After entering the source code, you

compile the Java program by entering this line, substituting the
source code filename for Java_Name:

javac Java_Name.java

You can then run the program by entering the following line; note
that you don’t have to include the file extension:

java Java_Name

Compiling a program in C++ depends on the software package
you’re using. For instructions, consult the help file included with

the software package.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

15

programming I I 525

insertion point – Where the
cursor is placed

Braces are used most often when you’re working with invocation, selection,
and repetition control structures. The following sections show some examples
in Java and C++ output and input statements.

Java output data

You can send data to the output device (usually the monitor) with the
Java System.out statement. System.out has two methods to output
(sometimes called “print”) data to the output device:

System.out.print(expression);

System.out.println(expression);

The print() method prints the expression or string but leaves the insertion

point at the end of the data being output. In other words, it’s like writing words
on a piece of paper but keeping the pencil ready to write more on the same line
if needed.

The println() method prints the expression or string, and when it’s finished,
it moves the insertion point to the next line. This method is like writing a line
and then picking up the pencil and moving it to the beginning of the next line
on the paper.

You can output all types of data. Table 15-10 lists some examples of Java output
statements.

Table 15-10, Java output statements

statement output

System.out.println(15 + 10); 25

System.out.println(15 + iFirstNum); 30

System.out.println("Hello, Kitty!"); Hello, Kitty!

System.out.println("Computer scientists Computer scientists
\nhave better memory!"); have better memory!

System.out.println("iFirstNum + 15 = " + iFirstNum + 15 = 30
(15 + iFirstNum));

Notice a couple of things in Table 15-10. First is the \n, called the newline
escape sequence in Java and C++. It moves the insertion point to the beginning
of the next line, as though someone pressed the Enter key. Whatever follows it
continues printing at this new location.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

526 chapter f i f teen

n o t e

Second, you can concatenate (join) values. The last statement in the table
joins a string with an expression in ("iFirstNum + 15 = " + (15 +
iFirstNum)). System.out is flexible in displaying data and is definitely a
useful tool for Java programming.

C++ output data

In C++, you can send data to the output device with the cout statement. This
statement uses the redirection symbols (<<) to direct output, as shown in this
example:

cout << "15 + 10 = " << iResult <<endl;

The cout statement instructs the compiler to direct anything following the <<
symbols to the defined output device (typically, the monitor). First, the string
"15 + 10 =" is displayed. Second, the content of the iResult variable is
displayed on the same line, and third, the endl statement, which is much like
using a newline escape sequence (\n), is sent to the output device so that the
insertion point moves to the beginning of the next line.

The endl statement shown in Table 15-11 flushes the buffer and inserts a

new line. The \n just inserts a new line.

Table 15-11, Sample C++ output statements

statement output

cout << 15+10 << endl; 25

cout << 15 + iFirstNum << endl; 30

cout << "Hello, Kitty!\n"; Hello, Kitty!

cout << "Computer scientists Computer scientists
\nhave better memory!\n"; have better memory!

cout << "iFirstNum + 15 = " << 15 + iFirstNum + 15 = 30
iFirstNum << endl;

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

15

programming I I 527

input data

Displaying data is great, but you need a way to get data from users, too. Java
and C++ provide input statements to read data from the input device (usually
the keyboard).

System.out provides methods to display data in Java, so it makes sense
that there’s a System.in to provide methods for retrieving data from the
input device. To get input from System.in, you must create a new variable
from the Scanner class. This variable is responsible for reading characters
from the input stream (keyboard) and then putting them, one by one, into
another variable that acts as a memory buffer for storing the entered string. The
input can be assigned to a string variable you have declared by making a call to
the next() method.

In C++, the cin statement is used to retrieve data from the input device. Take a
look at the following examples in Java and C++, paying particular attention to
the bolded lines:

typical typos

A common mistake programmers
make is typos—switching the

order of letters, misspelling words,
or using the wrong letter case, for
example. When a program doesn’t

compile successfully, start by
checking that words are spelled
correctly, and the correct letter

case has been used.

//Java example of input using strings

//Author: Alfalfa Sprouts

//Description: Get a user's name and print it by using a string

import java.io.*;

import java.util.*;

public class MyProg1

{

public static void main(String[] args)

{

//Create a variable of type Scanner to get input

Scanner console = new Scanner(System.in);

String sFirst_Name; //Declares a string variable

String sLast_Name; //Declares a string variable

System.out.println("Enter your first name:");

sFirst_Name = console.next(); //Gets input from the

keyboard

System.out.println("Enter your last name:");

sLast_Name = console.next(); //Gets input from the keyboard

System.out.println("Hello " + sFirst_Name + " " +

sLast_Name);

}

}

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

528 chapter f i f teen

//C++ example of input using strings

//Author: Alfalfa Sprouts

//Description: Get a user's name and print it by using a string

#include <cstdlib>

#include <iostream>

using namespace std;

int main()

{

string sFirst_Name; //Declares a string variable

string sLast_Name; //Declares a string variable

cout << "Enter your first name: ";

cin >> sFirst_Name; //Gets input from the keyboard

cout << "Enter your last name: ";

cin >> sLast_Name; //Gets input from the keyboard

cout << "Hello " << sFirst_Name + " " + sLast_Name << endl;

system("PAUSE");

return 0;

}

n o t e

Both examples read two string values from the keyboard and assign them to
two different variables. Then the program combines (concatenates) these vari-
ables with a space between them (indicated as " ") and prints all variables to
the output device.

The Java and C++ programs shown in this chapter contain many

new elements you haven’t seen yet. For those of you chomping at

the bit to become Java and C++ experts, you can find a plethora of

Web sites with free tutorials that open the doors to the vast world

of programming. Just go to your favorite search engine and enter

“Java tutorial” or “C++ tutorial.”

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

15

programming I I 529

back to control structures
The other control structures do something to change the flow of the basic top-
down structure, such as directing program flow to another block of code or
location in the program, and generally provide a way to return control to the
top-down structure.

Java and C++ implement invocation with calling functions and methods.
A function, as you’ve learned, performs a task and can return a value.
A method is simply a function that belongs to a class. The invocation control
structure executes the statements in a function or method. In other words,
when the system encounters a function name, it passes control to the first line
of code in this function. The function finishes carrying out its statements and
then returns control to the original calling point.

For example, the Java equals() method associated with string variables returns
a Boolean value determining whether two strings are equal. When this method is
used, the system passes control (although you don’t see it happen) to the source
code associated with equals(), carries out the statements, makes the compari-
son, and then returns a Boolean value.

The following Java example combines the top-down and invocation control struc-
tures. The variable declaration and initialization statements are carried out in
sequential order, and the statement bCompare = sName.equals(sNewName);
is an example of invocation because it calls the equals() method:

//Java example

public class Combining_Strings

{

public static void main(String[] args)

{

String sName;

String sNewName;

boolean bCompare;

sName = "Mary Lamb";

sNewName = "Joe Blow";

bCompare = sName.equals(sNewName);

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

530 chapter f i f teen

System.out.println(sName);

System.out.println(sNewName);

System.out.println(bCompare);

}

}

After all statements in the equals() method have been carried out, control is
returned to the assignment statement, and the value returned from the method
is placed in the bCompare variable. Control is then passed to the next state-
ment, continuing the top-down control structure.

C++ also uses method and function calls for invocation. As the following exam-
ple shows, the _strdate statement calls (“invokes”) the source code that
copies the current date into the sDate variable:

//C++ example

#include <cstdlib>

#include <iostream>

#include <time.h>

using namespace std;

int main()

{

char sdate[9];

_strdate(sdate); //needs a group of characters as a parameter

//instead of a string variable

cout << "Date: " << sdate << endl;

system("PAUSE");

return 0;

}

The invocation control structure is used when the same code module is executed
more than once in an application. Code that’s repeated should be placed in a
function or method and then called when it’s needed. The reasons are to cut
down on the amount of code you have to write, which saves time and money,
and make the program more modular and structured. Learning more about
functions and methods is an important part of learning Java and C++ and
continuing your computing education.

selection
You use the selection control structure every day, although you might not
have realized it. For example, “If I want an A in this course, I study.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

15

programming I I 531

Otherwise, I won’t study.” is an example of using a selection control structure
to make a choice. To make sure the program meets the requirements of the
language you’re using, writing an algorithm with pseudocode first is recom-
mended. An algorithm can be used as a guide or template for writing source
code. Using the algorithm and pseudocode from Chapter 14 to convert
Celsius to Fahrenheit temperatures and vice versa results in the following
Java source code:

//Java example

//Lines starting with // are comment lines and are ignored by

//the Java compiler. Information about the program, including your

//name and a description, is usually placed in the comment section

//at the beginning.

//Java has many class libraries for performing common tasks.

//java.io is the library for input and output, so for keyboard I/O,

//this library must be imported. java.util is needed for the Scanner class.

import java.io.*;

import java.util.*;

public class test

{

//This statement is required exactly as written

public static void main(String[] args)

{

//Declare strings to hold input from the keyboard and

//floating-point (double) variables to hold temperatures

String sInput = "";

double dCelsius = 0.0;

double dFahrenheit = 0.0;

String sChoice = "";

Scanner sConsole = new Scanner(System.in);

//This statement prompts the user to choose which conversion to perform

System.out.print("Enter F for Fahrenheit to Celsius OR ");

System.out.print("Enter C for Celsius to Fahrenheit: ");

sChoice = sConsole.next();

if (sChoice.equals("F"))

{

//This statement prompts the user to enter a Fahrenheit temperature

//Input from the keyboard comes in as a text string

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

532 chapter f i f teen

System.out.print("Enter the Fahrenheit temperature: ");

sInput = sConsole.next();

//and must be converted into a floating-point number

//so that it can be used in a calculation

dFahrenheit = Double.parseDouble(sInput);

//This statement calculates the Celsius temperature

dCelsius = (5.0/9.0) * (dFahrenheit - 32.0);

System.out.println(sInput + " converted from F to C is " + dCelsius);

}

else

{

//This statement prompts the user to enter a Celsius temperature

//Input from the keyboard comes in as a text string

System.out.print("Enter the Celsius temperature: ");

sInput = sConsole.next();

//and must be converted into a floating-point number

//so that it can be used in a calculation

dCelsius = Double.parseDouble(sInput);

//This statement calculates the Fahrenheit temperature

dFahrenheit = ((9.0/5.0) * dCelsius) + 32.0;

System.out.println(sInput + "converted from C to F is " + dFahrenheit);

}

}

}

n o t e In Java, the variable dTemp is the double data type. If you need to

convert a string to a double, use the Double.parseDouble()

method, which accepts a string value and returns a double value.

The C++ source code looks like this:

//C++ example

//Lines starting with // are comment lines in C++, too.

#include <cstdlib>

#include <iostream>

#include <string>

using namespace std;

int main()

{

//Declare strings to hold input from the keyboard and

//floating-point (double) variables to hold the temperatures

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

15

programming I I 533

double dCelsius = 0.0;

double dFahrenheit = 0.0;

string sChoice;

//This statement prompts the user to choose which conversion to perform

cout << "Enter F for Fahrenheit to Celsius OR \n";

cout << "Enter C for Celsius to Fahrenheit: \n";

cin >> sChoice;

if (sChoice == "F")

{

//This statement prompts the user to enter a Fahrenheit temperature

//Input from the keyboard comes in as a text string

cout << "Enter the Fahrenheit temperature: ";

cin >> dFahrenheit;

//This statement calculates the Celsius temperature

dCelsius = (5.0/9.0) * (dFahrenheit - 32.0);

cout << dFahrenheit << " converted from F to C is " << dCelsius << endl;

}

else

{

//This statement prompts the user to enter a Celsius temperature

//Input from the keyboard comes in as a text string

cout << "Enter the Celsius temperature: ";

cin >> dCelsius;

//This statement calculates the Fahrenheit temperature

dFahrenheit = ((9.0/5.0) * dCelsius) + 32.0;

cout << dCelsius << " converted from C to F is " << dFahrenheit << endl;

}

system("PAUSE");

return 0;

}

The if statement in the preceding examples—if (sChoice == "F")—is
interpreted as “If the user enters an F, the program should convert from
Fahrenheit to Celsius. Otherwise, convert from Celsius to Fahrenheit.” Java
and C++ implement the selection control structure with if, if-else,
if-else-if, and switch statements.

if and if-else statements

You use if and if-else statements every time you need to weigh the results
of making a decision. If you choose what’s behind door number one, you win a

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

534 chapter f i f teen

n o t e

ABCs of blocks

New programmers often make the
mistake of having more than one
statement associated with an if

control structure but forgetting to
group the statements in a block.

The result is that only the first
statement depends on the if

control structure, and the remain-
ing statements are always carried
out, no matter what (which might

not be what you intended).

new car. If you choose what’s behind door number two, you win a donkey. For
every choice, there’s a result. The syntax for the if statement is as follows:

if (condition)

{

one or more statements;

}

You don’t have to put statements in a block if only one statement is

associated with the if control structure, but it’s a good programming

habit to develop.

The condition in the syntax is an expression that returns a true or false value.
If needed, you can add an else part to the control structure to perform some
other function if the if control structure evaluates to a false value, as shown
in this example:

if (condition)

{

one or more statements;

}

else

{

one or more statements;

}

If the expression evaluates to true, the system executes the nested commands
below the if statement up to the else keyword. If the expression evaluates to
false, the system executes the nested commands below the else statement up
to the closing brace.

In the temperature conversion program, the system checks to see what type of
value the user entered that’s stored in the sChoice variable. The variable’s con-
tents are compared with the string "F". If the user enters an F, the system asks
the user to enter the temperature in Fahrenheit; if the user doesn’t enter an F,
the system prompts the user for a Celsius temperature. The following example
shows the if-else structure used in the previous Java and C++ programs:

//Java example

if (sChoice.equals("F"))

{

//This statement prompts the user to enter a Fahrenheit temperature

//Input from the keyboard comes in as a text string

System.out.print("Enter the Fahrenheit temperature: ");

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

15

programming I I 535

sInput = sConsole.next();

//and must be converted into a floating-point number

//so that it can be used in a calculation

dFahrenheit = Double.parseDouble(sInput);

//This statement calculates the Celsius temperature

dCelsius = (5.0/9.0) * (dFahrenheit - 32.0);

System.out.println(sInput + " converted from F to C is " + dCelsius);

}

else

{

//This statement prompts the user to enter a Celsius temperature

//Input from the keyboard comes in as a text string

System.out.print("Enter the Celsius temperature: ");

sInput = sConsole.next();

//and must be converted into a floating-point number

//so that it can be used in a calculation

dCelsius = Double.parseDouble(sInput);

//This statement calculates the Fahrenheit temperature

dFahrenheit = ((9.0/5.0) * dCelsius) + 32.0;

System.out.println(sInput + " converted from C to F is " + dFahrenheit);

}

//C++ example

if (sChoice == "F")

{

//This statement prompts the user to enter a Fahrenheit temperature

//Input from the keyboard comes in as a text string

cout << "Enter the Fahrenheit temperature: ";

cin >> dFahrenheit;

//This statement calculates the Celsius temperature

dCelsius = (5.0/9.0) * (dFahrenheit - 32.0);

cout << dFahrenheit << " converted from F to C is " << dCelsius << endl;

}

else

{

//This statement prompts the user to enter a Celsius temperature

//Input from the keyboard comes in as a text string

cout << "Enter the Celsius temperature: ";

cin >> dCelsius;

//This statement calculates the Fahrenheit temperature

dFahrenheit = ((9.0/5.0) * dCelsius) + 32.0;

cout << dCelsius << " converted from C to F is " << dFahrenheit << endl;

}

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

536 chapter f i f teen

The if or if-else statement is used any time you need a series of statements
to be executed depending on a certain expression.

if-else-if statement

There’s a problem with the if statement used in the previous example. What if
the user enters G? The system assumes the user wants to convert from Celsius
to Fahrenheit, but that might not be what the user intends. Remember that
when you write a program, you should imagine end users as computer novices
and plan for the worst. In this situation, the program should perform the calcula-
tions only if the user enters the correct choice: F or C. The way to solve this
problem is by adding an else-if to the if control structure. In fact, it also
gives you a way to inform the user that the valid choices are F and C. Here’s an
example of adding an else-if statement to the if statement in Java and C++:

//Java example

if (sChoice.equals("F"))

{

//This statement prompts the user to enter a Fahrenheit temperature

//Input from the keyboard comes in as a text string

System.out.print("Enter the Fahrenheit temperature: ");

sInput = sConsole.next();

//and must be converted into a floating-point number

//so that it can be used in a calculation

dFahrenheit = Double.parseDouble(sInput);

//This statement calculates the Celsius temperature

dCelsius = (5.0/9.0) * (dFahrenheit - 32.0);

System.out.println(sInput + " converted from F to C is " + dCelsius);

}

else if (sChoice.equals("C"))

{

//This statement prompts the user to enter a Celsius temperature

//Input from the keyboard comes in as a text string

System.out.print("Enter the Celsius temperature:");

sInput = sConsole.next();

//and must be converted into a floating-point number

//so that it can be used in a calculation

dCelsius = Double.parseDouble(sInput);

//This statement calculates the Fahrenheit temperature

dFahrenheit = ((9.0/5.0) * dCelsius) + 32.0;

System.out.println(sInput + " converted from C to F is " + dFahrenheit);

}

else

{

System.out.println("Your valid choices are F or C");

}

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

15

programming I I 537

//C++ example

if (sChoice == "F")

{

//This statement prompts the user to enter a Fahrenheit temperature

//Input from the keyboard comes in as a text string

cout << "Enter the Fahrenheit temperature: ";

cin >> dFahrenheit;

//This statement calculates the Celsius temperature

dCelsius = (5.0/9.0) * (dFahrenheit - 32.0);

cout << dFahrenheit << " converted from F to C is " << dCelsius << endl;

}

else if (sChoice == "C")

{

//This statement prompts the user to enter a Celsius temperature

//Input from the keyboard comes in as a text string

cout << "Enter the Celsius temperature: ";

cin >> dCelsius;

//This statement calculates the Fahrenheit temperature

dFahrenheit = ((9.0/5.0) * dCelsius) + 32.0;

cout << dCelsius << " converted from C to F is " << dFahrenheit << endl;

}

else

{

cout << "Your valid choices are F or C";

}

The if-else-if structure provides a way to perform certain blocks of code
depending on the variable’s state in the program while it’s running. It’s easy to
use and makes your program more flexible in handling data and processing
information.

switch statement

As you can see in the previous examples, putting one if control structure
inside another—called nesting—can decrease the code’s readability.

Sometimes you need a statement that allows testing many options but still
groups blocks of code to be executed depending on the results. In Java and
C++, this statement is the switch statement, which uses this syntax:

switch (expression)

{

case value_1 :

statement_1;

break;

nesting – Putting one con-
trol structure inside another

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

538 chapter f i f teen

n o t e

case value_2 :

statement_2;

break;

case value_3 :

statement_3;

break;

default :

statement_4;

break;

}

A switch statement allows you to test an expression’s value and, depending on the
value, jump to some location in the switch statement. The expression must be a
scalar data type, such as an integer or a character. When the expression is evalu-
ated, the system begins searching through the case statement values, trying to
find a match. If it finds a match, all the case statements are executed. That’s why
you need to put a break statement at the end of each case: to tell the system to
quit processing case statements and send control to the end of the switch state-
ment. With the break statement, you can make sure the system performs only the
case statement that has a matching value. If no match is found, the statements
for the default section are executed. The default section is optional, but
displaying a message stating that no match was found is helpful for users.

You can’t use the switch statement to compare string variables. It works

only with scalar variables, such as integer and character variables.

The following example shows the switch statement in Java:

//Java example

import java.io.*;

import java.util.*;

public class Switch_Time

{

public static void main(String[] args)

{

Scanner console = new Scanner(System.in);

//String variable to hold the input

String sInput = "";

System.out.print("Enter the letter grade: ");

sInput = console.next();

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

15

programming I I 539

//Process the first character of the entered string

switch (sInput.charAt(0))

{

case 'A' :

System.out.println("You get an A");

System.out.println("Great job!");

break;

case 'B' :

System.out.println("You get a B");

System.out.println("Nice job!");

break;

case 'C' :

System.out.println("You get a C");

System.out.println("Good enough!");

break;

default :

System.out.println("You get a D");

System.out.println("See you next semester!");

}

}

}

In C++, the switch statement looks like this:

//C++ example

#include <cstdlib>

#include <iostream>

using namespace std;

int main(int argc, char *argv[])

{

char cInput;

cout << "Enter the letter grade: ";

cin >> cInput;

//Process the first character of the entered string

switch (cInput)

{

case 'A' :

cout << "You get an A\n";

cout << "Great job!\n";

break;

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

540 chapter f i f teen

n o t e

case 'B' :

cout << "You get a B\n";

cout << "Nice job!\n";

break;

case 'C' :

cout << "You get a C\n";

cout << "Good enough!\n";

break;

default :

cout << "You get a D\n";

cout << "See you next semester!\n";

}

system("PAUSE");

return EXIT_SUCCESS;

}

The switch statement in C++ requires comparing the expression against

integer scalar values or one unit of data. If you’re evaluating multiple

characters, you use nested if statements.

If more than two values execute the same block of code, you can simply place
them one on top of the other in a top-down structure. For example, if you
want the same code carried out whether the value is A, B, or C, you can do the
following:

//Java example

switch (cInput)

{

case 'A' :

case 'B' :

case 'C' :

System.out.println("You get a(n) " + cInput);

System.out.println("You passed!");

break;

default :

System.out.println("You get a " + cInput);

System.out.println("Do NOT pass go and go directly to jail!");

}

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

15

programming I I 541

Because a string can’t be used in a C++ or Java switch statement, you have to
rethink your program logic. The following example prompts the user to enter a
score and then uses the switch statement to display the grade:

//C++ example

#include <cstdlib>

#include <iostream>

using namespace std;

int main()

{

//string variable to hold the input

int iInput;

cout << "Enter the test score: ";

cin >> iInput;

//Process the first character of the entered string

switch (iInput)

{

case 100 :

case 99 :

case 98 :

case 97 :

case 96 :

case 95 :

case 94 :

case 93 :

case 92 :

case 91 :

case 90 :

cout << "You get an A\n";

cout << "Great job!\n";

break;

case 89 :

case 88 :

case 87 :

case 86 :

case 85 :

case 84 :

case 83 :

case 82 :

case 81 :

case 80 :

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

542 chapter f i f teen

cout << "You get a B\n";

cout << "Nice job!\n";

break;

case 79 :

case 78 :

case 77 :

case 76 :

case 75 :

case 74 :

case 73 :

case 72 :

case 71 :

case 70 :

cout << "You get a C\n";

cout << "Good enough!\n";

break;

default :

cout << "You get a D\n";

cout << "See you next semester!\n";

}

system("PAUSE");

return 0;

}

The switch statement makes your source code easier to read and maintain
than an if-else-if statement, as you can see in this example:

//Java example

if (cInput == 'A')

{

System.out.println("You get an A");

System.out.println("Great job!");

}

else if (cInput == 'B')

{

System.out.println("You get a B");

System.out.println("Nice job!");

}

else if (cInput == 'C')

{

System.out.println("You get a C");

System.out.println("Good enough!");

}

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

15

programming I I 543

n o t e

else

{

System.out.println("You get a D");

System.out.println("See you next semester!");

}

//C++ example

if (cInput == 'A')

{

cout << "You get an A\n";

cout << "Great job!\n";

}

else if (cInput == 'B')

{

cout << "You get a B\n";

cout << "Nice job!\n";

}

else if (cInput == 'C')

{

cout << "You get a C\n";

cout << "Good enough!\n";

}

else

{

cout << "You get a D\n";

cout << "See you next semester!\n";

}

Because if statements are used in the preceding examples, break

statements aren’t needed to stop the condition testing.

Like the if statement, the switch statement is used any time you need a
series of statements to be executed depending on a certain expression.
The difference between if and switch is that the switch statement is
used when there are many different expressions to evaluate, and the if
statement is used more often to evaluate one expression.

repetition (looping)
Although typing duplicate statements in your code when you want something
to happen multiple times might not seem like much trouble, it makes code
harder to read and maintain. The repetition control structure (called “looping”)
allows repeating statements multiple times without having to retype statements.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

544 chapter f i f teen

n o t e

The following sections explain the statements used for looping: for, while,
and do-while.

for statement

When you want to repeat a group of statements a known number of times, you
use the for statement, which has this syntax in Java and C++:

The variable declaration is where you declare and initialize a variable.
A common oversight in working with the for loop is forgetting to declare the
counter variable. All that’s needed is a statement similar to int iCount.

You can also declare a variable in the for statement. It’s then visible only

in the for statement. After the for statement is over, the variable is

gone. Every variable has scope (where it can be seen) and duration (how

long it occupies memory).

The starting value is the number used to initialize the counter variable (in the
variable declaration part) and inform the system of the beginning value
in the loop. The expression part checks whether the statements inside the
for loop should be executed and acts as an ending boundary for processing the
loop. The increment/decrement part is where you increment or decrement
the counter variable. The variable declaration part contains the value
used in the expression part to determine whether to continue processing the
for loop. The following examples show how to use the for loop:

//Java example

public class For_Loop

{

public static void main(String[] args)

{

int iCount;

for (iCount = 1; iCount <= 5; iCount++)

{

System.out.println("I am on number " + iCount);

}

}

}

for (variable declaration; expression; increment/decrement)

{

statement(s);

}

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

15

programming I I 545

//C++ example

#include <cstdlib>

#include <iostream>

using namespace std;

int main()

{

int iCount;

for (iCount = 1; iCount <= 5; iCount++)

{

cout << "I am on number " << iCount << endl;

}

system("PAUSE");

return 0;

}

Output:

I am on number 1

I am on number 2

I am on number 3

I am on number 4

I am on number 5

The for loop assigns the value 1 to the iCount variable by using the
iCount = 1 statement and makes sure it’s less than or equal to the ending
value 5 by using the iCount <= 5 statement. The iCount variable is incre-
mented by 1 with the iCount++ statement, so the numbers displayed
onscreen are 1 through 5. In simpler terms, the variable declaration starts the
loop counter at 1, and then checks to see whether the variable’s value is <=5.
If so, the for loop is processed, and after the loop executes all statements in-
side the braces, it returns to the for loop to increment the counter variable
with iCount++.

The next for loop program repeats the same process as the first loop, but in-
stead of using the increment value 1, the increment statement tells the system to
use the increment value 2 by using the iCount+=2 statement. Therefore, the
numbers displayed are 1, 3, and 5.

//Java example

public class For_Loop2

{

public static void main(String[] args)

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

546 chapter f i f teen

{

int iCount;

for (iCount = 1; iCount <= 5; iCount+=2)

{

System.out.println("I am on number " + iCount);

}

}

}

//C++ example

#include <cstdlib>

#include <iostream>

using namespace std;

int main()

{

int iCount;

for (iCount = 1; iCount <= 5; iCount+=2)

{

cout << "I am on number " << iCount << endl;

}

system("PAUSE");

return 0;

}

Output:

I am on number 1

I am on number 3

I am on number 5

This next for loop program repeats the same process but uses the increment
value -1. The starting value in the variable declaration for this loop is 5 and the
ending value is 1 because of the iCount > 0 expression. Therefore, the num-
bers 5 through 1 are displayed onscreen.

//Java example

public class For_Loop3

{

public static void main(String[] args)

{

int iCount;

for (iCount = 5; iCount > 0; iCount--)

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

15

programming I I 547

{

System.out.println("I am on number " + iCount);

}

}

}

//C++ example

#include <cstdlib>

#include <iostream>

using namespace std;

int main()

{

int iCount;

for (iCount = 5; iCount > 0; iCount--)

{

cout << "I am on number " << iCount << endl;

}

system("PAUSE");

return 0;

}

Output:

I am on number 5

I am on number 4

I am on number 3

I am on number 2

I am on number 1

Remember the post and pre operators for incrementing and decrementing?
They’re often used when updating the counter variable in the for loop. Be care-
ful that you don’t mistakenly update the counter variable in the looped statement,
too. Updating the counter variable in the looped statement in addition to the
increment/decrement part of the for statement affects the counter variable more
than once and has serious consequences, as shown in these examples:

//Java example

int iCount;

for (iCount = 1; iCount <= 5; iCount++)

{

System.out.println("I am on number " + iCount++);

}

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

548 chapter f i f teen

//C++ example

int iCount;

for (iCount = 1; iCount <= 5; iCount++)

{

cout << "I am on number " << iCount++ << endl;

}

Output:

I am on number 1

I am on number 3

I am on number 5

Instead of the expected 1 through 5 displayed as the output, the numbers 1, 3,
and 5 are displayed because the looped statement is incrementing the counter
variable and so is the increment/decrement part of the for statement.

while statement

If the looping is based on a condition or an expression that’s checked before any
statements are repeated, the while statement is used to process a group of state-
ments a certain number of times, just like the for loop. The for and while
loops are considered precondition loops, meaning the minimum number of times
they execute is zero because the expression is checked before the source code in the
loop is executed. In other words, the loop might not execute at all because the ex-
pression is evaluated before statements in the loop are executed. The expression
part of the statement is a Boolean expression returning a true or false value. If the
condition is true, the statements in the loop are executed, and processing continues
until the expression returns false. Here’s the syntax of the while statement:

while (expression)

{

statements;

}

The difference between while and for is that the while statement doesn’t
provide a specified area for updating the counter, as in the increment/decre-
ment part of the for statement’s syntax. You’re responsible for doing so, as
shown in these examples:

//Java example

public class While_Loop

{

public static void main(String[] args)

{

int iCount = 1;

while (iCount <= 5)

precondition loop – A loop
that checks the expression
before any source code in
the loop is executed; might
never be executed

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

15

programming I I 549

{

System.out.println("I am on number " + iCount);

iCount++; //updates the counter

}

}

}

//C++ example

#include <cstdlib>

#include <iostream>

using namespace std;

int main()

{

int iCount = 1;

while (iCount <= 5)

{

cout << "I am on number " << iCount << endl;

iCount++; //Updates the counter

}

system("PAUSE");

return 0;

}

Output:

I am on number 1

I am on number 2

I am on number 3

I am on number 4

I am on number 5

The following source code is an example of an endless loop. Notice that the
counter variable iCount is never updated (incremented). Its value always remains
1, which is always less than 5. Therefore, the expression that controls ending the
loop is never satisfied, and the loop runs forever, as shown in these examples:

//Java example

int iCount = 1;

while (iCount <= 5)

{

System.out.println("I am on number " + iCount);

}

endless loop – A block of
source code that repeats
continuously and never
stops

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

550 chapter f i f teen

//C++ example

int iCount = 1;

while (iCount <= 5)

{

cout << "I am on number " << iCount << endl;

}

Output:

I am on number 1

I am on number 1

I am on number 1

I am on number 1

. . . and so on, until you kill the program.

do-while statement

If looping is based on an expression and statements are repeated before the
expression is evaluated, the do-while statement is used. It’s used mainly
when processing a table. Its syntax is as follows:

do

{

statement(s);

} while (expression);

The do-while statement is considered a postcondition loop, meaning the loop
executes at least one time before the expression is evaluated. The expression
part of the statement is a Boolean expression returning a true or false value. If
the condition is true, the statements between do and while are executed, and
processing continues until the expression returns false.

//Java example

public class DoWhile_Loop

{

public static void main(String[] args)

{

int iCount = 1;

do

{

System.out.println("I am on number " + iCount);

} while (iCount++ < 5);

}

}

postcondition loop – A loop
that executes at least one
time before the expression
is evaluated

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

15

programming I I 551

//C++ example

#include <cstdlib>

#include <iostream>

using namespace std;

int main()

{

int iCount = 1;

do

{

cout << "I am on number " << iCount << endl;

} while (iCount++ < 5);

system("PAUSE");

return 0;

}

Output:

I am on number 1

I am on number 2

I am on number 3

I am on number 4

I am on number 5

The execution of the loop begins by printing I am on number 1. The
do-while expression is then evaluated to determine whether to repeat the
loop, and the iCount variable is incremented. Notice that the expression no
longer checks to see whether the iCount variable is <= to 5. Instead, it checks
to see whether the variable is < 5 and prints I am on number 5 before deter-
mining that iCount is indeed no longer < 5 and exiting the loop.

An important point is whether you use the pre or post operator. Look at the
same program, using the preincrement operator instead of the postincrement:

//Java example

public class DoWhile_Loop2

{

public static void main(String[] args)

{

int iCount = 1;

do

{

System.out.println("I am on number " + iCount);

} while (++iCount < 5);

}

}

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

552 chapter f i f teen

//C++ example

#include <cstdlib>

#include <iostream>

using namespace std;

int main()

{

int iCount = 1;

do

{

cout << "I am on number " << iCount << endl;

} while (++iCount < 5);

system("PAUSE");

return 0;

}

Output:

I am on number 1

I am on number 2

I am on number 3

I am on number 4

The loop repeats one less time because the variable was incremented to 5 before
the expression was checked, which ended the loop after the fourth output line.

one last thought
No matter which programming language you choose, typically you use the
four major control structures discussed in this chapter. Organizations usually
select a programming language based on the application’s needs. Sometimes
programmers need to update their skills and learn new languages, but knowing
C++ and Java is a good start because these object-oriented languages are widely
used in both academia and industry.

To become proficient in any programming language, you must be dedicated to
practicing writing code and troubleshooting errors. Becoming familiar with the
basic control structures and common programming mistakes helps you become
a better software engineer.

Software engineers have a responsibility to write structured programs that are
easy to read and maintain. One way to do this is by including helpful com-
ments in your source code. Remember to code unto others as you would have
others code unto you.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

15

programming I I 553

• Java is a high-level programming language designed for the Internet.

• C++ is also a high-level programming language; it’s based on the
C language but incorporates object-oriented principles.

• Variables are of different data types, including integer (int), character (char),
floating point, Boolean, and string. Assigning a value to a variable is called
variable initialization, or “initializing a variable.”

• Four types of control structures are used in high-level programming languages:
top down, invocation, selection, and repetition.

• Java uses methods for the invocation control structure, and C++ uses methods
and functions.

• Java uses the System.out statement to output data. In C++, the cout state-
ment is used with the << redirection symbols.

• The Java Scanner class is used to gather input. In C++, the cin statement is
used to gather input.

• C++ and Java use the if, if-else, if-else-if, and switch statements
for selection control structures.

• In C++ and Java, the switch statement is used only with scalar variables,
such as integers and characters. String variables can’t be used with the
switch statement.

• C++ and Java use the for, while, and do-while loops for repetition.

• To become a good programmer, you must practice, practice, and practice
some more.

• Code unto others as you would have them code unto you.

c h a p t e r s u m m a r y

concatenation (517)

declaration (513)

endless loop (549)

function (520)

Hungarian notation (518)

insertion point (525)

nesting (537)

k e y t e r m s

parameters (521)

postcondition loop (550)

precondition loop (548)

reserved words (513)

scope (521)

variable initialization (518)

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

554 chapter f i f teen

1. Describe when to use integer variables in Java or C++. Explain the situation,
provide a suggested variable name, and support your recommendation.

2. Describe when to use floating-point variables in Java or C++. Explain
the situation, provide a suggested variable name, and support your
recommendation.

3. Describe when to use character variables in Java or C++. Explain the situa-
tion, provide a suggested variable name, and support your recommendation.

4. Describe when to use string variables in Java or C++. Explain the situation,
provide a suggested variable name, and support your recommendation.

5. Write a Java or C++ program that displays truth tables for the and (&&)
logical operator and the or (||) logical operator. (Refer to Chapter 14 to
review logical operators, if needed.)

6. Write a Java or C++ program that uses the addition, subtraction, division,
multiplication, and modulus mathematical operators. (Refer to Chapter 14
to review these operators, if needed.)

7. Write a Java or C++ program that displays five names, using the for,
while, and do-while statements.

8. Write a Java or C++ program that uses an if-else-if statement to
determine your final grade in a course.

9. Repeat exercise 8 but use a switch statement.

10. Describe when you would use do-while, for, and while statements.

1. Java and C++ are case-sensitive languages.

a. True
b. False

2. @JT%name is a valid Java and C++ variable identifier.

a. True
b. False

3. Which Java data type do you use for the value 14?

a. Int
b. Long
c. Byte
d. Char
e. None of the above

p r a c t i c e e x e r c i s e s

t e s t y o u r s e l f

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

15

programming I I 555

4. Which Java/C++ data type do you use for the value 14.9?

a. Int
b. Float
c. Byte
d. Short
e. None of the above

5. Which Java/C++ data type do you use for the value 'e'?

a. Int
b. Long
c. Byte
d. Char
e. None of the above

6. Which Java/C++ data type do you use for the value "Joe"?

a. Int
b. Long
c. String
d. Char
e. None of the above

7. In a precondition loop, the statements inside the loop might never execute.

a. True
b. False

8. In a postcondition loop, the statements in the loop are always executed
at least once because the expression is checked after entering the loop.

a. True
b. False

9. Which C++ statement is used to gather input?

a. cout
b. cin
c. Scanner
d. sConsole.Next()

10. Which Java class is used to gather input?

a. cout
b. cin
c. Scanner
d. sConsole.Next()

11. Using the following statements, what value is displayed?

public class test

{

public static void main(String[] args)

{

int iCount;

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

556 chapter f i f teen

iCount = 0;

System.out.print("iCount has a value of " + ++iCount);

}

}

a. 0
b. 1
c. 2
d. Unknown

12. Using the following statements, what value is displayed?

#include <cstdlib>

#include <iostream>

using namespace std;

int main()

{

int iCount;

iCount = 0;

cout << "iCount has a value of " << ++iCount;

}

a. 0
b. 1
c. 2
d. Unknown

13. Using the following statements, what value is displayed?

public class test

{

public static void main(String[] args)

{

int iCount;

iCount = 0;

System.out.print("iCount has a value of " + iCount++);

}

}

a. 0
b. 1
c. 2
d. Unknown

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

15

programming I I 557

14. Using the following statements, what value is displayed?

#include <cstdlib>

#include <iostream>

using namespace std;

int main()

{

int iCount;

iCount = 0;

cout << "iCount has a value of " << iCount++;

}

a. 0
b. 1
c. 2
d. Unknown

1. Create for, while, and do-while loops. Make sure the same statements
are performed in each loop. Which looping construct is more efficient time-
wise? Prove it by writing source code.

2. Besides what was mentioned in the chapter, what other Java integrated de-
velopment environments can you use, and where can you download them?
Which one is considered the best to use?

3. Besides what was mentioned in the chapter, what other C++ integrated de-
velopment environments can you use, and where can you download them?
Which one is considered the best to use?

4. Create a list of some common Java classes, and describe when each class is
used.

5. Create a list of some common C++ classes, and describe when each class is
used.

1. What do you think the next great programming language will be? How
will it work, and how will software engineers use it?

2. Many companies allow employees to work remotely via e-mail, cell phones,
online chats, and so forth. What are the advantages and disadvantages of
allowing remote work on software engineering projects?

d i g g i n g d e e p e r

d i s c u s s i o n t o p i c s

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

558 chapter f i f teen

3. Writing comments is time consuming, so convincing programmers they’re
important is difficult when deadlines are looming. Why is spending extra
time writing comments worthwhile, even when deadlines are tight?

4. What is the difference between C++ and C#? What are the strengths and
weaknesses of each? When would you use one instead of the other?

5. “Open source” is an important term in software engineering. What does it
mean? What are the advantages and disadvantages of open-source code?

6. Compare Java with C++, and summarize their strengths and weaknesses.

1. List some Web sites that offer free tutorials in C++ programming.

2. List some Web sites that offer free tutorials in Java programming.

3. Is C++ a “dead” language now that C# is being used? Base your opinion
on information you find on the Internet, such as job search sites, course
offerings from universities, and so forth.

4. Which language is best for beginners who are learning to program?
Support your opinion with articles you find on the Internet.

5. What types of applications are written in C++ and Java? When might you
use one language instead of the other? Give examples.

I n t e r n e t r e s e a r c h

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

A
a p p e n d i x

answers to tes t yourse l f
ques t ions

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

560 appendix A

chapter 1
1. Measuring resources, land, dimensions for construction, navigation, under-

standing the cycle of the year, and so forth

2. Probably the Chinese abacus. Although clay tablets and other counting
mechanisms predate it, it was likely the first object with moving parts for
doing calculations.

3. Both used stored information from a card (or roll of paper in the piano’s
case) with holes in it.

4. He borrowed the idea of stored information on cards with holes.

5. Ada Lovelace is considered the first programmer for her work with
Babbage’s Analytical Engine.

6. The program loop

7. Using vacuum tubes

8. The Mark I in the United States, the Colossus in Britain, and the Z1 in
Germany

9. Machine code is difficult for humans to read. Assembly-language code
makes it easier to program machine code.

10. Big Blue refers to IBM and its successful blue-suited salesforce.

11. The transistor and magnetic core RAM

12. Hard drives or any kind of magnetic disk storage device

13. The first UNIX OS was written in B. The C programming language was
developed to create the second UNIX version.

14. It was written on a minicomputer, a Digital Equipment Corporation
PDP-7.

15. Calculators

16. The Microsoft BASIC programming language

17. Steve Wozniak and Steve Jobs; VisiCalc, the first spreadsheet program

18. Apple launched the Apple Macintosh in 1984. Microsoft later came out
with Windows.

19. It was originally conceived for the telephone system but never adopted.

20. Vannevar Bush

chapter 2
1. Clifford Stoll is most famous for writing the 1989 book The Cuckoo’s Egg:

Tracking a Spy Through the Maze of Computer Espionage, in which he
describes his year-long effort to track the cracker who intruded on many
government and private systems.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

answers to tes t yourse l f ques t ions 561

2. They have been called “phreaks” or “phone phreaks.” They engaged in
“phreaking,” or finding ways to use AT&T phone lines free.

3. The term originated in the 1960s to describe a programmer with a high
skill level. The name took on a negative connotation in the 1980s, with
widespread viruses and costly intrusions of computer systems. The term
“cracker” can be used to describe an unwelcome outsider, compared with a
welcome insider. The common use of “hacker” might have made the dis-
tinction irrelevant to the general public. It’s a good distinction to know,
however, because many system security professionals make this distinction.

4. A directed hacker directs the attack at particular machines for purposes of
theft or damage. An undirected hacker is motivated by the desire to break
into any system.

5. One intruder is the worm or virus that doesn’t target a particular machine
but makes use of security holes in operating systems and applications
to wreak havoc. Another is the general user who, if not denied entry to
parts of the system, might damage the system, even without intending to.

6. The “Hacker’s Manifesto” can be found on the Web easily. Among other
things, it justifies breaking into systems just because they can be broken
into.

7. Good system configuration, developing security rules and communicat-
ing them to users, updating operating systems and virus definitions
regularly, making users aware of the dangers of seemingly innocent
communication

8. The rlogin command allowed an administrator to log on to one system and
then log on to other machines remotely without needing a password.

9. Many online shopping sites kept information about customers’ purchases
in the URL string. A clever thief could change the price in the URL if the
server side of the program didn’t verify the item and price.

10. In a buffer overflow, a program tries to place more information in a mem-
ory location than that location can handle, and it overflows into other
areas. Crackers aim to overflow a buffer to get to memory that’s critical to
the machine’s operation and insert their own code into this area.

11. Identification is a technique or mechanism for knowing who someone is.
Authentication is the proof that people are who they say they are. Your
name or Social Security number is your identification. Your fingerprint is
proof that you are who you say you are.

12. A worm can actively search for vulnerable systems and replicate itself across
systems. A virus must depend on some other mechanism (such as a person
moving a file) to infect other systems.

13. A denial-of-service attack prevents legitimate users from using resources.

14. A repudiation attack seeks to create a false impression that an event that
didn’t occur did or an event that actually did occur did not. Attacking
a system so that a credit card transaction that occurred appears as though it
did not is an example.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

562 appendix A

15. Confidentiality, integrity, availability, accountability

16. Some ways to safeguard your data:

Have a security policy, communicate it, and follow it.

Have physical safeguards against intrusion: locks, secure trash disposal, ID
badges, security guards, and so forth.

Password-protect everything and make passwords difficult to discover.

Make backup copies of everything and physically secure backups.

Protect against system failures.

Use up-to-date antivirus programs and antispyware and anticookie pro-
grams to protect privacy.

In case the worst happens, have a disaster recovery plan.

Use encryption.

Use firewalls.

Use secure system setups and programs with frequent security updates.

17. A virus signature (virus definition)

18. The 1968 law outlawing wiretapping would cover a network sniffer.

The 1984 law on computer fraud and abuse would cover unauthorized
use of a computer.

The 1986 law on electronic communications privacy would cover
unwanted viewing of e-mail contents.

Many laws could be used, depending on what occurred. For example, intel-
lectual property violations, consumer protection, threats to national
defense, avoiding taxation, and fraud might be used.

19. $5000. This amount seems like a lot, but an argument can be made for not
just lost computer time, but also lost processing time and its effect on busi-
ness operations.

20. Avoid having a record of your purchases when possible.

Have an unlisted phone number.

Write to all companies you do business with and request removal of your
name from mailing lists.

Install antispyware software.

chapter 3
1. A main board provides a physical location for the CPU and supporting

circuitry. It also allows attaching additional devices via expansion slots
and ports.

2. Central processing unit

3. Adding, decoding, shifting, and storing

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

answers to tes t yourse l f ques t ions 563

4. A decoder is used to select memory addresses and I/O devices.

5. Collector, base, and emitter

6. AND, OR, and NOT

7. Truth table

8. Decoder

9. 0

10. NOT

11. Plus symbol (1)

12. Flip-flop

13. SRAM

14. Binary instructions are processed sequentially by fetching an instruction
from memory, and then executing that instruction.

Both instructions and data are stored in the main memory system.

Instruction execution is carried out by a CPU that contains a control unit
(CU), an arithmetic logic unit (ALU), and registers (small storage areas).

The CPU has the capability to accept input from and provide output to
external devices.

15. A bus is a set of wires and protocols designed to facilitate communication
between computer devices.

16. Address, data, and control

17. Cache memory is used to speed processing in a computer.

18. Polling is the process of the CPU interrogating each I/O device to see
whether it needs servicing.

19. Interrupt handling

20. Resolution is normally measured in number of pixels in a horizontal and
vertical direction.

chapter 4
1. Guided and unguided

2. Bandwidth, signal-to-noise ratio, bit error rate, and attenuation

3. Coaxial and twisted pair

4. 100 MHz

5. TCP/IP, FTP, HTTP

6. Seven

7. Wide area network

8. Bus, star, and ring

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

564 appendix A

9. The bus topology has been the most popular in the past, but the advent of
home networking has made the star topology increasingly popular.

10. Network interface card

11. Gateway

12. A switch can examine an input port’s packet header and switch a point-to-
point connection to the output port addressed by the packet.

13. Firewall

14. 300 to 3300 Hz

15. 256 Kbps to 1.5 Mbps

16. The speed a transmission medium is capable of handling, measured in bits
per second

17. A WLAN is a LAN that uses wireless transmission instead of guided media.

18. AM places information on a carrier by modulating the amplitude. FM
places information by modulating the carrier’s frequency.

19. 24

20. FDM

chapter 5
1. LANs and WANs

2. Internet service provider

3. National backbone provider. NBPs provide high-speed communication
lines to ISPs.

4. Sending e-mail

5. TCP

6. TCP

7. TCP

8. 32

9. Class C

10. Network broadcasts to every computer on the network.

11. ARIN (American Registry of Internet Numbers)

12. It automates the assignment of IP addresses in a network.

13. A hardware device or software that determines the next network point to
which a packet should be forwarded

14. The time to live (TTL) field in the IP header

15. To provide reliable file transfer between devices

16. DNS server

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

answers to tes t yourse l f ques t ions 565

17. ipconfig

18. HTML (Hypertext Markup Language)

19. Bots (or spiders)

chapter 6
1. Data that has been organized and logically related into a file or set of files

to allow access and use

A wide variety of answers are possible for examples of the database
currently being used. Some possibilities are as follows:

Registration

Student transcripts

Grocery store checkout

Grading

Library

Health insurance

2. Record #

3. select *
from teams
order by wins desc;

The table name can vary because it’s not provided in the documentation.
Letter case doesn’t matter.

You might be tempted to leave out the desc keyword. End users looking
at the results probably want to see the team with the most wins at
the top.

4. select *
from teams
order by wins desc, team;

You might be tempted to put the desc keyword after team, but descend-
ing order applies only to the wins column, not the team column. You can
also list each field instead of using the * wildcard.

5. insert into teams
values (6, 'Bears', 3, 9);

OR

insert into teams (record_num, team, wins, losses)
values (6, 'Bears', 3, 9);

6. insert into teams
values (7, 'Lions', 9, 3);

OR

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

566 appendix A

insert into teams (record_num, team, wins, losses)
values (7, 'Lions', 9, 3);

The record number could be different, depending on whether question #5
was done.

7. select *
from teams;

OR

select record_num, team, wins, losses
from teams

8. Normalization is the process of structuring tables to eliminate duplication
and inconsistencies in data.

The first problem is that if a database isn’t normalized correctly, it can’t rep-
resent certain real-world information items.

The second problem occurs when the database contains redundancies
(repetitions) in data, which simply wastes time and storage space.

The third problem occurs when important information has been excluded
during design of the data structures.

9. first normal form (1NF): Eliminate repeating fields or groups of fields from
the table, and confirm that every column has only one value by creating a
new record in the table.

second normal form (2NF): First normal form has already been applied
to the table, and every column that isn’t part of the primary key is fully
dependent on the primary key.

third normal form (3NF): Eliminate columns that aren’t dependent on
only the primary key.

10. Step 1: Investigate and define
Investigate and research the information you plan to model. Define the
purpose of the database and how it will be used.

Step 2: Make a master column list
Create a list of all fields where you need to store information along with
their properties.

Step 3: Create the tables
Logically group fields into tables.

Step 4: Work on relationships
Define the relationships showing how one table works with another.

Step 5: Analyze the design
Analyze the work completed by searching for design errors, refining tables
as needed, and correcting any normalization violations.

Step 6: Reevaluate
Reevaluate database performance and ensure that it meets all your
reporting and form needs.

11. Answers can vary.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

answers to tes t yourse l f ques t ions 567

12. Answers can vary.

13. Answers can vary.

14. The NOT NULL statement can vary, as shown:

CREATE TABLE ErrorDesc

(Error_Code char(4) NOT NULL,

Error_Code_Desc char(40) NOT NULL

);

CREATE TABLE Errors

(Error_Log_Date Date NOT NULL,

Error_Log_Time Time NOT NULL,

User_Code char(8) NOT NULL,

Error_Code char(4) NOT NULL,

Error_Log_Desc char(80),

Error_Status_Code char(1),

Error_Priority_Code number

);

CREATE TABLE Users

(User_Code char(8) NOT NULL,

User_First char(15) NOT NULL,

User_Last char(25) NOT NULL,

User_Password char(10) NOT NULL

);

15. The answer is an example of what you might use for the Users table. Be
aware that values will be different.

insert into users

values ('mrooney', 'mickey', 'rooney', 'dance');

insert into users

values ('bboop', 'betty', 'boop', 'cartoon');

insert into users

values ('bbunny', 'bugs', 'bunny', 'rabbit');

16. select User_Code, User_First, User_Last
from Users
order by User_Last, User_First;

17. select Error_Log_Date, Error_Log_Time, Errors.Error_Code,
Error_Status_Code, Error_Priority_Code, Error_Code_Desc,
Error_Log_Desc
from Errors, ErrorDesc
order by Error_Log_Date, Error_Log_Time;

If you’re using Access and specified the Error_Code column, you might
have seen an error message stating that this field could refer to more than
one table listed in the FROM clause. If you have more than one field with
the same name used in two different tables, it’s correct to precede the field

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

568 appendix A

name with the table name, followed by a period and then the field name
(for example, Errors.Error_Code).

18. select Error_Log_Date, Error_Log_Time, Errors.Error_Code,
Error_Status_Code, Error_Priority_Code, Error_Log_Desc,
Errors.User_Code, User_Last, User_First
from Errors, Users
order by Error_Log_Date, Error_Log_Time;

If you’re using Access and specified the Error_Code and User_Code
columns, you might have seen an error message stating that these fields
could refer to more than one table listed in the FROM clause. If you
have more than one field with the same name used in two different ta-
bles, it’s correct to precede the field name with the table name, followed
by a period and then the field name (for example, Errors.Error_Code and
Errors.User_Code).

19.

CREATE TABLE ErrorStatus

(Error_Status_Code char(1) NOT NULL,

Error_Status_Desc char(50) NOT NULL

);

20.

CREATE TABLE PriorityDesc

(Error_Priority_Code number NOT NULL,

Error_Priority_Desc char(50) NOT NULL

);

chapter 7
1. The number is a base 10 number.

2. The number 2 is raised to the 10th power.

3. 256

4. 16

5. 16

6. 256

7. 170

8. 101011001

9. 7243

10. A10

11. BEAD

12. 1100010000111010

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

answers to tes t yourse l f ques t ions 569

13. 11000

14. 10001010

15. 256

16. 786,432

17. 41

18. 224 (more than 16 million)

19. BMP

20. 1

chapter 8
1. Arrays can be used any time you need to store information that should or

can be accessed in sequential order.

2. int[][] aiGrades 5 new int[5][2];

3. Values can vary:

aiGrades[0][0] 5 1234;
aiGrades[0][1] 5 100;

aiGrades[1][0] 5 4321;
aiGrades[1][1] 5 90;

aiGrades[2][0] 5 2212;
aiGrades[2][1] 5 85;

aiGrades[3][0] 5 8374;
aiGrades[3][1] 5 75;

aiGrades[4][0] 5 7758;
aiGrades[4][1] 5 92;

4. A stack allows you to push (add) items on to the list and pop (remove)
them from the list. Items are added to or removed from the top of the list.
This means the last item added is the first item removed.

5. A queue allows you to push (add) items on to the list and pop (remove)
them from the list. New items are added at the bottom of the list. Items
are removed from the top of the list.

6. A binary tree represents hierarchical storage of data. Each position in a tree
is called a node, and nodes have values associated with them. A node may
or may not have child nodes. In a binary search tree, the left child’s value is
less than the parent node’s, and the right child’s value is greater than the
parent node’s. As you proceed through the search tree, you should compare
to see whether the value you’re searching for is in the current node. If not,
check to see whether your value is greater than the current node value. If
so, you move to the node on the right. Otherwise, you move to the node
on the left and begin the comparison process again.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

570 appendix A

7. See the following two diagrams.

320

dataelement1

41

72

23

254

105

320

dataelement2

41

72

23

104

255

320

dataelement3

41

72

23

104

255

320

dataelement4

41

22

73

104

255

320

dataelement5

21

42

73

104

255

20

dataelement Comparisons of
elements 5 with 4, 4 with 3,

and 3 with 2 result in no
movement.

6

321

42

73

104

255

20

dataelement10

41

322

73

104

255

20

dataelement Comparisons of
elements 5 with 4 and 4

with 3 result in no change.

Comparison of
element 5 with 4 results

 in no change.

11

41

322

73

104

255

20

dataelement14

41

72

323

104

255

20

dataelement16

41

72

103

324

255

20

dataelement17

41

72

103

254

325

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

answers to tes t yourse l f ques t ions 571

8. See the following diagram.

20

dataelement1

41

72

323

254

105

20

no
changed

data

no
changed

dataelement2

41

72

323

254

105

20

element3

41

72

323

254

105

20

dataelement4

41

72

103

254

325

 no more changes

9. See the following two diagrams.

50

dataelement1

321

302

13

24

205

50

dataelement4

321

12

303

24

205

50

dataelement5

11

322

303

24

205

Comparisons of
elements 5 with 4 and 4

with 3 result in no
movement.

10

dataelement6

51

322

303

24

205

10

dataelement8

51

322

23

304

205

10

dataelement9

51

22

323

304

205

Comparison of
element 5 with 4 results

in no change.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

572 appendix A

10

dataelement10

21

52

323

304

205

10

no
changed

data

no
changed

dataelement11

21

52

323

204

305

10

element12

21

52

203

324

305

10

dataelement13

21

52

203

304

325

10. See the following diagram.

50

dataelement1

321

302

13

24

205

10

data dataelement2

321

302

53

24

205

10

element3

21

302

53

324

205

10

dataelement4

21

52

303

324

205

10

dataelement5

21

52

203

324

305

10

dataelement6

21

52

203

304

325

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

answers to tes t yourse l f ques t ions 573

11. See the following diagram.

19 45

10 20

7 15

17

44 50 leaf

21 root

leaf leaf

leaf

leaf

12. Four (21, 19, 10, 15, 17)

13. Three

14. Seven comparisons:

1. 7 5 21? No.
2. 7 . 21? No. Go left.
3. 7 5 19? No.
4. 7 . 19? No. Go left.
5. 7 5 10? No.
6. 7 . 10? No. Go left.
7. 7 5 7? Yes.

15. Nine comparisons:

1. 17 5 21? No.
2. 17 . 21? No. Go left.
3. 17 5 19? No.
4. 17 . 19? No. Go left.
5. 17 5 10? No.
6. 17 . 10? Yes. Go right.
7. 17 5 15? No.
8. 17 . 15? Yes. Go right.
9. 17 5 17? Yes.

chapter 9
1. Operating system

2. Device drivers, or just drivers

3. Kernel

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

574 appendix A

4. An operating system’s capability to support more than one process running
at a time

5. The coordinated execution of a process, using two or more CPUs at the
same time

6. Provide a user interface, manage processes, manage resources, provide
security

7. Command-line interface and graphical user interface

8. A small program running on a computer that can be part of a larger
program

9. Time slicing

10. To allow processes and hardware I/O devices to interrupt the processor’s
normal executing so that it can handle specific tasks

11. Tree structure

12. By using the man command

13. The process of formatting arranges the disk surface into addressable areas
and sets up the basic directory tree structure on the disk. It can also be used
to place a copy of the OS on the disk so that it can be used as a boot disk.

14. UNIX, Linux

15. mkdir

16. ls

17. A special character used to find matching patterns in filenames

18. The F2 key

19. To allow the OS and hardware to work together to detect and configure
I/O devices automatically

20. Yes

chapter 10
1. A file system is responsible for creating, manipulating, renaming, copying,

and moving files to and from a stored device.

2. The file management system organizes the hard drive into several different
areas. FAT uses a table to keep track of which files are using which clusters.
It also keeps track of which clusters are good and bad. FAT is implemented
as a linked list. A file’s clusters are linked until the last cluster (indicated
with a special code) is stored.

3. As more files are stored on the hard drive, clusters become less contiguous.
The system tries to recover open disk space. As time goes by, a file could have
clusters stored all over the disk drive.

4. Disk defragmentation reorganizes clusters on a hard drive so that files are
contiguous. Having contiguous clusters for a stored file improves perfor-
mance because the read head doesn’t have to move as much. Therefore,
system speed is increased when working with files.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

answers to tes t yourse l f ques t ions 575

5. FAT uses a file allocation table, meaning that large files don’t have to be
stored contiguously. They can be placed wherever they fit on the drive.
NTFS uses a Master File Table that stores information about files and
folders. The MFT acts as a database table that keeps track of file and folder
information. FAT is used on small drives (less than 10 GB), whereas NTFS
is geared toward larger hard drives.

6. Using FAT can result in fragmentation on the hard drive, causing system
performance to degrade. System performance also degrades just by the
number of files being stored on the system. FAT lacks many security fea-
tures found in NTFS. It can also have integrity problems with clusters.

7. NTFS is implemented with a Master File Table (MFT). The MFT resem-
bles a database table that holds information on each file and volume. As
new files or folders are created, new entries are added to the MFT. NTFS
is a journaling system that keeps track of all transactions performed when
working with files and folders. That way, if there’s a problem, the system
can “roll back” to a secure state.

8. NTFS is fast and reliable and can recover from problems without losing a
lot of data. NTFS also improves security by adding file and folder permis-
sions, and it supports file compression and encryption. One disadvantage
of NTFS is that it’s feasible for use only on large hard drives. In addition,
you can’t access NTFS volumes from DOS, Windows 9x, and some Linux
distributions.

9. The MFT is similar to a database table that stores entries for each file and
folder on a volume. It contains attributes about files and resembles a table of
contents for files and folders in a volume. When a file or folder is created, a
new record is created in the MFT.

10. The advantages of file compression are that you can save disk space and
compressing and uncompressing are handled by the system. The disadvan-
tage is that it can slow down performance because the system has to
compress and uncompress files.

11. All files are stored as binary information, but a text file consists of ASCII
or Unicode characters, and a binary file contains 1s and 0s. Text files are in
human language and are more readable. Binary files can’t be read by hu-
mans but are more compact and faster to access because the system already
understands binary.

12. Sequential file access starts at the beginning of a file and processes it line
by line until it reaches the end. The stored data can be thought of as one
long row of information. Random file access allows you to access a particu-
lar record in a file without having to process all the information stored
before it.

13. The writing process used in sequential file access is very fast because all
information is added at the end of the file. Retrieving or reading the infor-
mation can be very slow because you have to start at the beginning of the
file and process through all the data until you find the specified informa-
tion. Inserting, deleting, and modifying existing records require rewriting
the file’s contents to a new file. Random file access is useful for accessing
records quickly because you don’t have to process all the file information.
You can also update records without having to rewrite the file’s contents.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

576 appendix A

You can see that speed is an advantage of random file access. The disadvan-
tage is that it can waste disk space if the data doesn’t fill the entire record
area or if a record doesn’t have data associated with it.

14. Hashing creates and uses a hash key value that acts as an identifier for
data. The process of hashing involves creating an algorithm that calcu-
lates a hash value suitable for identifying records yet avoids as many
collisions or duplicates as possible. The goal is to make data searches,
updates, deletions, and modifications more efficient.

15. Many different algorithms could be used to solve this problem. If you fol-
low the example in the book, the algorithm is based on determining the
maximum number of records you might have. The records should have a
key value of 0 to the highest number minus 1. You need to identify how
many students you might have in the system. This number will vary. For
this example, say there are 2000 students. Divide 9999999 by 2000 to
come up with approximately 5000 as the key. If the first student number
is 1002394, you divide that number by 5000 to create the key of 200 for
this record. There’s no right or wrong algorithm for this question. It’s
intended to make you think creatively and get some hands-on practice in
designing an algorithm.

chapter 11
1. The trouble that users have with technology can often be blamed on poor

design.

2. Development teams might not have expertise in interface design; compa-
nies might have established development procedures that are difficult to
change; companies might perceive the extra steps in user-centric design as
resulting in increased costs.

3. Psychology, sociology, computer science, marketing, visual design

4. Infrared sensors

5. Superstitious behavior

6. Sensory storage, short-term memory, long-term memory

7. Repetition, chunking

8. When they’ve become familiar with an application

9. Quality of the experience, an understanding of users, an effective design
process, learnability, an aesthetic experience, changeability, manageability

10. Users have some control over the interface; the application might run on
many different platforms.

chapter 12
1. Approaches involving intuition and emotion

2. Boasting aloud or visualizing positive results, thinking about the problem-
solving process positively, being patient

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

answers to tes t yourse l f ques t ions 577

3. Architecture bug

4. Coding bug

5. Expecting data input to be consistently correct isn’t logical.

6. Different platforms vary in architecture and, therefore, might require
different coding.

7. Straw man arguments, rules of thumb (heuristics), following a procedure

8. Observe what’s happening, propose a theory for why it’s happening, test
the theory, and repeat Steps 1 to 3 until you’re satisfied with the theory.

9. The first place to look when debugging a program is your code. Most likely,
the bug you find is your own doing, so you’re responsible for fixing it.

10. Iterative program development means building a program up from small
components; in other words, write a program component and debug it,
write another component and debug it, and so forth. This approach is dif-
ferent from writing the entire program and then testing it. Iterative
development can save you a lot of debugging time and gives you a base-
line for debugging because you can ask, “What have I changed since the
last time the program worked?”

11. Having multiple versions is useful for experimentation, such as testing
different variables or components, and for isolating changes in a separate
version without worrying about causing problems in the main program.
You can also run two versions side by side to compare them.

12. Breakpoints

13. Help pages for the programming language, reference Web sites, documen-
tation for borrowed code, online discussion boards, blogs, wiki posts

14. Changes you have made, program versions, results of your changes, and
even details such as date, time, filename, and so on

15. To make sure you’re fixing the underlying cause of the problem, not just
the symptoms, and to prevent the problem from happening again in the
current program or in future programs

chapter 13
1. Software engineering is the process of producing software applications. It in-

volves not just the program’s source code but also associated documentation,
including UML diagrams, screen prototypes, reports, software requirements,
future development issues, and data needed to make programs operate
correctly. It’s the heart of computer science and incorporates everything a
software developer might encounter, including hardware components, net-
working, databases, Web development, software applications, and so forth.

2. A design document details all the application’s design issues and includes
its functionality, appearance, and distribution. Without a well-defined
design document, a project is doomed to failure. Creating a design
document is based on good communication with end users in determining
the application’s needs and requirements.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

578 appendix A

3. Prompt for card

When card is entered, read card

Ask for PIN

Confirm that PIN matches card

If there is a match, continue with transaction.
Otherwise, display an error message.

Ask for dollar amount to add to savings

Add dollar amount to savings and update account

Ask if they would like to make another transaction

If so, continue by going back to Step 6. Otherwise,
display a thank you message and quit.

Eject card

4. Prompt for card

When card is entered, read card

Ask for PIN

Confirm that PIN matches card

If there is a match, continue with transaction.
Otherwise, display an error message.

Ask for dollar amount to remove from account

Subtract dollar amount from account and update the
account

Ask if they would like to make another transaction

If so, continue by going back to Step 6. Otherwise,
display a thank you message and quit.

Eject card

5. UML is a software modeling process that enables developers to create a
blueprint showing the overall functionality of the program being engi-
neered and provides a way for clients and developers to communicate.
Better communication results in a better project.

6. A data dictionary is a document defining the structure of the database,
describing the type of data used in the program, and showing table definitions,
indexes, and other data relationships. Developers use it to clarify the data
available for use in reports, screens, file transfers, and other data operations.
Developers or end users can also use it during the report creation process. The
document acts as a master guide for making sure all data is consistent.

7. A prototype is a typical example that gives end users a good idea of what
they’ll see when their application is completed. It’s not the final product,
ready to go. A software engineer can design all the screens and reports be-
fore any lines of source code are written and should get end users’ input on
factors such as color, position of fields, and so forth. The result should be a

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

answers to tes t yourse l f ques t ions 579

product agreed on by both the user and the developer, thus promoting
good communication throughout the process.

8. Not including the end user in the design process

Writing your application without getting user approval for the prototype

Not testing the application

Using poor coding procedures

Not creating a design document

Thinking that end users don’t know what they want, so you tell them what
they’re going to get

This list shows just a few examples; you could add more examples.

9. The waterfall SDLC model represents the fundamental processes in creat-
ing a program as phases. The output from each phase is used as the input
for the next phase. The first step is gathering all the requirements for the
project. The second step is designing the system and software. After all the
requirements have been defined and the project has been designed, it’s time
to build and implement the application. After the application is finished, it
must be tested and then finally put into operation and maintained to meet
users’ needs. If you encounter a problem in the design, you must return to
the first step and continue repeating the process until the final product has
met all the users’ functional requirements.

10. Project manager: Leader of the team, responsible for choosing the right
players for the right positions, determining the project’s risks, costs, and
schedule of tasks, and keeping the project on schedule.

Database administrator (DBA): Person assigned the role of creating and
maintaining the database.

Software developer (or programmer): Person responsible for writing source
code to meet end users’ functional requirements.

Client: Person who has a need that can be met through the process of soft-
ware engineering. Clients are the ones who know what they really want
and why.

Tester: Person responsible for making sure the program functions correctly
and meets all the functional requirements specified in the design document.

Customer relations representative (or support technician): Person responsible
for interacting with testers, developers, and end users during the product’s
creation and early release and on an ongoing basis with end users as long as
the product is being used.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

580 appendix A

Answers can vary.

12. Open microwave door
Place food inside microwave
Close microwave door
Press the cook level button
Select High
Press the cook time button
Enter 2 minutes
Press the start button
When timer goes off, open door
Remove food
Close door

Answers can vary.

11. See the following diagram.

Select high
level

If
remaining

cook time is < 2
minutes

Sound timer
and reset
display

Close door

Start

Remove food

Press start
button

Press cook
time button

Enter 2
minutes

Open door

Close door

Place food
inside

microwave

Press cook
level

button

Open door

Stop

No

Yes

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

answers to tes t yourse l f ques t ions 581

13. See the following diagram.

Confirm
information and

click Confirm
Order button

Process all
charges

Click Check-
out button

Stop

Enter login
name

Enter
password

Go to Web
site URL

If
item is
found

Click
Login button

Click
Search button

Add item to
shopping cart

Start

Display error
message

Type item
description in
search area

No

Yes

Answers can vary.

14. Go to Web site URL
Enter login name
Enter password
Click the Login button
Type item description in search area
Click the Search button
If found, enter quantity and click "Add item to
shopping cart"
If not found, display error message and return to screen
Click the Checkout button
Confirm information and click the Confirm Order button
Click the Logout button

Answers can vary.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

582 appendix A

15. See the following diagram.

Calculate final
average

(HomeworkAvg +
QuizAvg +
TestAvg) /3

Stop

Enter
student ID

Start

Input 10
homework

scores

Calculate
homework

average score

Calculate
quiz average

score

Calculate test
average score

Input 4
quiz scores

Input 2
test scores

Enter student ID
Input 10 homework scores
Calculate the homework average score
Input 4 quiz scores
Calculate the quiz average score
Input 2 test scores
Calculate the test average score
Calculate the final average (HomeworkAvg + QuizAvg +
TestAvg)/ 3

Answers can vary.

chapter 14
1. A logically ordered set of statements used to solve a problem

2. If the amount is to be deposited, add it to the current balance. If the
amount is to be withdrawn, subtract it from the current balance.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

answers to tes t yourse l f ques t ions 583

3. Pseudocode for calculating your checkbook balance:

Ask for the current balance of checking account
Ask if deposit or withdrawal (check written)
Ask for amount
Ask for date
If Deposit

Current balance = Current balance + amount
Else if Withdrawal (check written)

Current balance = Current balance - amount
Store information

4. When the gas pump lever is lifted up and the gas grade is selected, reset the
dollar amount and the amount of gas pumped and display the price per
gallon. When the pump handle lever is lifted, begin pumping gas and
updating the display areas showing the dollar amount and amount of gas
pumped. Continue pumping gas until the sensor clicks off the gas pump
handle or until the user releases the handle. Turn off the pump when the
gas lever is pushed down.

5. Pseudocode for maintaining a gas pump’s operation:

System is idle
Continue checking to see if gas lever is lifted
While gas lever is lifted

If gas grade selected = Unleaded
Begin pumping unleaded gas

Else if gas grade selected = Premium
Begin pumping premium gas

Update gas pump display area
End while
Put system back in idle state

6. Answers will vary, depending on the course. The algorithm should be a
general description of accepting input in the form of scores for assign-
ments, tests, quizzes, projects, and a final exam. It should then show the
formula for calculating the final grade and assigning a letter grade to the
resulting percentage.

7. The pseudocode will vary, depending on the course. It should be a step-
by-step description of a professor entering grades into a system to calculate
the scores for students based on a course syllabus.

8. Pseudocode for playing tic-tac-toe:

Declare a 2x2 array of char (or string)
LOOP: Stay in this loop until the game is won or all
positions have been used and there's no winner
Prompt for an X or an O
Store response in a variable
Prompt for a row
Prompt for a column
Check to see whether the location is available

If not, prompt that the position has already been used
and go back to the LOOP

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

584 appendix A

Else store the variable's contents in the array
position using the row and column
See whether the player has tic-tac-toe by evaluating the
array's contents

If a player wins, display a prompt and set a value to
terminate the loop

Else allow the loop to return back to LOOP

9. Pseudocode for getting to school (answers can vary):

Turn off alarm
Get out of bed
Shower and take care of bathroom necessities (BRUSH YOUR
TEETH)
Eat breakfast
Grab books and keys
Get in car
Drive to school
Park car
Run to class to avoid being late

10. Pseudocode for completing a 3 3 3 sudoku puzzles (answers can vary):

Select the next available cell in the grid
If there are no available cells, display a message

that the sudoku is filled out and exit the loop
Select the lowest number for the cell (1 through 9)
Check that number is used in the row, the column, or the
3x3 cell
Repeat until you find an available number

If there's no available number, display a message that
the sudoku can't be completed and exit the loop
After you find an available number, store it in the cell
Repeat until there are no available cells
Add up all values in each row and see if the sum is 45

If not, display an error message and exit the loop
Add up all values in the columns and see if the sum is 45

If not, display an error message and exit the loop
Display a message that the sudoku is completed

chapter 15
1. Integer variables are used for positive and negative whole numbers. Some

examples are storing inventory counts, miles driven, points scored in a
sporting event, and so on. Variable name for these examples could be
iCount, iMilesDriven, and iPoints. Placing the letter “i” in front of
the variable name improves readability of the source code because a person
debugging the program can assume that any variables starting with “i”
contain an integer value. Here’s an example of declaring an integer variable:

int iMilesDriven;

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

answers to tes t yourse l f ques t ions 585

2. Floating-point variables are used for positive and negative numbers that
can also have decimals. Some examples are storing a student’s grade per-
centage, the cost of an item, averages, and so on. Variable names for these
examples could be fPercent, fCost, and fAverage. Placing the letter
“f” in front of the variable name improves readability of the source code
because a person debugging the program can assume that any variables
starting with “f” contain a floating-point value. Here’s an example of de-
claring a floating-point variable:

float fCost;

3. Character variables are used for storing only one character. Some examples
are storing a student’s middle initial, a letter grade that doesn’t include a
minus or plus, gender, and so on. Variable names for these examples could
be cMiddleInit, cGrade, and cGender. Placing the letter “c” in front of
the variable name improves readability of the source code because a person
debugging the program can assume that any variables starting with “c” con-
tain a character value. Here’s an example of declaring a character variable:

char cGender;

4. String variables are used to store more than one character. Some examples
are storing a student’s first name, a letter grade that does include a minus
or a plus, a street address, and so on. Variable names for these examples
could be sFirstName, sGrade, and sAddress1. Placing the letter “s”
in front of the variable name improves readability of the source code
because a person debugging the program can assume that any variables
starting with “s” contain a string value. Here’s an example of declaring a
string variable in Java and C++:

String sFirstName; //Java example
string sGrade; //C++ example

5.
//Java example
public class chap15
{
public static void main(String[] args)

{
boolean bFirst = true;
boolean bSecond = true;
if((bFirst) && (bSecond))

System.out.print("T");
else if((bFirst) && (! bSecond))

System.out.print("F");
else if((! bFirst) && (bSecond))

System.out.print("F");
else if((! bFirst) && (! bSecond))

System.out.print("F");
}

}

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

586 appendix A

//C++ example
#include <cstdlib>
#include <iostream>

using namespace std;

int main()
{

bool bFirst = true;
bool bSecond = true;

if ((bFirst) && (bSecond))
cout << "T\n";

else if ((bFirst) && (!bSecond))
cout << "F\n";

else if ((!bFirst) && (bSecond))
cout << "F\n";

else if ((!bFirst) && (!bSecond))
cout << "F\n";

system("PAUSE");
return 0;

}

Try changing the values for the bFirst and bSecond variables and see the
results, as in this example:

//Java example
public class chap15
{
public static void main(String[] args)

{
boolean bFirst = false;
boolean bSecond = true;
if((bFirst) && (bSecond))

System.out.print("T");
else if((bFirst) && (! bSecond))

System.out.print("F");
else if((! bFirst) && (bSecond))

System.out.print("F");
else if((! bFirst) && (! bSecond))

System.out.print("F");
}

}

//C++ example
#include <cstdlib>
#include <iostream>

using namespace std;

int main()
{

bool bFirst = false;
bool bSecond = true;

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

answers to tes t yourse l f ques t ions 587

if ((bFirst) && (bSecond))
cout << "T\n";

else if ((bFirst) && (!bSecond))
cout << "F\n";

else if ((!bFirst) && (bSecond))
cout << "F\n";

else if ((!bFirst) && (!bSecond))
cout << "F\n";

system("PAUSE");
return 0;

}

6.
//Java example
public class Arithmetic
{
public static void main(String[] args)

{
int iFirstNum = 15;
int iSecondNum = 10;
int iResult;
System.out.print("Addition: ");
iResult = iFirstNum + iSecondNum;
System.out.print("15 + 10 = ");
System.out.println(iResult);
System.out.print("Subtraction: ");
iResult = iFirstNum - iSecondNum;
System.out.print("15 - 10 = ");
System.out.println(iResult);
System.out.print("Multiplication: ");
iResult = iFirstNum * iSecondNum;
System.out.print("15 * 10 = ");
System.out.println(iResult);
System.out.print("Division: ");
iResult = iFirstNum/iSecondNum;
System.out.print("15/10 = ");
System.out.println(iResult);
System.out.print("Modulus: ");
iResult = iFirstNum%iSecondNum;
System.out.print("15%10 = ");
System.out.println(iResult);
}

}

//C++ example
#include <cstdlib>
#include <iostream>

using namespace std;

int main()
{

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

588 appendix A

int iFirstNum = 15;
int iSecondNum = 10;
int iResult;

iResult = iFirstNum + iSecondNum;
cout << "Addition: 15 + 10 = " << iResult << "\n";

iResult = iFirstNum - iSecondNum;
cout << "Subtraction: 15 - 10 = " << iResult << "\n";

iResult = iFirstNum * iSecondNum;
cout << "Multiplication: 15 * 10 = " << iResult << "\n";

iResult = iFirstNum / iSecondNum;
cout << "Subtraction: 15 / 10 = " << iResult << "\n";

iResult = iFirstNum % iSecondNum;
cout << "Modulus: 15 % 10 = " << iResult << "\n";

system("PAUSE");
return 0;

}

7.
//Java example
public class Looping
{
public static void main(String[] args)

{
int iCount = 1;
for (iCount = 1; iCount <= 5; iCount++)
{
System.out.println("For Loop - Dr. Doolittle # " + iCount);
}
iCount = 1;
while (iCount <= 5)
{
System.out.println("While Loop - Dr. Doolittle # " + iCount);
iCount++;
}
iCount = 1;
do
{
System.out.println("Do While Loop - Dr. Doolittle # " + iCount);
} while (iCount++<5);
}

}

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

answers to tes t yourse l f ques t ions 589

//C++ example
#include <cstdlib>
#include <iostream>

using namespace std;

int main()
{

int iCount = 1;

for (iCount = 1; iCount <= 5; iCount++)
{
cout << "For Loop - Dr. Doolittle # " << iCount << "\n";
}

iCount = 1;

while (iCount <= 5)
{
cout << "While Loop - Dr. Doolittle # " << iCount << "\n";
iCount++;
}

iCount = 1;

do
{
cout << "Do While Loop - Dr. Doolittle # " << iCount << "\n";
} while (iCount++ < 5);

system("PAUSE");
return 0;

}

8. Answers can vary.
//Java example
public class Grade_If
{
public static void main(String[] args)

{
int iGrade = 72;
if (iGrade >= 90)

System.out.println("You get an A");
else if ((iGrade >= 80) && (iGrade < 90))

System.out.println("You get a B");
else if ((iGrade >= 70) && (iGrade < 80))

System.out.println("You get a C");
else if ((iGrade >= 60) && (iGrade < 70))

System.out.println("You get a D");
else

System.out.println("See you next semester!");
}

}

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

590 appendix A

//C++ example
#include <cstdlib>
#include <iostream>

using namespace std;

int main()
{

int iGrade = 72;

if (iGrade >= 90)
cout << "You get an A\n";

else if (iGrade >= 80)
cout << "You get a B\n";

else if (iGrade >= 70)
cout << "You get a C\n";

else if (iGrade >= 60)
cout << "You get a D\n";

else
cout << "See you next semester!";

system("PAUSE");
return 0;

}

9.
//Java example
public class Grade_Switch
{
public static void main(String[] args)

{
int iGrade = 82;
switch (iGrade)
{

case 100 :
case 99 :
case 98 :
case 97 :
case 96 :
case 95 :
case 94 :
case 93 :
case 92 :
case 91 :
case 90 :

System.out.println("You get an A");
break;

case 89 :
case 88 :
case 87 :
case 86 :
case 85 :
case 84 :

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

answers to tes t yourse l f ques t ions 591

case 83 :
case 82 :
case 81 :
case 80 :

System.out.println("You get a B");
break;

case 79 :
case 78 :
case 77 :
case 76 :
case 75 :
case 74 :
case 73 :
case 72 :
case 71 :
case 70 :

System.out.println("You get a C");
break;

case 69 :
case 68 :
case 67 :
case 66 :
case 65 :
case 64 :
case 63 :
case 62 :
case 61 :
case 60 :

System.out.println("You get a D");
break;
default :

System.out.println("See you next semester!");
}
}

}

//C++ example
#include <cstdlib>
#include <iostream>

using namespace std;

int main()
{

int iGrade = 72;

switch (iGrade)
{

case 100:
case 99:
case 98:
case 97:
case 96:

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

592 appendix A

case 95:
case 94:
case 93:
case 92:
case 91:
case 90:

cout << "You get an A\n";
break;

case 89:
case 88:
case 87:
case 86:
case 85:
case 84:
case 83:
case 82:
case 81:
case 80:

cout << "You get a B\n";
break;

case 79:
case 78:
case 77:
case 76:
case 75:
case 74:
case 73:
case 72:
case 71:
case 70:

cout << "You get a C\n";
break;

case 69:
case 68:
case 67:
case 66:
case 65:
case 64:
case 63:
case 62:
case 61:
case 60:

cout << "You get a D\n";
break;
default:

cout << "See you next semester!\n";

}
system("PAUSE");
return 0;

}

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

answers to tes t yourse l f ques t ions 593

10. A do-while statement is used when you want to execute a loop at least
one time before the expression is evaluated; the loop executes as long as the
expression evaluates to true. The while and for statements are precondi-
tion loops, meaning the expression is evaluated before statements in the
loop are executed. Therefore, the loop might never execute. A for state-
ment is used when you want to repeat a group of statements a known
number of times. Like a for statement, a while statement is used to
repeat a group of statements a certain number of times or for a certain con-
dition, but while doesn’t provide a specified area for updating the counter
variable, as the increment/decrement part of the for statement does.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

B
a p p e n d i x

ASCI I (American Standard
Code for In format ion

In terchange) tab le

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

ASCII (American Standard Code for In format ion In terchange) tab le 595

The following table shows the ASCII character set.

ASCII code character ASCII code character ASCII code character ASCII code character

000 NUL 032 space 064 @ 096 `

001 SOH 033 ! 065 A 097 a

002 STX 034 " 066 B 098 b

003 ETX 035 # 067 C 099 c

004 EOT 036 $ 068 D 100 d

005 ENQ 037 % 069 E 101 e

006 ACK 038 & 070 F 102 f

007 BEL 039 ' 071 G 103 g

008 BS 040 (072 H 104 h

009 HT 041) 073 I 105 i

010 LF 042 * 074 J 106 j

011 VT 043 + 075 K 107 k

012 FF 044 , 076 L 108 l

013 CR 045 – 077 M 109 m

014 SO 046 . 078 N 110 n

015 SI 047 / 079 O 111 o

016 DLE 048 0 080 P 112 p

017 DC1 049 1 081 Q 113 q

018 DC2 050 2 082 R 114 r

019 DC3 051 3 083 S 115 s

020 DC4 052 4 084 T 116 t

021 NAK 053 5 085 U 117 u

022 SYN 054 6 086 V 118 v

023 ETB 055 7 087 W 119 w

024 CAN 056 8 088 X 120 x

025 EM 057 9 089 Y 121 y

026 SUB 058 : 090 Z 122 z

027 ESC 059 ; 091 [123 {

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

596 appendix B

ASCII code character ASCII code character ASCII code character ASCII code character

028 FS 060 < 092 \ 124 |

029 GS 061 = 093] 125 }

030 RS 062 > 094 ^ 126 ~

031 US 063 ? 095 _ 127 delete

ASCII values are given as decimal numbers.
Control characters are listed with their abbreviations.

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

a p p e n d i x

Java and C++ reserved words

C

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

598 appendix C

reserved word Java or C++ description

abstract Java declares that a class or method is abstract

assert both declares a Boolean variable

bool C++ declares a Boolean variable

boolean Java declares a Boolean variable

break both stops processing case statements

byte Java declares a byte variable

case both declares a case statement in a switch
statement

catch both handles an exception

char both declares a character variable

class both signals the beginning of a class definition

const C++ specifies an object or variable that can’t be
modified

continue both returns to the beginning of a loop prematurely

default both default action in a switch statement;
signals that no match was found

do both begins a do-while loop

double both declares a double variable

else both signals the code to execute when an if
statement is not true

extends both specifies that a class is a subclass of another
class

final both declares that a class can’t be subclassed or a
field or method can’t be overridden

finally both declares a block of code that’s guaranteed to
be executed

float both declares a floating-point variable

for both begins a for loop

if both declares a block of code to be executed if a
condition is true

implements Java declares that the class uses a given interface

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Java and C++ reserved words 599

reserved word Java or C++ description

import Java permits access to a class or group of classes in
a software package

#include C++ tells the compiler to treat the included file as
part of the source code

instanceof Java tests whether a class is an instance of another
class

int both declares an integer variable

interface both signals the beginning of an interface definition

long both declares a long integer variable

native Java declares that a method is implemented in
native code

new both declares and allocates memory for a new object

package Java defines the package in which the source code
file belongs

private both declares a method or member variable to be
private

protected both declares a class, method, or member variable to
be protected

public both declares a class, method, or member variable
to be visible to all classes

return both returns a value from a method

short both declares a short integer variable

signed C++ allows a variable to be positive or negative

static both declares that a field or a method belongs to a
class rather than an object

string C++ declares a string variable

String Java declares a string variable

super Java references the parent of an object

switch both tests a true condition in the possible cases

synchronized Java indicates that a section of code is not thread-safe

this both references the current object

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

600 appendix C

reserved word Java or C++ description

throw both raises an exception

throws Java declares the exceptions thrown by a method

transient Java declares that the field shouldn’t be serialized

try both attempts an operation that might throw or
raise an exception

unsigned C++ indicates that a variable can have only a
positive value

void both declares that a method or function doesn’t
return a value

volatile both warns the compiler that a variable changes
asynchronously

while both begins a while loop

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

glossary
10BaseT A twisted pair Ethernet networking cable capable of transmitting at
rates up to 10 Mbps (megabits per second)

10GBaseT The fastest Ethernet networking cable, capable of transmitting at
10 Gbps (gigabits per second) over twisted pairs of wires

100BaseT A fast Ethernet networking cable made up of four twisted pairs of
wire and capable of transmitting at 100 Mbps

802.11 A family of specifications for WLANs developed by IEEE; currently
includes 802.11, 802.11a, 802.11b, 802.11g, and 802.11n

abacus A counting device with sliding beads, used from ancient times to the
present; useful mainly for addition and subtraction

acceptable use policy (AUP) An organizational policy that defines who can
use company computers and networks, when, and how

access attacks Attacks on a system that can include snooping, eavesdropping,
and interception; more commonly known as spying or illicitly gaining access to
protected information

accountability Making sure a system is as secure as feasible and a record of
activities exists for reconstructing a break-in

adder The circuit in the CPU responsible for adding binary numbers

affect system How emotions, and potentially aesthetics, play a role in deci-
sion making

algorithm A logically ordered set of statements used to solve a problem

AM (amplitude modulation) A technique of placing data on an alternating car-
rier wave by varying the signal’s amplitude; this technique is often used in modems

American National Standards Institute (ANSI) An organization that works
with industry groups to formulate and publish standards

American Standard Code for Information Interchange (ASCII) A standard
for storing text characters in computers; the ASCII standard allows representing
128 possible characters with 7 bits

AND Boolean operator that returns a true value only if both operands are true

antivirus software A program designed to detect and block computer viruses

ARIN (American Registry of Internet Numbers) The U.S. organization
that assigns IP address numbers for the country and its territories

arithmetic logic unit (ALU) The portion of the CPU responsible for mathe-
matical operations, specifically addition

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

602 glossary

array A set of contiguous memory cells used for storing the same type
of data

ASP (Active Server Pages) A Web server technology that combines features
of HTML and JavaScript or VBScript programming code; used on a Web
server to create Web pages dynamically

assembler A program that reads assembly-language code and converts it into
machine language

assembly language A human-readable language used to represent numeric
computer instructions (binary code)

asymmetric encryption Encryption using both a public key and a private key

ATM (Asynchronous Transfer Mode) A network technology based on trans-
ferring data in cells or packets of a fixed size at speeds up to 2.488 Gbps

attenuation A reduction in the strength of an electrical signal as it travels
along a medium

attitude A measure of how much users enjoy their experience with the
technology

authentication A technique for verifying that someone is who he or she
claims to be; a password is one type of authentication

availability Accessibility of information and services on a normal basis

backdoors Shortcuts into programs created by system designers to facilitate
system maintenance but used and abused by crackers

bandwidth A measurement of how much information can be carried in a
given time period over a wired or wireless communication medium, usually
measured in bits per second (bps)

base (or parent) class A general class from which other classes can be created
via inheritance

behavioral thinking Thinking about how something works

binary Numbering system with two digits, 0 and 1, also known as base 2; the
basis for modern computer systems

binary code or machine code The numeric language of the computer based
on the binary number system of 1s and 0s

binary search tree (BST) A binary tree in which the left child’s data value is
less than the parent node’s, and the right child’s data value is greater than the
parent node’s

biometrics Biological identification, such as fingerprints, voice dynamics, or
retinal scans; considered more secure than password authentication

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

glossary 603

BIOS (basic input/output system) A ROM (or programmable ROM) chip
on the motherboard; the BIOS provides the startup (boot) program for the
computer as well as basic interrupt routines for I/O processing

bit The abbreviation for “binary digit”; a bit is a 1 or a 0 and is the smallest
unit of representation in a computer system

bit error rate The percentage of bits that have errors in relation to the
total number of bits received in a transmission; a measure of the quality of
a communication line

Bluetooth A specification for short-range radio frequency (RF) links between
mobile computers, mobile phones, digital cameras, and other portable devices

Boolean algebra or Boolean logic A logical system developed by George Boole
that uses truth tables to indicate true/false output based on all possible true/false
inputs; the computer owes a lot to this concept because at its most basic level, the
computer is manipulating 1s and 0s—in other words, true or false

Boolean basic identities A set of laws that apply to Boolean expressions
and define ways in which expressions can be simplified; they’re similar to
algebraic laws

Boolean operator A word used in Boolean algebra expressions to test two
values logically; the main Boolean operators are AND, OR, and NOT

booting The process of starting a computer system

bot A small program, also called a spider or crawler, that accesses Web sites to
gather their content for search engine indexes

breakpoint A stop command inserted in a program to prevent it from
executing past that point

bridge A special type of network switch that can be configured to allow only
specific network traffic through, based on the destination address

browser A program that accesses and displays files and other information or
hypermedia available on a network or on the Internet

bubble sort A sorting routine that compares each item in the list with the
item next to it; if the first item is greater than the second, it swaps them, and
then repeats this process until it makes a pass all the way through the list
without swapping any items

buffer overflow A program tries to place more information into a memory
location than that location can handle

bus A collection of conductors, connectors, and protocols that facilitates
communication between the CPU, memory, and I/O devices

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

604 glossary

bus protocol The set of rules governing the timing and transfer of data on
a computer bus

byte A group of 8 bits considered as one unit and used as the basic unit of
measurement in a computer system; memory is measured in number of bytes,
for example

cable modem A type of digital modem that connects to a local cable TV line
to provide a continuous connection to the Internet

cache memory High-speed memory used to hold frequently accessed
instructions and data in a computer to avoid having to retrieve them from
slower system DRAM

callback A method that allows users to connect only by having the network
initiate a call to a specified number

cardinality Shows the numeric occurrences between entities in an ER model

Cat 5 A popular Ethernet twisted pair communication cable capable of carry-
ing data at rates up to 100 Mbps

CCITT (Comité Consultatif International Téléphonique et Télégraphique
or International Telegraph and Telephone Consultative Committee) A
standards group involved in the development of the ISO OSI reference model

CD-ROM A 120-mm disc used to store data, music, and video in a com-
puter system by using laser technology; CD-ROMs are capable of holding up
to 850 MB of information

central processing unit (CPU) The central controlling device inside a com-
puter that makes decisions at a very low level, such as what math functions or
computer resources are to be used and when

CGI (Common Gateway Interface) An older Web server technology used
for dynamic Web page creation

checksum A mathematical means to check the content of a file or value
(such as a credit card number) to ensure that it has not been tampered with
or re-created illicitly

chip A piece of encased silicon, usually somewhere between the size of your
fingernail and the palm of your hand, that holds integrated circuits (ICs)

class A template for defining new object types and their properties (character-
istics or attributes) and behaviors

cluster Area of the hard drive containing a group of the smallest units that
can be accessed on a disk (sectors)

coaxial Communication cable that consists of a center wire surrounded by
insulation and then a grounded foil shield wrapped in steel or copper braid

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

glossary 605

collision In hashing, what happens when the hashing algorithm generates the
same relative key for more than one original key value

column, field, or attribute A specific piece of information in a table row

command prompt Words and symbols displayed onscreen that indicate the
OS is waiting for user input

command-line interface A method of communicating with the OS by typing
commands and receiving responses in text format

compiler An application that reads all the program’s statements, converts
them into computer language, and produces an executable file that doesn’t need
an interpreter

composite key A primary key made up of more than one column

concatenation The process of combining or joining strings into one value

confidentiality Ensuring that only those authorized to access information can
do so

constructor A special method for instantiating an object

control structure An instruction that dictates the order in which statements
in a program are executed

control unit (CU) The part of the CPU that controls the flow of data and
instructions into and out of the CPU

cookie A program that can gather information about a user and store it on
the user’s machine

copyright The legal right granted to an author, a composer, an artist, a pub-
lisher, a playwright, or a distributor to exclusive sale, publication, production,
or distribution of literary, artistic, musical, or dramatic works

cracker An unwelcome system intruder with malicious intent

CRT (cathode ray tube) The technology used in a conventional
computer monitor; CRTs use electron beams to light up phosphor displays
on the screen

customer relations representative (or support technician) Person responsi-
ble for interacting with testers, developers, and end users during the product’s
creation and early release and on an ongoing basis with end users as long as the
product is being used

data dictionary A document describing the type of data being used in the
program, showing table definitions, indexes, and other data relationships

data structure A way of organizing data in memory, such as arrays, lists,
stacks, queues, and trees

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

606 glossary

database Data that has been logically related and organized into a file or set
of files to allow access and use

database administrator (DBA) Person assigned the role of creating and
maintaining the database structure

database management system (DBMS) A program for managing storage,
access, and modifications to a database

datagram A packet of information used in a connectionless network service
that’s routed to its destination by using an address included in the datagram’s
header

deadlock A rare situation in which I/O devices and/or processes are waiting
for each other for use of resources; this situation would continue indefinitely
without intervention by the OS

debugging The process of finding and fixing problems in program code

declaration A statement that associates an identifier with a variable (or an
action or another programming element)

decoder A digital circuit used in computers to select memory addresses and
I/O devices

demilitarized zone (DMZ) A location outside the firewall (or between fire-
walls) that’s more vulnerable to attack from outside

denial-of-service (DoS) attacks Attacks that prevent legitimate users from
using the system or accessing information

depth or level The distance from the node to the root node; the root’s depth
or level is 0

dequeue To remove an item from a queue

design criteria Factors to consider in creating a good design, including users’
needs and experiences and what’s appropriate given the design’s constraints

design document A document that details all the design issues for an
application

determinant In a database, any column you can use to determine the value
assigned to another column in the same row

DHCP (Dynamic Host Configuration Protocol) A communication proto-
col that automates assigning IP addresses in an organization’s network

DHTML (Dynamic HTML) An extension to HTML tags and options for
producing Web pages that are responsive to user interaction

digital certificate The digital equivalent of an ID card; used with encryption
and issued by a third-party certification authority

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

glossary 607

directed (targeted) hacker Generally, a cracker motivated by greed and/or
politics

directory Same as folder; “folder” is often used in Windows, and
“directory/subdirectory” is more often used in DOS and Linux

disaster recovery plan (DRP) A written plan for responding to natural or other
disasters, intended to minimize downtime and damage to systems and data

disk fragmentation Occurs when files’ clusters are scattered in different loca-
tions on the storage medium instead of being in contiguous locations

DNS (Domain Name System) A method of translating Internet domain
names into IP addresses; DNS servers are servers used in this process

domain Set of possible values for a column

domain name A name used to locate the IP address of an organization or
other entity on the Internet, such as www.cengage.com

DOS (Disk Operating System) A single-user, single-tasking, command-line
operating system; the Microsoft predecessor to Windows

DRAM Dynamic RAM, a generic term for a type of RAM that requires con-
stant refreshing to maintain its information; various types of DRAM are used
for the system main memory

driver A special program that provides an interface to a specific I/O device

DSL (digital subscriber line) A method of sending and receiving data over
regular phone lines, using a combination of FDM and TDM

dumpster diving Picking through people’s trash to find things of value;
although often innocent, it has been used by thieves to glean potentially
damaging information

DVD A technology that uses laser and layering technology to store data,
music, and video on 120-mm discs; DVDs are capable of holding up to 9 GB
of information

effectiveness A measure of how well the technology helps users perform their
tasks; often expressed as how quickly, how easily, how safely, and so forth

element A memory cell in an array

embedded computers Computers embedded into other devices: a phone, car,
or thermometer, for example

encapsulation The process of hiding an object’s operations from other objects

Encrypting File System (EFS) An encryption technology that converts data in a
file to unreadable information by using an encryption algorithm and key value; to
make the information readable again, you must decrypt it with another key value

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

www.cengage.com
http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

608 glossary

encryption Transforming original data (plaintext) into coded or encrypted
data (ciphertext) so that only authorized parties can interpret it

encryption key A string of bits used in an encryption algorithm to encrypt
or decrypt data; the longer the key, the more secure the encryption

end user Someone or something that needs the program to perform a function
or meet a need and determines the program’s required functionality

endless loop A block of source code that repeats continuously and never stops

enqueue To insert an item into a queue

entity relationship (ER) model A data model that represents how all tables
interact and relate to each other in the database

ergonomics Science of the relationship between people and machines; designing
work areas to facilitate both productivity and human ease and comfort

Ethernet A common method of networking computers in a LAN, using
copper cabling at speeds up to 100 Mbps

ethics Principles for judging right and wrong, held by a person or group

event An action or occurrence recognized by a class

event handler How a class responds to an event

exponent In scientific notation, it’s the power of the base and is multiplied by
the mantissa to give the actual number

expression A statement containing a combination of values that’s interpreted
and computed to produce another value

Extended ASCII A method for storing characters with an 8-bit code; adds
128 more characters to the original 7-bit ASCII code

FAT (File Allocation Table) File management system used to locate files on a
storage medium

FDDI (Fibre Distributed Data Interface) A token-passing, fiber-optic cable
protocol with support for data rates up to 100 Mbps; FDDI networks are typically
used as the main lines for WANs

FDM (frequency-division multiplexing) A technique for combining many
signals on a single circuit by dividing available transmission bandwidth by fre-
quency into narrower bands, each used for a separate communication channel

fiber optic Guided network cable consisting of bundles of thin glass strands
surrounded by a protective plastic sheath

file compression The process of reducing file size and, therefore, taking up
less disk space

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

glossary 609

file system The part of the OS responsible for creating, manipulating, renam-
ing, copying, and moving files to and from a storage device

firewall A software or hardware network device that protects a network by
filtering out potentially harmful incoming and outgoing traffic

first in, first out (FIFO) The last item placed on the queue is the last item
removed, and the first item removed from the queue is the first item placed
onto it

first normal form (1NF) Eliminating repeating fields or groups of fields
from the table and confirming that every column has only one value by creating
a new record in the table

flash drive A small, thumb-sized memory device that functions as though it
were a disk drive; flash drives normally plug into a PC’s USB port

flip-flop or latch A digital circuit that can retain the binary value it was set to
after the input is removed; static RAM is constructed by using flip-flop circuits

floating-point or scientific notation A method of representing numbers
containing fractional values consistently; uses a mantissa and an exponent, such
as 3.144543E+8

flowchart A combination of symbols and text that provides a visual descrip-
tion of a process

FM (frequency modulation) A technique of placing data on an alternating
carrier wave by varying the signal’s frequency; this technique is often used in
modems

folder Structure on a formatted disk that enables storing and organizing files;
also known as a directory or subdirectory

foreign key (FK) A column in one table that relates to a primary key in
another table

format Organizing the disk’s surface in a way that allows writing folders and
files to it

FTP (File Transfer Protocol) A protocol designed to exchange text and
binary files via the Internet

function A block of code that performs a task and can return a value

functional dependency A column’s value is dependent on another column’s value

gate A transistor-based circuit in the computer that implements Boolean logic
by creating a single output value for a given set of input values

gateway A network component, similar to a bridge, that allows connecting
networks of different types

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

610 glossary

gaze system A system that uses users’ eye movements as input

gold plating Adding unnecessary features to the project design

graphical user interface (GUI) A method of interacting with the OS, in
which information is displayed in a graphical format, and the user can select
items by using a pointing device, such as a mouse

guided media Physical transmission media, such as wire or cable

hacker A technically proficient person who breaks into a computer system;
originally denoted good intent, but general usage today is similar to “cracker”

Hacker’s Manifesto A document, written anonymously, that justifies cracking
into systems as an ethical exercise

hacktivism Cracking into a system as a political act; one political notion is
that cracking itself is useful for society

haptics technologies Technologies that allow users to feel a response from a
system, not just see or hear a response; optimally, can replicate the sensation of
feeling an object in real life to create a virtual tactile experience

hardware The physical device on which software runs

hash key A unique value used in hashing algorithms and identifying records

hashing A common method for accessing data in a file or database table with
a unique value called the hash key

hashing algorithm A routine of logic used for determining how hash values
are created

head pointer A pointer indicating the beginning of the first element in a data
structure

height The longest path length in the tree

heuristics In virus detection, a set of rules predicting how a virus might act;
for example, anticipating that the virus will affect certain critical system files

hexadecimal (hex) Numbering system with 16 digits, 0–9 and A–F; also
known as base 16 and often used as shorthand for binary (one hex digit � four
binary digits)

high-level language A programming language written in a more natural
language that humans can read and understand

honeypot A trap (program or system) laid by a system administrator to catch
and track intruders

HTML (Hypertext Markup Language) Markup symbols or codes inserted
in a file that specify how the material is displayed on a Web page

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

glossary 611

HTTP (Hypertext Transfer Protocol) A protocol designed for transferring
files (primarily content files) on the World Wide Web

hub A network device that functions as a multiport repeater; signals received
on any port are immediately retransmitted to all other ports on the hub

Hungarian notation A variable-naming method that adds a letter at the
beginning of a variable name to indicate its data type

hyperlink A link that allows users to select a connection from one word,
picture, or information object to another

hypermedia Different sorts of information (text, sound, pictures, video) that
are linked in such a way that a user can move and see content easily from one
link to another

hypertext Hypermedia that is specifically text

IANA (Internet Assigned Numbers Authority) The organization under
contract with the U.S. government to oversee allocating IP addresses to ISPs

identification A technique for knowing who someone is; for example, a
Social Security number can be identification

identifier Name of a variable

IEEE (Institute of Electrical and Electronics Engineers) An organization
involved in formulating networking standards

IEEE-754 A standard for the binary representation of floating-point num-
bers; it’s the 754th standard proposed by the IEEE

IMAP (Internet Message Access Protocol) A standard protocol for accessing
e-mail from a mail server

impedance The opposition a transmission medium has toward the flow
of alternating electrical currents

index (subscript) How an array accesses each element stored in its data
structure

index A special file that occupies its own space and specifies one or more
columns that determine how information stored in the table can be accessed
more efficiently

inductance The magnetic field around a conductor that opposes changes in
current flow

inductive reasoning or scientific method A basic approach to problem
solving, consisting of four steps: observe, theorize, test, and repeat

inheritance The process of creating more specific classes based on generic
classes

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

612 glossary

insertion point Where the cursor is placed

instantiation The process of creating an object based on a class and assigning
memory to it

integrated circuit (IC) A collection of transistors on a single piece of hard-
ware (called a “chip”) that reduces the circuit’s size and physical complexity

integrated development environment (IDE) An interface provided with
software development languages that incorporates all the tools needed to write,
compile, and distribute programs; these tools often include an editor, a com-
piler, a graphical designer, and more

integrity Assurance that information is what you think it is and hasn’t been
modified

intellectual property An idea or product based on an idea that has commercial
value, such as literary or artistic works, patents, business methods, industrial
processes, and trade secrets

interpreter An application that converts each program statement into
a language the computer understands

interrupt handling A computer process in which a signal is placed on the
bus to interrupt normal processing of instructions and transfer control to a
special program designed to deal with events such as I/O requests

IP (Internet Protocol) The protocol that provides for addressing and routing
Internet packets from one computer to another

IP address A unique 32-bit number assigned to network devices that use
Internet Protocol

IPCONFIG A Windows command-line utility that can be used to display
currently assigned network settings

IPv4 Version 4 of Internet Protocol, the most widely used version of IP

IPv6 Version 6 of Internet Protocol has more capabilities than IPv4, includ-
ing providing for far more IP addresses

ISO (International Organization for Standardization) An organization that
coordinates worldwide standards development

ISO OSI reference model A data communication model consisting of seven
functional layers

ISP (Internet service provider) A company that provides access to the Internet
and other related services, such as Web site building and virtual hosting

JavaScript An interpreted programming or script language from Netscape;
somewhat similar in capability to Microsoft VBScript

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

glossary 613

JSP (Java Server Pages) Comparable with Microsoft’s ASP technology,
except that it runs only programs written in Java

kernel The core of an operating system; controls processor, disk, memory,
and other central functions

killer app A software program that becomes so popular that it drives the
popularity of the hardware it runs on

LAN (local area network) A network of computers in a single building or
in close proximity

last in, first out (LIFO) The last item placed on the stack is the first item
removed from the stack

LCD (liquid crystal display) A type of electronic device used as a computer
monitor; popular in notebook computers and PDA devices and now used
widely for desktop monitors

leaf node A node that has no child nodes

learnability A measure of how quickly users can learn to use the technology
to perform their tasks

left child The child node to the left of the parent node

linked list A data structure that uses noncontiguous memory locations to
store data; each element in the linked list points to the next element in line and
doesn’t have to be contiguous with the previous element

Linux A multitasking, multiuser, open-source variation of the UNIX OS

long-term memory Where information is stored on a semipermanent basis;
can store a potentially limitless amount, but retrieving information can be more
difficult

lower bound The lowest position in an array

low-level language A programming language that uses binary code for instructions

machine language The lowest-level programming language, which consists of
binary bit patterns

main board or motherboard The physical circuit board in a computer that
contains the CPU and other basic circuitry and components

mainframe A large, expensive computer, often serving many terminals and
used by large organizations; all first-generation computers were mainframes

malicious code Code designed to breach system security and threaten digital
information; often called a virus, although technically a virus is only one kind
of malicious code

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

614 glossary

mantissa In scientific notation, it contains the number’s significant digits and
is placed before the exponent

many-to-many (M:M) relationship Many instances of one entity or table
(parent table) are associated with many instances of another entity (child table)

Master File Table (MFT) A table used in NTFS to store data about every file
and directory on the volume

metadata In XML and in database systems, information about characteristics
of the data in a file; sometimes called “data about data”

method The work performed by an object; a function defined in a class

microcomputer A desktop-sized computer with a microprocessor CPU
designed to be used by one person at a time

microprocessor A CPU on a single chip used in microcomputers

minicomputer Mid-sized computer introduced in the mid to late 1960s; it
typically cost tens of thousands of dollars versus hundreds of thousands of
dollars for a mainframe

modem A device that converts binary signals into audio signals for transmis-
sion over standard voice-grade telephone lines and converts the audio signals
back into binary

modification attacks Attacks on a system that alter information illicitly

MP3 (MPEG-1 Audio Layer-3) A standard technology and format for com-
pressing a sound sequence into a small file, compared with an uncompressed
sound file, such as a WAV file

multidimensional array An array consisting of two or more single-
dimensional arrays

multiprocessing Coordinated execution of a process, using two or more
CPUs at the same time

multitasking An OS’s capability to effectively support more than one process
running at a time

NAND A logical AND followed by a logical NOT that returns a false value
only if both operands are true

NAT (Network Address Translation) Used to translate an inside IP address
to an outside IP address; NAT is often used to allow multiple computers to
share one Internet connection

natural-language processing A system that recognizes the natural way in
which humans communicate verbally (by speech or text) and can discern
meaning from this communication

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

glossary 615

NBP (national backbone provider) A provider of high-speed network
communication lines for use by ISPs

nesting Putting one control structure inside another

network interface card (NIC) A circuit board that connects a network
medium to the system bus and converts a computer’s binary information into a
format suitable for the transmission medium; each NIC has a unique, 48-bit
address

network operating system An OS designed to provide strong network
services

network topology A schematic description of the arrangement of a network,
including its nodes and connecting lines

nibble A term sometimes used to refer to 4 bits (half a byte)

node Any addressable device attached to a network that can recognize,
process, or forward data transmissions

node or vertex A position in a tree data structure

NOR A logical OR followed by a logical NOT that returns a true value only
if both operands are false

normalization A database design process that structures tables to eliminate
duplication and inconsistencies in the data structure

NOT Boolean operator that returns a false value if the operand is true and a
true value if the operand is false

NTFS (New Technology File System) File management system introduced
in Windows NT and incorporated into all desktop and server Windows OSs
since then; used to locate files on a storage medium

null value The absence of a value, meaning there’s no value stored; null is not
the same as blank or zero

object A self-contained entity consisting of both data and procedures

object-oriented programming (OOP) A style of programming that involves
representing items, things, and people as objects instead of basing program
logic on actions

offset Used to specify the distance between memory locations

one-to-many (1:M) relationship One instance of an entity (parent table) is
associated with zero to many instances of another table (child table)

one-to-one (1:1) relationship One instance of an entity (parent table) is
associated with only one instance of another entity (child table)

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

616 glossary

open architecture Computer hardware that’s accessible for modification and
sometimes even documented

open source Computer programs, including operating systems, developed as
a public collaboration and made available free for use or modification

operating system (OS) Software that allows applications to access hardware
resources, such as printers or hard drives, and provides tools for managing and
administering system resources, processes, and security

operators Symbols used to indicate data-manipulation operations

OR Boolean operator that returns a true value if either operand is true

overflow area Area in a file that’s used in case a collision occurs during the
hashing algorithm

packet-filtering firewall A firewall that inspects each packet and moves it
along an established link to its destination; usually faster but less secure than a
proxy firewall

parallel computing The use of multiple computers or CPUs to process
a single task simultaneously

parameter A received value assigned to a variable; used by a block of
source code

partition An area of a hard disk reserved to hold files of a particular OS type

patent A government grant that gives the sole right to make, use, and sell an
invention for a specified period of time

PCI A system bus to connect a microprocessor with memory and I/O
devices; PCI is widely used in personal computers

PDU (protocol data unit) A data communication packet containing proto-
col information in addition to a data payload

peeking Looking at the top item in the stack without removing it from the stack

Perl A script programming language similar in syntax to the C language;
often used to develop CGI dynamic Web pages

personal computer (PC) Originally an IBM microcomputer; now generally
refers to any microcomputer

PHP In Web programming, a free script language and interpreter used
primarily on Linux Web servers

phreaking Subverting the phone system to get free service

pixel (picture element) The basic unit of programmable color on a computer
display or in a computer image; its physical size depends on the display device’s
resolution

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

glossary 617

platform The OS running on a computer

Plug and Play (PnP) A technology that allows the OS and hardware to work
together to detect and configure I/O devices automatically

PM (phase modulation) A technique of placing data on an alternating car-
rier wave by varying the signal’s phase; the most common modulation type in
modems

pointer A memory variable containing the address of a memory cell as its data

polling A technique in which the CPU periodically interrogates I/O devices
to see whether they require attention; polling requires many more CPU
resources than interrupt handling

polymorphism An object’s capability to use the same expression to denote
different operations

POP (point of presence) An access point to the Internet

pop Remove an item from the stack

POP3 (Post Office Protocol version 3) The most recent version of a stan-
dard protocol for receiving e-mail from a mail server

port In the context of I/O devices, the physical connection on the computer
that allows an I/O device to be plugged in

port number An addressing mechanism used in TCP/IP as a way for a client
program to specify a particular server program on a network computer and to
facilitate Network Address Translation

positional value The numerical value each position in a number has; calcu-
lated by raising the base of the number to the power of the position

POST (power-on self test) A procedure performed by the computer boot
routine to check hardware devices

postcondition loop A loop that executes at least one time before the expres-
sion is evaluated

precedence The order in which something is executed; symbols with a higher
precedence are executed before those with a lower precedence

precondition loop A loop that checks the expression before any source code
in the loop is executed; might never be executed

primary key (PK) A column or combination of columns that uniquely iden-
tifies a row in a table

privacy Freedom from unwanted access to or intrusion into a person’s private
life or information; the Internet and computerized databases have made inva-
sion of privacy much easier and are an increasing cause for concern

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

618 glossary

procedure A group of one or more related commands that perform a task

process A small program running on a computer; can be part of a larger program

program A collection of statements or steps that solves a problem and needs
to be converted into a language the computer understands to perform tasks

program loop The capability of a program to “loop back” and repeat commands

project manager Leader of the software development team; responsible for
choosing the right players for the right positions and making sure the project is
on schedule

property or attribute Characteristic of an object

protocol A set of rules designed to facilitate communication; protocols are
heavily used in networking

prototype A standard or typical example that gives end users a good idea of
what they will see when their application is completed

proxy firewall A firewall that establishes a new link between each packet of
information and its destination; slower but more secure than a packet-filtering
firewall

pseudocode A readable description of an algorithm written in human
language

push Place an item on the stack

Python An interpreted, object-oriented programming language similar to Perl
that has gained popularity in recent years

queue A list in which the next item to be removed is the item that has been
in the list the longest

radix point The point that divides the fractional portion from the whole
portion of a number; in the decimal numbering system, it’s referred to as a
decimal point

RAID (redundant array of independent disks) A collection of connected
hard drives arranged for increased access speed or high reliability

RAM (random access memory) A generic term for volatile memory in a
computer; RAM is fast and can be accessed randomly but requires power to
retain its information

random access Reading data from or writing data to anywhere on a disk

recursion The process of a routine calling itself

reflective thinking Thinking about how something reflects on the user and
his or her relationship to others

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

glossary 619

refresh rate The number of times per second an image is renewed onscreen; a
higher refresh rate results in less flickering in the display

register A small unit of very high-speed memory located on the CPU; used
to store data and instructions for the CPU

relationship How one entity or table works with another

repeater A network device used to amplify signals on long cables between nodes

repudiation attacks Attacks on a system that injure the information’s reliabil-
ity; for example, a repudiation attack might remove evidence that an event
(such as a bank transaction) actually did occur

reserved word A keyword with a specific instructional meaning; the name
can’t be used for a variable because the programming language is already using
it as an instruction

resolution A measurement of the granularity of a computer monitor or
printer; usually given as a pair of numbers indicating the number of dots in a
horizontal and vertical direction or the number of dots per inch

resources Devices connected to the CPU, such as the main memory, hard
disk, and CD/DVD-ROM drive; all running processes have to share these
devices

reverse-engineer To figure out the design of a program or device by taking it
apart and analyzing its components; for example, source code can be reverse-
engineered to determine a design model

RGB (red, green, and blue) A type of computer monitor that displays color
as a function of these three colors

RGB encoding A method of defining a pixel’s color and brightness in terms
of intensity of the colors red, green, and blue

right child The child node to the right of the parent node

risk The relationship between vulnerability and threat; total risk also includes
the potential effect of existing countermeasures

ROM (read-only memory) A type of memory that retains its information
without power; some types of ROM can be reprogrammed

root The node that begins the tree

root level The main folder/directory level on a drive

router A network device, similar to a gateway, that directs network traffic,
based on its logical address

row, record, or tuple A collection of columns

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

620 glossary

SATA (Serial AT Attachment) A popular bus used to connect hard drives
and other mass storage devices to the computer

scope Where source code can be seen and whether other programs can see
and use it

scope creep Occurs when new changes are added to a project constantly, thus
changing the proposed deadline so that the project is never completed; instead,
it’s in a constant improvement mode

script kiddie An amateur hacker who simply uses the hacking tools devel-
oped by others

SCSI A high-speed bus designed to allow computers to communicate with
peripheral hardware, such as disk drives, CD/DVD-ROM drives, printers, and
scanners

search engine A program, usually accessed on the Web, that gathers and
reports information available on the Internet

second normal form (2NF) First normal form has already been applied to
the table, and every column that isn’t part of the primary key is fully dependent
on the primary key

selection sort A sorting routine that selects the smallest unsorted item remaining
in the list, and then swaps it with the item in the next position to be filled

semiconductor A medium that’s neither a good insulator nor a good conductor
of electricity, used to construct transistors

sensory storage Where sensory information is first processed by the human
brain before passing it to short-term memory; can handle a lot of information
simultaneously but can’t store it for long

sequential access Reading and writing data in order from the beginning

SGML (Standard Generalized Markup Language) A standard for how to
specify a document markup language or tag set

shifter A circuit that converts a fixed number of inputs to outputs that have
bits shifted to the left or right, often used with adders to perform multiplication
and division

short-term memory Where information is sent after the sensory system
receives it; limited to storing five to nine items temporarily

signal-to-noise ratio A measure of the quality of a communication channel

single-tasking An OS that allows running only one process (task) at a time

slide rule A device that can perform complicated math by using sliding
guides on a rulerlike device; popular with engineers until the advent of the
cheap electronic calculator

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

glossary 621

SMTP (Simple Mail Transfer Protocol) A TCP/IP-related, high-level proto-
col used in sending e-mail

sniffer A software program, such as Wireshark, that allows the user to listen
in on network traffic

social engineering Social interaction that preys on human gullibility, sympa-
thy, or fear to take advantage of the target, for example, to steal money,
information, or other valuables—basically, a con

software The instructions that operate the hardware

software developer (or programmer) Person responsible for writing source
code to meet the end user’s functional requirements

software development life cycle (SDLC) A model that describes the life of
the application, including all stages involved in developing, testing, installing,
and maintaining a program

software engineering The process of producing software applications, involv-
ing not just the program’s source code but also associated documentation,
including UML diagrams, screen prototypes, reports, software requirements,
future development issues, and data needed to make programs operate correctly

software piracy Illegal copying of software; a problem in the United States
and Europe, but rampant in the rest of the world

sort key In a database table, one or more columns used to determine the
data’s sort order

spam Unsolicited (and almost always unwanted) e-mail; usually trying to sell
something

spider Also called a bot or crawler, a program that visits Web sites and reads
their pages and other information to create entries for a search engine index

spyware Software that can track, collect, and transmit to a third party or Web
site certain information about a user’s computer habits

SRAM Static RAM, a type of high-speed memory constructed with flip-flop
circuits

SSH (Secure Shell) A network protocol for secure data exchange between
two networked devices, usually in a Linux environment.

stack A list in which the next item to be removed is the item most recently stored

stack pointer A pointer that keeps track of where to remove or add an item
in a data structure

stored program concept The idea that a computer can be operated by a
program loaded into the machine’s memory; also implies that programs can be

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

622 glossary

stored somewhere and repeatedly loaded into memory, and the program itself,
just like other data, can be modified

Structured Query Language (SQL) A special language used to maintain
database structure and modify, query, and extract information

subclass A more specific class based on a parent class and created via inheritance

subnet A portion of a network that shares part of an address with other
portions of the network and is distinguished by a subnet number

supercomputer The fastest and usually most expensive computer available;
often used in scientific and engineering research

superstitious behavior Users with incomplete information on how to use a
technology create an incorrect model of the way a technology works

switch A network repeater with multiple inputs and outputs; each input can
be switched to any of the outputs, creating a point-to-point circuit

symmetric encryption Encryption using a private key to both encrypt and
decrypt

syntax Rules for how a programming language’s statements must be constructed

system bus The main bus used by the CPU to transfer data and instructions
to and from memory and I/O devices

system clock A crystal oscillator circuit on a main board that provides timing
and synchronization for operating the CPU and other circuitry

T1 line A digital transmission link with a capacity of 1.544 Mbps; T1 uses
two pairs of normal twisted wires, the same twisted wire used in most homes

table or entity Data arranged in rows and columns, much like a spreadsheet

tail pointer Keeps track of the end or rear position of the data structure

TCP (Transmission Control Protocol) An OSI Transport layer, connection-
oriented protocol designed to exchange messages between network devices

TCP/IP (Transmission Control Protocol/Internet Protocol) The suite of
communication protocols used to connect hosts on the Internet

TDM (time-division multiplexing) A technique for combining many signals
on a single circuit by allocating each signal a fixed amount of time but allowing
each signal the full bandwidth during an allotted time

tester Person responsible for making sure the program functions correctly and
meets all the functional requirements specified in the design document

third normal form (3NF) Eliminate columns that are not dependent on only
the primary key

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

glossary 623

threat The likely agent of a possible attack, the event that would occur as a
result of an attack, and the target of the attack

time slicing A method of allocating fixed time units to running processes so
that it appears to users that all processes are running simultaneously

time-sharing A computer’s capability to share its computing time with many
users at the same time

time to live (TTL) A field in the IP header that enables routers to discard
packets that have been traversing the network for too long

token ring A LAN technology that has stations wired in a ring, in which
each station constantly passes a special message token on to the next; whichever
station has the token can send a message

trade secret A method, formula, device, or piece of information that
a company keeps secret and that gives the company a competitive advantage

transistor A signal amplifier much smaller than a vacuum tube used to repre-
sent a 1 (on) or a 0 (off), which are the rudiments of computer calculation;
often used as part of an integrated circuit (IC)

transitive dependency One column is dependent on another column that
isn’t a primary key

transmission medium A material with the capability to conduct electrical
and/or electromagnetic signals

tree A data structure that represents a hierarchical structure, similar to that of
organizational or genealogical charts

Trojan program A program that poses as an innocent program; some action
or the passage of time triggers the program to do its dirty work

truth table A table representing the inputs and outputs of a logic circuit;
truth tables can represent basic logic circuits as well as complex ones

twisted pair A pair (sometimes pairs) of insulated wires twisted together and
used as a transmission medium in networking

twos complement A method of representing negative numbers in a
computer system; a binary number is converted to twos complement
format by flipping, or reversing, the state of each bit and then adding 1
to the entire word

ubiquitous computing The possibility of computers being embedded into
almost everything and potentially able to communicate

undirected (untargeted) hacker A cracker motivated by the challenge of
breaking into a system

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

624 glossary

unguided media Transmission media you can’t see, such as air or space, that
carry radio or light signals

Unicode A 16-bit standard for storing text or script information; defines
34,168 unique characters and control codes

Unified Modeling Language (UML) A software modeling process for creat-
ing a blueprint that shows the progam’s overall functionality and provides a way
for the client and developer to communicate

UNIX A multitasking, multiuser, command-line operating system known for
its stability and reliability

upper bound The highest position in an array

URL (Uniform Resource Locator) The English-like address of a file accessi-
ble on the Internet

USB (universal serial bus) A high-speed interface between a computer and
I/O devices; multiple USB devices can be plugged into a computer without
having to power off the computer

usefulness A measure of how many of the intended tasks users can perform
with the technology

user environment Where users perform their tasks

user interface The component that handles interaction between a technology
and the user; consists of what the user’s senses can perceive and what the user
can manipulate to operate the technology

user profiles Written descriptions of who the users are, including back-
grounds, skills, and so forth

user requirements What users want and need to do

user scenarios Examples of user activities, written to show the steps users go
through in using a technology

user tasks What users do and how they do it

user-centric design Designing by focusing on users’ needs before considering
other constraints of the system

vacuum tube A signal amplifier that preceded the transistor; like a transistor,
it can be integrated into a circuit, but it takes more power, is larger, and burns
out more quickly

variable A name used to identify a certain location and value in the com-
puter’s memory

variable initialization Supplying a value when a variable is first declared

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

glossary 625

VBScript An interpreted script language from Microsoft that’s a subset of the
Visual Basic programming language; often used by Web browsers and Active
Server Pages (ASP) servers

Very Large-Scale Integration (VLSI) The current point of evolution in the
development of the integrated circuit; VLSI chips typically have more than
100,000 transistors

virtual private network (VPN) A private network connection that “tunnels”
through a larger, public network and is restricted to authorized users

virus An uninvited guest program with the potential to damage files and the
operating system; this term is sometimes used generically to denote a virus,
worm, or Trojan program

virus hoax E-mail that contains a phony virus warning; started as a prank to
upset people or to get them to delete legitimate system files

virus signature (or virus definition) Bits of code that uniquely identify a
particular virus

visceral thinking Immediate, instinctive thinking; an object’s look and feel
play a role in how it’s perceived

voice-recognition technology A technology that can recognize human
speech and process instructions

Von Neumann machine A computer architecture developed by John Von
Neumann and others in the 1940s that allows for input, output, processing,
and memory; it also includes the stored program concept

vulnerability The sensitivity of information combined with the skill level an
attacker needs to threaten that information

WAN (wide area network) A network in which computer devices are physi-
cally distant from each other, typically spanning cities, states, or even continents

waterfall model An SDLC approach involving sequential application devel-
opment with processes organized into phases; after a phase is completed, a new
one starts, and you can’t return to the previous phase

WAV An audio file format that has become a standard for everything from
PC system and game sounds to CD-quality audio

Web server A program running on a computer that responds to HTTP
requests for Web pages and returns the pages to the requesting client

Web service Programming and data on a Web server designed to make data
available to other Web programs

whole (integer) number A number (positive, zero, or negative) that has no
fractional portion

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

626 glossary

wildcard A symbol that stands for one or more characters, used in selecting
files or directories

Windows A popular Microsoft GUI operating system for Intel-based systems

WLAN (wireless LAN) A local network that uses wireless transmission
instead of wires; the IEEE 802.11 protocol family is often used in WLANs

word A group of bits in a computer system; the number of bits in a word
depends on the machine, but common word sizes are 16, 32, and 64 bits; a
typical computer system manipulates bits in word increments

worm A type of bot that can roam a network looking for vulnerable systems
and replicate itself on those systems; the new copies look for still more
vulnerable systems

XML (Extensible Markup Language) A markup language designed to create
common information formats and share the format and data on the World
Wide Web

XOR A logical operator that returns a true value if one, but not both, of its
operands is true

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Note: Page numbers in boldface indicate
key terms.

spec ia l characters
<> (angle brackets), 188–189
* (asterisk), 252, 341
{} (braces), 523, 524–525
, (comma), 364–365
“ (double quotes), 519
= (equal sign), 518
() (parentheses), 491, 521
; (semicolon), 419, 422
‘ (single quote), 517
[] (square brackets), 284, 336
_ (underscore), 486

a
<A> (hyperlink) tag, 189, 191, 192
abacus, 6
Access (Microsoft), 210, 235
access attack(s), 56
Access to Electronic Information Act, 75
accountability, 58
ACM (Association for Computing

Machinery), 5, 35, 78–79, 82–83
ActiveX (Microsoft), 65
Ada (programming language), 8, 469, 470
adder circuits, 111, 112
add instruction, 476
advertisements, 25–26
adware, 85
AES (Advanced Encryption Standard), 68
aesthetic experiences, 386, 397
affect system, 397, 398
agents, as characteristics of security threats,

57–58
Ahl, David, 19
Aiken, Howard, 9, 14
algorithms, 468, 479–484

hashing, 366, 367, 368–369
Allen, Paul, 21–22
AlltheWeb.com, 197
ALT attribute, 389
Altair 8800 computer, 20–22, 24
ALU (arithmetic logic unit), 111, 116
AM (amplitude modulation), 155, 156
Amazon.com, 194
Analytical Engine, 8, 36
AND gate, 107–108, 110–111, 113, 115
AND keyword, 237

AND operator, 104–105, 106, 115
Andreessen, Marc, 31
angle brackets (<>), 188–189
animations, 392
Anonymizer.com, 86
ANSI (American National Standards

Institute), 265
AntiSpy, 86
antitrust law, 32–33
antivirus software. See also viruses

described, 64
installing, 61, 81
overview, 64–65

AOL (America Online), 32, 33, 181
Apple Computer. See also Macintosh

advertisements, 25–26
copyright issues and, 77
the history of computing and, 22–23,

25–26, 36
applets, 512
application engineers, 13
Application layer, 147, 180
ARIN (American Registry of Internet

Numbers), 177
Army (United States), 10
ARPA (Advanced Research Projects Agency),

27, 28
ARPNANET, 28
array(s)

described, 280
multidimensional, 285, 286–289
overview, 280–290
sorting data and, 304
uses of, 289–290

ASCII (American Standard Code for
Information Interchange)

debugging and, 424
described, 266
file systems and, 363, 367
OSI layers and, 147
overview, 594–596

Ask.com, 197
ASP (Active Server Pages), 193
assembler, 473
assembly language, 469, 470, 473, 474–477

debugging and, 424
described, 13
history of, 16

Assyria, 5–6
asterisk (*), 252, 341

index
Clic

k t
o b

uy N
OW

!PD
F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

628 index

AT&T (American Telephone & Telegraph),
18, 28, 50

Bell Labs, 470, 471
Atanasoff, John, 10
ATM (Asynchronous Transfer Mode), 152
atomic bomb, 12
attacks. See also security; viruses

access, 56
types of, 55–56

attenuation, 138
attitude, 396
attribute(s), 211, 498
AUP (acceptable use policy), 61
authentication, 58
automobiles, 5
availability, of information, 58

b
B (high-level language), 18
Babbage, Charles, 7–8, 9, 36, 469
backdoors, 52
backup(s)

antivirus software and, 65
disaster recovery plans and, 61
security and, 58, 60, 61, 65

backward compatibility, 327, 329
Ballmer, Steve, 24
bandwidth

described, 138
FDM and, 158
LAN technologies and, 152
switched networks and, 155–156
TDM and, 158

Baran, Paul, 28
BASIC, 21–22
BCNF (Boyce-Codd normal form), 216
behavioral thinking, 399
Berners-Lee, Tim, 30, 31, 182
Bill of Rights, 74
binary code. See also binary numbering

system; code
described, 13
the history of computing and, 13, 31
transistors and, 16

binary numbering system. See also binary code
described, 253, 257–268, 468
file systems and, 363–364

binary trees. See trees
Bing search engine, 195–196, 197
biometrics, 62, 63
BIOS (basic input/output system), 119, 323
bit(s)

described, 262
error rate, 138

bitmap files, 267. See also images

Bluetooth, 142, 144, 376
Booch, Grady, 440
Boole, George, 10
Boolean

algebra, 10, 105
basic identities (rules), 115
expressions, 490–491, 548, 550
variables, 105

Boolean data type, 516–517
Boolean operator(s)

described, 104
gates and, 107–110
overview, 104–115

booting, 321, 322, 333, 357
Borland, 73, 209
bot(s), 53, 196
braces ({}), 523, 524–525
brainstorming, 396
breakpoint(s), 417, 419, 423
Bricklin, Dan, 23
bridge(s), 153, 154
Brightmail, 86
Britain, 11–13, 28
Broderick, Matthew, 50
browser(s)

described, 30
FTP and, 181
HTML and, 190–192
OSI layers and, 148
privacy issues and, 85
protocols and, 181, 182
security and, 65–66, 70, 85
user interface design and, 389–390

BSA (Business Software Alliance), 78
BSTs (binary search trees), 301
bubble sort, 306, 307–309
buffer overflows

described, 52
overview, 52–53

bug(s), See also debugging
coining of the term, 14
found by end users, 456
types of, 411

Bureau of Standards (United States), 14
Burroughs (company), 9
bus(es)

described, 117
overview, 117–118
peripheral, 118–119
protocol, 117
topology, 151

Bush, Vannevar, 30
Busicom Company, 19
Byron, Ada Lovelace, 8, 469
byte(s), 262

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

index 629

c
C (high-level language), 18, 323, 469, 470
C++ (high-level language), 288, 323,

511–512, 514–518, 520–524
classification of, as a high-level language, 473
control structures and, 522–524, 529–548
examples, 470–471
input data, 527–528
output data, 525–526
reserved words, 597–599

C# (high-level language), 469, 478
CA (Computer Associates), 33
cable(s)

100BaseT, 141
10BaseT, 140
10GBaseT, 141
Cat 5, 141, 155
CATV, 159
coaxial, 139, 140–141
Ethernet, 29, 140, 141
fiber optic, 141, 142, 157
twisted pair, 139, 140–141
unshielded twisted pair, 140

cable television, 159
cache memory, 120
Caesar, Julius, 66–67
callback(s), 61
caller ID, 86
cardinality, 228, 229
CAs (certification authorities), 66
CASE (Computer-aided Software

Engineering) tools, 29
case-sensitivity, 191, 335, 513
Cat 5 cable, 141, 155
CATV cable, 159
CBS News, 14
CCITT (Comité Consultatif International

Téléphonique et Télègraphique), 146, 147
CD drives. See also CDs (compact discs)

connectors for, 102
SCSI bus and, 118

CD-ROM discs, 122
CDs (compact discs). See also CD drives

creating installation media with, 457
file systems and, 335
formatting, 338

Census Bureau (United States), 8–9, 13–14
CERN, 30
CGI (Common Gateway Interface), 193
changeability, 386
character data type, 515–516, 518
cheating. See plagiarism
checksum(s), 65
Chen, Peter, 229
chess, 4, 23

China, 6
chip(s). See also CPUs (central processing

units); microprocessors
described, 16
LSI, 18
VLSI, 18

ciphertext, 66
circuit(s)

boards, 16–18
complex, 111–115

classes
base/parent, 499, 500, 501
described, 498
inheritance and, 499–501
sub-, 500, 501

cluster(s), 356, 358
CMOS memory, 102, 323
cmp instruction, 477
coaxial cable, 139, 140–141
COBOL, 14, 16, 31, 413, 469, 471
Coca-Cola, 73
code(s). See also binary code

blocks of, 524–528
compiling, 524

Cold War, 28
collision(s), 368, 369
color

palettes, 390
Web-safe, 390

Colossus project, 11–12
column(s)

described, 211
lists, master, 225
normalization and, 216–224

comma (,), 364–365
command prompt. See also command-line

described, 329
IPCONFIG and, 187

command-line. See also command prompt
interface, 328
operating systems, 334–335

Commodore, 22
Compaq, 26
compiler(s), 468
compiling, 524
composite key, 220
compression

described, 361
file systems and, 362
of images, 267

computer(s). See also computer architecture;
computing; Macintosh; PCs (personal
computers)

booting, 321, 322, 333, 357
embedded, 33

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

630 index

first generation, 12–16
second-generation, 16
third-generation, 16–18

computer architecture
bugs, 411
digital logic circuits and, 104–115
overview, 96–128
storage and, 119–122
Von Neumann, 116–119, 122–126

Computer Fraud and Abuse Act, 74, 75, 76
Computer Ethics Institute, 78, 82–83
computing

fifth-generation, 27–32
fourth-generation, 18–23
history of, 2–39
parallel, 27
ubiquitous, 34

concatenation, 517, 518
confidentiality, 57, 58
consistency, of user interfaces, 388–389
Constitution (United States), 8
constructor(s), 498
control structure(s), 492, 493–495, 522–524,

529–548
control unit(s) (CUs), 116
Cookie Cop, 86
Cookie Cruncher, 86
Cookie Crusher, 86
cookie(s), 61, 85, 86
copyright(s). See also intellectual property

described, 72
legislation, 77
security and, 72–75

CP/M, 24, 25
CPU(s) (central processing units), 19,

101–103, 111, 117–120, 122–123, 126.
See also chips; microprocessors

Babbage’s Difference Engine and, 8
complex circuits and, 111
described, 19
flip-flop circuits and, 113
IBM and, 24
microcomputers and, 22
motherboards and, 100–101
operating systems and, 322–323, 326–327,

331–333
overview, 102–103
programming and, 474–475, 478
time slicing and, 331–332
VLSI chips and, 115

cracker(s)
described, 50
ethics and, 82
passwords and, 62
prosecution of, 77
types of attacked used by, 55–56

Cray supercomputer, 27
CREATE TABLE statement, 230, 231–232
credit card(s)

crackers and, 82
encryption and, 66
legislation, 74

Credit Card Fraud Act, 74
credit reporting agencies, 86
crime

computer, 72–78
prosecuting, 73–77

CRT (cathode ray tube) monitors, 124
cryptography, 66
CUs (control units), 116
customer relations representative(s), 456, 457

d
Darwinism, 82
data. See also data representation;

data structures
distributed, 210
meta-, 194

data dictionaries, 443, 444
data representation(s)

character representation and, 265–266
converting numbers, 257–262
image representation and, 267
overview, 248–270

data structures. See also specific data structures
described, 279
overview, 276–312

Data Link (MAC) layer, 147, 153, 180, 181
database(s). See also DBMSs (database

management systems); SQL (Structured
Query Language)

applications, 207–208
concepts, 211–212
described, 207
design process, 224–230
normalization and, 216–224
overview, 207

datagram(s), 147
DB2 (IBM), 210
DBA(s) (database administrators), 443, 454,

455
dBASE, 209–210
DBMSs (database management systems).

See also databases
described, 209
history of, 208–211
overview, 211–215
popular, 210

deadlock, 333
debugging. See also breakpoints; bugs

described, 413
overview, 406–426

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

index 631

DEC (Digital Equipment Corporation), 18, 19
decimal numbering system, 253–254,

257–262, 264
declaration, use of the term, 513
decoder circuit(s), 112, 113
decoders, 103
decrement operators, 487–488
decryption, 68
Deep Fritz (computer), 4
Delphi. See Pascal
Department of Defense (United States), 8, 27
depth, use of the term, 300
dequeue, 297
DES (Data Encryption Standard), 68
design. See also software engineering

criteria, 385, 386
documents, 436, 437–451
graphics and, 392
process, effective, 385
reports, 444–446
user interface, 382–386
user-centric, 394, 395–396
for the Web, 389–394

determinant, 220
device drivers, 322, 324
DHCP (Dynamic Host Configuration

Protocol), 71, 177, 186
DHTML (Dynamic HTML), 193
Difference Engine, 7–8
digital

certificate(s), 66
logic circuits, 104–115
signatures, 58

Digital Millennium Copyright Act (DCMA),
75

digital rights management (DRM), 33.
See also copyrights

DIMM(s) (dual inline memory modules),
101

directories. See folders
disaster recovery plan(s) (DRPs), 61, 62.

See also backups
disk drives

formatting, 336, 337–338
listing the contents of, 339–340
types of access to, 355

disk fragmentation, 358, 359
DMZ (demilitarized zone), 70, 71
DNS (Domain Name System), 70, 183,

184
“do not call lists,” 84
Dogpile.com, 196
domain(s)

described, 212
names, 183, 391

DoS (denial-of-service) attack(s), 56

DOS (Disk Operating System), 325,
328–330. See also MS-DOS

described, 324
file systems and, 334, 335, 338, 356, 362,

363
managing resources and, 332

double data type, 532
double quotes (“), 519
do-while statements, 494, 550–552
DPMA (Data Processing Management

Association), 78
DRAM (Dynamic RAM), 120
Draper, John, 50
Dreamweaver (Adobe), 29, 190
DRI (Digital Research Incorporated), 24
driver, 322
DRP(s) (disaster recovery plans), 61, 62.

See also backups
DSL (digital subscriber line)

described, 158
overview, 158–159

dumpster diving, 55
DVD(s) (digital video discs), 102, 118

compression and, 267
creating installation media with, 457
described, 122
formatting, 338

e
eavesdropping, 56
eBay, 48
Eckert, J. Presper, 10, 11, 14
Economic Espionage Act, 75
Edison, Thomas, 414
EDVAC (Electronic Discrete Variable

Automatic Computer), 10–12, 14
EEPROM (electrically erasable programmable

read-only memory), 119
effectiveness, 396
EFS (Encrypting File System), 361, 363
Egypt, 6
EIA/TIA (Electronic Industry

Alliance/Telecommunications Industry
Association), 140–141

Eisenhower, Dwight D., 14, 28
election results, 14
Electronic Communications Privacy Act, 75
Electronic Funds Transfer Act, 74
element, 282
else keyword, 534, 598
e-mail. See also spam (junk e-mail)

addresses, 85
attachments, 53, 81
encryption and, 65–68
filtering programs, 61

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

632 index

repudiation attacks and, 56
security and, 52–54, 56, 61, 65–68, 70,

84, 85
embedded computers, 33
emotions, 397–400, 410
encapsulation, 501
encryption

algorithms, 66–67
asymmetric, 68
described, 57, 58
information integrity and, 58
key(s), 65, 68
overview, 65–68
S-HTTP and, 182
symmetric, 68

endl statement, 526
end user(s). See also user interfaces

described, 434
design documents and, 451
needs of, identifying, 455
perceptions among, about the cost of

software engineering, 439
training, 457
userphobia and, 452

Engelbart, Douglas, 25, 36
ENIAC (Electronic Numerical Integrator

Computer), 10–12, 20
Enigma code, 12
enqueue, 298
entities. See ER (entity relationship) models;

tables
equal sign (=), 518
equals method, 489, 499, 529–530
ER (entity relationship) models, 228, 229
ergonomics, 83
errors

binary code and, 13
security and, 52

eSafe, 64
escape sequences, 525, 526
Ethernet

cable, 29, 140, 141
described, 152
modems and, 159
ports, 152
standard, origins of, 29

ethics
described, 78
importance of, 49
overview, 78–83
piracy and, 80–81
plagiarism and, 81–82

eTrust, 64
EULA (end-user license agreement), 77
event handler(s), 498
event(s), 498

Excel (Microsoft), 27, 73
Exchange (Microsoft), 181
exponent, 265
expression(s), 489, 490–491
Extended ASCII, 266

f
Fair Credit Reporting Act, 74
Family Educational Rights and Privacy Act, 74
Fast Ethernet, 152. See also Ethernet
fast token ring networks, 152
FAT (File Allocation Table), 356, 357–359, 362
FBI (Federal Bureau of Investigation), 55, 76,

77
FDDI (Fiber Distributed Data Interface), 152
FDM (frequency-division multiplexing), 158
fetch-execute cycle, 117, 120
fiber optic cable, 141, 142, 157
field(s), 211
fields, normalization and, 217–218
FIFO (first in, first out), 297
file(s)

copying, 342–343
deleting, 340–341
moving, 343
organization, 363–366
renaming, 340
sharing, 70
undeleting, 359

file systems. See also files
comparing, 361–363
described, 353
file compression and, 361
operating systems and, 334–336, 356–363
overview, 350–370

Firefox (Mozilla), 182. See also browsers
firewall(s), 71, 154

described, 69
packet-filtering, 69
proxy, 69
routers and, 70

first normal form (1NF), 218, 219, 221
fixed broadband, 142
FK(s) (foreign keys), 226, 227, 229
flash drive(s), 122
flip-flop(s)

described, 113
overview, 103, 113–114
SRAM and, 120

float data type, 518
floating-point data types, 515
floating-point notation, 265
floppy disks, 53
flowchart(s), 446, 447–449
FM (frequency modulation), 155, 156

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

index 633

folder(s)
copying, 342–343
creating, 338–339
deleting, 340–341
described, 334
listing the contents of, 339–340
moving, 343
renaming, 340

fonts, 390
for statement, 494, 544–548
formatting disks, 336, 337–338
FORTRAN, 16, 31, 469, 472
France, 20, 30
Frankston, Bob, 23
F-Secure, 64
FTP (File Transfer Protocol)

classification of, as a high-level protocol, 181
described, 173
overview, 181
port numbers and, 185
security and, 69, 70, 71
sessions, 181–182

functional dependency, 220
functions, 520

g
games, 23, 36

gaze system and, 380
gamma settings, 390
gate(s)

described, 107
behavior, 110–111
overview, 107–110

Gates, Bill, 21–22, 24, 26, 36, 378
Gateway, 26
gateway(s), 154
gaze system, 380
GE (General Electric), 18, 28
Germany, 12, 34, 49
GIF (Graphics Interchange Format), 267. See

also images
Gigabit Ethernet, 152
GIGO (garbage in, garbage out), 14
Gladwell, Malcolm, 409
Gmail, 84
gold plating, 453
Google, 197, 379, 388
graphics. See images
Greece, ancient, 6
guided media, 139, 140–141
GUI(s) (graphical user interfaces). See also

user interfaces
described, 25
development of, 25–26, 32
file systems and, 335

invention of, 329
menu interfaces and, 385
overview, 328, 329

h
hacker(s)

described, 50
directed (targeted), 50, 51–56
ethics and, 82
methods used by, 51–56
undirected (untargeted), 50, 51

Hacker’s Manifesto, 51
hacktivism, 51
haptics technologies, 381, 382
hard drives

connectors for, 102
parts of, 121
overview, 121–122

hardware. See also specific devices
choosing the best, 126
described, 12
killer apps and, 23
security and, 69

Harvard University, 9, 10, 14, 22, 413
hash key, 366, 367–369
hashing, 366, 367–369
health-related issues, 82–83, 86
height, of trees, 300
Heisenberg uncertainty principle, 416
heuristics, 65, 412
Hewlett Packard, 20
hexadecimal numbering system, 253, 257,

263, 359
high-level languages, 473, 478–485,

492–495, 502. See also specific languages
Hindu numbering system, 6
Hollerith, Herman, 8–9
honeypot(s), 64
Honeywell, 21
Hopper, Grace Murray, 14, 413
Hoth, Ted, 19
hotspots, 143
HTML (HyperText Markup Language)

described, 188
overview, 188–195
requirements, 190
tags, 188–190, 196
user interface design and, 389, 394
XML and, comparison of, 194

HTTP (HyperText Transfer Protocol)
classification of, as a high-level protocol, 181
described, 173
NAT and, 186
overview, 182
port numbers and, 185

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

634 index

security and, 69, 70
Web servers and, 188, 193

hub(s), 153
Huffman coding, 301
Hungarian notation, 518, 519, 282
hyperlinks. See also URLs (Uniform Resource

Locators)
described, 191
formatting, 391, 393, 394
HTML and, 191–192

hypermedia, 30
hypertext, 30

i
IANA (Internet Assigned Numbers

Authority), 177
I&A (identification and authentication), 58
IBM (International Business Machines), 379,

472
Apple and, competition between, 26
databases and, 209
DB2, 210
the history of computing and, 7, 9, 15–17,

23–27, 37
Jacquard loom and, 7
OS/2, 26–27
the PC revolution and, 23–25, 26
punch cards, 16–17

ICF (Internet Connection Firewall), 69.
See also firewalls

IC(s) (integrated circuits)
described, 16
the history of computing and, 16, 31
overview, 115

ID badges, 62
IDE (integrated development environment),

445, 453, 457, 478, 479, 495
identification, 58
identifier(s), 486
IDEO (company), 379, 395
IE (Internet Explorer) browser, 32, 182.

See also browsers
IEEE (Institute for Electrical and Electronics

Engineering), 5, 265
described, 144
ethics and, 78, 82–83

if statements, 533–535
if-else statements, 533–536, 542–543
if-else-if statements, 536–537
images

design principles for, 392
privacy issues and, 86–87
resolution of, 267

IMAP (Internet Message Access Protocol), 181
IMP (Interface Message Processor), 28
impedance, 140

IMSAI, 22, 24
inc instruction, 476
increment operators, 487–488
index(es)

described, 284
overview, 213–215

inductance, 140
inductive reasoning, 412, 413
Industrial Revolution, 171
.inf filename extension, 341
infrared technology, 144
inheritance, 499, 500–501
input devices. See also I/O (input/output)

Babbage’s Difference Engine and, 8
overview, 123

INSERT INTO statements, 230, 233–234
insertion points, 525
insertion sort, 310
installation media, generating, 457
instantiation, 498
Institute for Electrical and Electronics

Engineering (IEEE), 5, 265
described, 144
ethics and, 78, 82–83

int data type, 518
integer data type, 514–515
integer(s), 263, 264–265, 514–515, 518
integrity, of information, 58
Intel

chips, 19, 24, 102, 104
clones, 33
IBM and, 24

intellectual property. See also copyrights
described, 72
legislation, 74–75, 77
patents, 72, 73, 74
security and, 72–73

interception, 56
Interception Act, 74
Internet. See also networks

architecture, 172–173
configuration, checking, 187
the Microsoft era and, 32–34
as a network of networks, 29
origins of, 27–29
overview, 168–198
protocols, 173–177
routers and, 178–180
using, 195–197

interpreter(s), 468
interrupt handling, 126, 332
I/O (input/output). See also input devices;

output devices
Babbage’s Difference Engine and, 8
computer architecture and, 101–102,

117–118, 122–126

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

index 635

decoder circuits and, 112
interrupt handling and, 126
managing resources and, 332–333
networks and, 144
operating systems and, 322, 323, 324,

331–333
overview, 122–126
polling and, 126
programming and, 525–528
time slicing and, 331–332

intuition, 510
invocation, 493
Iowa State College, 10
IP (Internet Protocol). See also IP (Internet

Protocol) addresses
described, 174
high-level protocols and, 180, 181
routers and, 178–179
version 4 (IPV4), 71, 175, 176
version 6 (IPV6), 175

IP (Internet Protocol) address(es). See also IP
(Internet Protocol)

classes of, 176–177
described, 175
DHCP and, 177
DNS and, 184–185, 183
HTML and, 188
IPCONFIG and, 187
NAT and, 186
overview, 175–177
port numbers and, 185
routers and, 154
security and, 69, 70, 71–72

IPCONFIG, 187
IPTO (Information Processing Techniques

Office), 27, 28
IPv4 (Internet Protocol version 4), 71, 175,

176. See also IP (Internet Protocol)
IPv6 (Internet Protocol version 6), 175.

See also IP (Internet Protocol)
IRC (Internet Relay Chat), 51
ISO (International Organization for

Standardization), 146
ISP(s) (Internet Service Providers)

described, 172
DNS and, 183, 184, 185
IP addresses and, 177
routers and, 179
security and, 69

iTunes, 77

j
Jacquard, Joseph, 6–7
Java, 514–518, 520–552

applets, 65

classification of, as a high-level language,
473, 478

control structures and, 522–524, 529–548
downloading/installing, 494–495
examples, 472
input data, 527–528
OOP and, 496, 501
output data, 525–526
overview, 511–512
reserved words, 597–599

JavaScript, 193, 392, 423, 469
jnz instruction, 477

Jobs, Steve, 22–23, 25, 31
JPEG (Joint Photographic Experts Group)

images, 267. See also images
JSP (Java Server Pages), 193

k
Kashimura, Kaori, 398
KaZaA, 77
kernel

described, 323
operating systems and, 323, 327

keyboards, as input devices, 123
keyboard shortcuts, 388, 389
keywords, 196, 232, 237, 513, 534, 598
Kildall, Gary, 19, 24, 25
killer app(s), 23
Kramnik, Vladimir, 4
Kurosu, Masaaki, 398

l
LAN(s) (local area networks). See also networks

communications devices and, 152–154
described, 149
NAT and, 186
origins of, 28
routers and, 179
topologies and, 150, 151

laptop computers, 59
latches. See flip-flops
Lawrence Berkeley National Laboratory, 49
LCD(s) (liquid crystal displays), 124
learnability, 386, 396
left child, 299
Leibniz, Gottfried, 6, 7
Leibniz Wheel, 6
LIFO (last in, first out), 295
linked list, 290, 291–294. See also lists
Linux, 325, 327–330, 423

described, 324
file systems and, 334–335, 338–343, 354,

362, 363
formatting disks and, 336, 337
the history of computing and, 33, 35

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

636 index

partitions and, 336
SSH and, 182

LISP, 16, 469, 472
lists. See also stacks

linked, 290, 291–294
overview, 290–299

Locklider, J. C. R., 27
logical operators, 489–491
long integer data type, 518
loop(s)

described, 8
endless, 549, 550
overview, 543–548
postcondition, 550, 551
precondition, 548, 549

Lotus Development, 33, 27, 73
lower bound, 284
low-level languages, 473, 474–477
LSI (Large-Scale Integration), 18

m
MAC (Media Access Control) addresses, 153,

154
MacAfee, 69
machine language, 473
Macintosh, 324, 326–327. See also Apple

Computer
browsers and, 31
color palettes and, 390
file systems and, 354
fonts and, 390
GUI, 329, 354
the history of computing and, 25–26, 31,

34, 37
parallel processing and, 34

Macromedia, 29
main function, 520–521
mainframe(s)

described, 15
security and, 50

malicious code, 53. See also viruses
manageability, 386
MAN(s) (metropolitan area networks), 29,

149. See also networks
mantissa, 265
Mark I project, 9, 10, 14
math operators, 487
Mauchly, John, 10, 11, 14
McAfee, 64
McCarthy, John, 472
Medical Information Bureau, 86
memory, 280, 331. See also RAM (random-

access memory)
Babbage’s Difference Engine and, 8
cache, 120

CMOS, 102, 323
computer architecture and, 101, 103, 112,

119–120
debugging and, 420
decoder circuits and, 112
flip-flops and, 103
managing, 333
overview, 119–120
programming and, 476–477
read-only (ROM), 119, 120, 324
security and, 53
slots, 101
Von Neumann machine and, 11

memory (human)
load, guidelines for users', 387–388
long-term, 383, 384
short-term, 383, 384, 387

menu interfaces, 385
merge sort, 310
message boards, 51
metadata, 194
method(s)

calling, 500
described, 498

MFT (Master File Table), 360
microcomputer(s), 22
microprocessors. See also CPUs (central

processing units)
Apple II and, 23
described, 19

Microsoft Corporation. See also specific
software

antitrust suits and, 32–33
Apple and, competition between, 26–27
history of computing and, 21–22, 24–27,

32–34
IBM and, collaboration between, 24–25
lawsuits and, 73
PC clones and, 26–27
security and, 50, 69
user interfaces and, 378

military research, 10–12, 27–28, 50, 66
MIMD (multiple instruction, multiple data)

stream, 27
miniaturization, 19
minicomputer(s), 18
MIT (Massachusetts Institute of Technology),

18
Mitnick, Kevin, 55
MITS calculator company, 20, 22
M:M (many-to-many) relationships, 228
modem(s)

cable, 157, 159
described, 155
DSL, 157, 158–159

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

index 637

modification attack(s), 56
Moggridge, Bill, 395
monitor(s)

overview, 124
resolution, 267, 390

monopolies, 37
Moore School of Engineering, 10
Morris, Robert T., 53
Mosaic browser, 31
motherboard

components, 101–102
described, 100

Motorola, 22, 23
mouse, as an input device, 123
mov instruction, 475–476
MP3 (MPEG-1 Audio Layer-3), 268, 331
MPEG (Motion Picture Experts Group)

format, 267
MS-DOS, 24–26, 33. See also DOS (Disk

Operating System)
MSN (Microsoft Network), 32
multiplexer circuit, 115
multiprocessing operating systems, 327
multitasking operating systems, 327
music, 268, 331

copyright issues and, 77
databases and, 213–240

MySQL, 210, 211

n
naming conventions, 486
NAND gate, 109
NAND operator, 109
Napster, 77
NAT (Network Address Translation), 72, 186
National Information Infrastructure

Protection Act, 75
National Photographers Association, 87
natural-language processing, 381
NBP(s) (national backbone providers)

described, 172
IP addresses and, 177

NCR (National Cash Register), 9
negative powers, calculating, 252
Nelson, Ted, 30
nesting, of control structures, 537–538
NetBIOS, 70
NetMeeting (Microsoft), 70
Netscape, 31, 32, 33
network(s). See also specific types

communication devices, 152–154
operating systems, 327
overview, 137–161
security and, 52
switched, 155–160

topologies, 150, 151
transmission media for, 138–149
types of, 149–150

Network layer, 147, 154, 180, 181
new keyword, 281, 599
newline escape sequence, 525, 526
next method, 527
NeXT computer, 31
NFS (Network File System), 52, 70
nibble(s), 262
NIC(s) (network interface cards)

described, 153
routers and, 154

No Electronic Theft (NET) Act, 75
node(s), 71–72, 299

bus topology and, 151
described, 150
leaf, 300

NOR gate, 109, 114
NOR operator, 109
normal forms. See also normalizations

1NF (first normal form), 218, 219, 221
2NF (second normal form), 220, 225
3NF (third normal form), 222, 223

normalization. See also normal forms
described, 216
overview, 216–224

Norton, 64
NOT gate, 108, 115
NOT NULL keyword, 232, 233
NOT operator, 104–105, 106, 107, 115
Notepad, 190–191
Novell NetWare, 29
NSF (National Science Foundation), 28
NTFS (New Technology File System), 356,

359, 360–362
nuclear fission, 12
NULL keyword, 232, 234
null value, 292

o
object, use of the term, 498. See also OOP

(object-oriented programming)
OC(s) (optical carriers), 157
Office (Microsoft), 77
offset, 283
one-to-many (1:M) relationships, 226, 227
one-to-one (1:1) relationships, 226–227,

228
OOP (object-oriented programming), 441,

495, 496–500
open architecture, 21
open source software, 324, 325

described, 32, 325
wide use of, 34–35

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

638 index

operating system(s). See also specific operating
systems

described, 16, 321
file systems and, 334–336, 356–363
functions, 327–333
the Internet as a, 34
managing files with, 334–336
overview, 318–344
time-sharing and, 17–18
types of, 327
updates, 64
using, 333–343

operator(s)
described, 487
increment/decrement, 487–488
logical, 489–491
math, 487
precedence, 491, 492
relational, 489

Oppenheimer, J. Robert, 12
OR gate, 108, 115
OR keyword, 237
OR operator, 104–105, 106, 115
Oracle, 33–34, 210
ORDER BY clause, 238
Orwell, George, 26
OSHA (Occupational Safety and Health

Administration), 83
OSI reference model, 147, 148–149, 180
Outlook (Microsoft), 181
output devices. See also I/O (input/output)

Babbage’s Difference Engine and, 8
overview, 124

overflow area, 368

p
Pacific Mutual Life Insurance, 14
packets

port numbers and, 185
security and, 69

padlock icon, 182
parallel computing, 27
parallel processing, 34
parameters, 521
parentheses, 491, 521
parity generator circuit, 115
partition(s)

described, 336
recovery, 333

Pascal, 6, 7, 469, 471–472
password(s)

authentication, 63
choosing, 62–63
ethics and, 81
general guidelines for, 60, 62–63

guessing, 48, 62
security holes and, 52
social engineering attacks and, 54–55
weak, 81

Patent Office (United States), 73, 74
patent(s), 72, 73, 74
PATRIOT Act, 76, 84
PCI (Peripheral Component Interconnect)

bus, 102, 118, 126, 138
PC(s) (personal computers). See also

computers
clones, 26–27, 33
color palettes and, 390
described, 24
fonts and, 390
IBM and, 23–25
revolution brought on by, 18–19, 23–25

PDA(s) (personal digital assistants)
hotspots and, 143
infrared technology and, 144
security and, 60

PDP computers, 18, 19
PDU (protocol data unit), 148
peeking, 295
Peirce, Charles Sanders, 10
Pentagon, 27, 50
Perl, 193, 469
Persian numbering system, 6
personalization, 399–400
PET (Commodore), 22
PGP (Pretty Good Privacy), 66
photographs. See images
PHP, 193, 424
phreaking, 50
Physical layer, 147–148, 153, 180, 181
PING, 185
piracy, 80, 81
pixels

described, 267
monitor resolution and, 124, 390

PK(s) (primary keys), 219, 220, 221, 229
plagiarism, 81–82
plaintext, 66, 67
platform, 326
PM (phase modulation), 155, 156
PnP (Plug and Play), 332
pointer(s)

described, 291
head, 292, 297
stack, 296, 297
tail, 297

polling, 126
polymorphism, 501
pop, 295
POP (point of presence), 172

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

index 639

POP3 (Post Office Protocol, version 3)
described, 181
security and, 70

pop-up windows, 392
port(s)

described, 123
numbers, 185, 186
security and, 70

positional value(s), 254, 255–256
positive powers, calculating, 252
POST (power-on self test), 322, 323
power connectors, 102
power surge suppressors, 60
Presentation layer, 147, 180
Princeton University, 12
printer(s)

inkjet, 125
laser, 125
overview, 125
SCSI bus and, 118

println method, 525
privacy, 35, 83–87

described, 83
legislation, 74–75, 84

problem solving
mental game of, 409–410
overview, 406–426

procedures, 296
process(es), 330, 331
program(s). See also programming;

programming languages
described, 468
structure of, 479

programmers, 455
programming. See also specific programming

languages
input data and, 527–528
looping and, 543–548
output data and, 525–526
overview, 464–503, 508–559

programming languages. See also specific
languages

choosing, 502
control structures and, 492, 493–495
overview, 469–474
types of, 473–474

Project (Microsoft), 453–454
project development teams, 453–457
project manager(s), 453, 454
property, 498
protocol(s)

described, 144
high-level, 180–182
history of the Internet and, 28, 31
overview, 144–147, 173–177

prototype(s), 435, 437, 449–450
pseudocode, 479, 480–485
psychology, 383–385, 409
public keyword, 521, 599
punch cards, 8–9, 16–17, 31
push, 295

q
QA (quality assurance), 455–456
queues, 297, 298–299
Quicksort routine, 309–310
QuickTime, 267

r
Radio Shack, 18, 22
radix point, 254, 255
RAID (redundant array of independent

disks), 122
RAM (random-access memory). See also

memory
described, 119
flip-flops and, 113
history of, 16
managing, 333
slots for, 101

Rand Corporation, 28
random access, 355, 366
Rational Rose, 29
RealNetworks, 77
record(s), 211
recovery disks, 65
recursion, 310
Recycle Bin, 340, 359
reflective thinking, 399
refresh rate, 124
register(s), 116
relational operators, 489
relationships

described, 226
working on, 226–227

Remington Rand, 9, 15
Remington Typewriter Computer, 13
Remote Desktop Services (Microsoft), 77
repeater(s), 153
repetition control structure, 494, 543–544
repudiation attack(s), 56
reserved words. See keywords
resolution

monitor, 124
printing, 125

resources, 332, 333
reverse-engineer, 73
RGB (red, green, and blue) color

encoding, 267
monitors, 124

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

640 index

RIAA (Recording Industry Association of
America), 77

right child, 299
ring topology, 150–152
risk(s), security, 56, 57–58
Ritchie, Dennis, 18, 470
Roberts, Ed, 20, 21
ROM (read-only memory)

BIOS and, 119
chips, 324
computer architecture and, 119, 120
described, 119

Roman numbering system, 6
root

described, 300
level, 334, 338

router(s)
described, 154, 178
NAT and, 186
overview, 178–180
ports, 70
security and, 69–70

row(s), 211
RSA (Rivest, Shamir, and Adelman) standard,

68
rule(s)

-deontology, 79, 80
ethics and, 79, 80

Rumbaugh, James, 440
Russia, 28, 51

s
SAG, 34
Sakai (program), 35
SATA (Serial AT Attachment)

connectors, 102
described, 119

satellites, 28, 142, 143, 159–160
scanners, 118, 123
Science Museum of London, 8
scientific method, 412, 413
scope, 521
scope creep, 452, 453
script kiddie(s), 51
SCSI (Small Computer Systems Interface)

bus, 118, 119
SDLC (software development life cycle), 434,

435–436
SDRAM, 120
search engine(s)

described, 195
overview, 195–197

second normal form (2NF), 220, 225
security. See also attacks; passwords; viruses

authentication, 58
backups and, 58, 60, 61, 65

biometrics, 62, 63
browsers and, 65–66, 70, 85
computer crime and, 72–78
countermeasures, 58–72
e-mail and, 52–54, 56, 61, 65–68, 70,

84, 85
file systems and, 362
firewalls, 69, 70, 71, 154
holes, 52–53
legislation, 74–76
machine addressing and, 71–72
managing, 56–58
operating systems and, 333
overview, 46–89
physical safeguards, 59
policies, 59, 61
protocols and, 66, 69, 71, 182
risks, 56, 57–58
servers and, 71
threat matrix, 56–58
Trojan programs and, 54, 65, 85

SELECT statement, 230, 234–240, 493–494
selection control statement, 530–536
selection sort, 304, 305–306, 309
semicolon (;), 419, 422
semiconductor(s), 103
sensory storage, 383, 384
sequential access, 355, 364–365
server(s). See also Web servers

DMZ and, 71
origins of the Web and, 30–31
protocols and, 182
security and, 71

Session layer, 147, 180
SET (Secure Electronics Transactions

Specification), 66
SGML (Standard Generalized Markup

Language), 194
shell sort, 310
shifter circuit(s), 114
shifters, 103
short integer data type, 518
shredders, 60
S-HTTP (Secure HTTP), 66, 182
signal-to-noise ratio, 138
SIMD (single instruction, multiple data)

stream, 27
single quote (’), 517
single-tasking operating system, 327
sleeping, on the job, 414
Smalltalk, 469, 473
slide rule, 6
Smith, David L., 77
SMTP (Simple Mail Transfer Protocol)

classification of, as a high-level protocol, 181
described, 173

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

index 641

overview, 181
security and, 69, 71

sniffer(s), 56
snooping, 56
social engineering

described, 54
overview, 54–55

Social Security numbers, 62
software, use of the term, 12. See also specific

software
software developer(s), 455
software engineering. See also programming;

SDLC (software development life cycle)
described, 434
overview, 430–458

sort key(s), 214, 215
sort order, 214
sorting algorithms, 304–310
sound. See music
sound cards, 126
SourceSafe, 60
Southwest Technical Products, 22
Soviet Union, 49
spam (junk e-mail), 61, 81

described, 84
overview, 84–85
preventing, 86

SpamKiller, 86
Sphere (company), 22
spider(s), 196
Sputnik, 28
Spy Sweeper, 86
spyware, 61, 85, 86
Spyware Eliminator, 86
SQL (Structured Query Language)

described, 209
overview, 230–240
scripts, 233

SQL Server (Microsoft), 210
square brackets ([]), 284, 336
SRAM (static RAM)

computer architecture and, 114, 120, 122
described, 114

SRI (Stanford Research Institute), 25, 28
SSH (Secure Shell)

described, 182
security and, 70

SSL (Secure Sockets Layer), 66
stack(s). See also lists

described, 294, 295–296
pointers, 296, 297

star topology, 150–151
Stoll, Clifford, 49, 62, 77
storage. See also backups

computer architecture and, 119–122
disaster recovery plans and, 61
mass, 121–122

stored program concept, 11
string data type, 517
String keyword, 517, 599
strings, comparing, 489
Stroustrup, Bjarne, 471
styluses, 123
sub instruction, 476
subnet(s), 177
Sun Microsystems, 512
supercomputer(s), 27
superstitious behavior, 383
switch statement, 537–543
switch(es), 153
Sygate, 69
Symantec, 69
syntax

described, 475
overview, 485–495

system administrators, 52
system bus, 117
system clock

described, 117
frequencies, 117
speeds, 120, 127

system engineers, 13
system failures, protecting against, 60
System/360 (IBM), 15
System.in statement, 527–528
System.out statement, 525

t
T1 line, 157
T3 lines, 157
table(s). See also truth tables

creating, 225–226
databases versus, 213
described, 211
normalization and, 217

Tandy Corporation, 22
Task Manager, 330, 331
TCP (Transmission Control Protocol), 146,

179–180. See also TCP/IP (Transmission
Control Protocol/Internet Protocol)

described, 174
high-level protocols and, 180–182
overview, 174–175

TCP/IP (Transmission Control
Protocol/Internet Protocol). See also TCP
(Transmission Control Protocol)

described, 174
OSI model and, 180
overview, 174–175
port numbers and, 185, 186
routers and, 180
security and, 71

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

642 index

TDM (time-division multiplexing), 158,
159

telemarketing, 84
Telephone Consumer Protection Act, 75
telephones, 75, 86
Telnet

classification of, as a high-level protocol,
181

security and, 70
temperature conversion, 480–485

programs, 531–536
terrorism, 51, 84
tester(s), 455, 456
testing

algorithms, 483–484
software, 455, 456
user interfaces, 396, 397

Texas Instruments, 20
third normal form (3NF), 222, 223
Thompson, Ken, 18
threat(s), security

described, 57
managing, 56–58

time
-sharing, 17, 18, 31
slicing, 331, 332

TLDs (top-level domains), 183–184
token ring network(s), 152
top-down control structure, 493, 522–524
Torvalds, Linus, 33
Toshiba, 26
touch pads, 123
Tower of Hanoi, 409–410
Tractinsky, Noam, 398
trade secret(s), 72, 73
trajectory tables, 10
transistor(s). See also gates

Boolean operators and, 105
described, 16
functions of, 103
the history of computing and, 16, 31
how they work, 103–104
number of, in CPUs, 102
overview, 103–104

transitive dependency, 222
transmission medium

described, 138
overview, 138–149

Transport layer, 147, 180, 181
tree(s)

binary search (BSTs), 301
depth (level) of, 300
described, 299
overview, 299–304
searching, 301–304
use of, 301

Trojan program(s), 54, 65, 85
truth table(s), 10, 111–112, 115

AND gate and, 107, 108
described, 105
NOR gate and, 108
NOT gate and, 108
OR gate and, 108

TRW (company), 21
TTL (time to live) field, 179
tuple(s), 211, 212
Turing, Alan, 12
twisted pair cable, 139, 140–141
twos complement method, 263, 264–265

u
UANs (urban area networks), 29
UDP (User Datagram Protocol), 180
UML (Unified Modeling Language)

described, 438
diagrams, creating, 438–443, 451

underscore (_), 486
unguided media, 139
unguided (wireless) media, 142–144
Unicode, 147, 515

described, 266
file systems and, 363

UNIVAC, 13–15
University of Helsinki, 33
University of Pennsylvania, 10, 14
University of Utah, 28
UNIX, 325, 327, 418, 470, 512

archive programs, 60
creating of, 18
described, 324
file systems and, 362, 363
the history of computing and, 33
rlogin (remote login), 52
root, 52
SSH and, 182

upper bound, 284
UPS (uninterruptible power supply), 60
URL(s) (Uniform Resource Locators). See also

hyperlinks
described, 183
DNS and, 183–185
HTML and, 188
overview, 183–185
security and, 52, 70
structure of, 183

USB (Universal Serial Bus)
flash drives, 56
ports, 122

usefulness, 396
user environment, 395
user IDs, 52

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

index 643

user interfaces. See also GUIs (graphical user
interfaces)

consistency guidelines, 388–389
customization of, 399–400
described, 328, 379
design, 382–386, 389–394
evolving, 378–379
guidelines for user control, 386–387
human emotion and, 397–400
operating systems and, 328–329
overview, 374–401
technologies, 379–382
testing, 396, 397

usernames, 55
user profiles, 395
user requirements, 395
user scenarios, 395, 396
user tasks, 395
user-centric design, 394, 395–396
U.S. Steel (company), 14
utilitarianism, 79, 80
UTP (unshielded twisted pair) cable, 140

v
vacuum tube(s), 9, 10, 12, 16, 31, 115
variable(s)

declarations, 489, 544
described, 485
initialization, 518, 519, 529
names, 513
overview, 485–486, 512–518

VAX computers, 18, 62
VBScript (Microsoft), 193
VeriSign, 66
VFAT (Virtual FAT), 358
Video Privacy Protection Act, 74, 75
Virginia Tech, 34
virus(es), 50, 51. See also antivirus software

definitions (signatures), 64
described, 53
ethics and, 81
hoax(es), 81
protecting against, 457
speed of attacks by, 52
spyware and, 85
warnings, 54

visceral thinking, 398
VisiCalc, 23, 26
Visio (Microsoft), 29, 229, 440, 442
Visual Basic (Microsoft), 469, 516
Visual Studio.NET (Microsoft), 77, 478, 479
VLSI (Very Large-Scale Integration), 18, 115
voice-recognition technology, 380
voltage, 103, 107
Von Neumann, John, 11–12

Von Neumann machine, 11, 31
computer architecture and, 116–119,

122–126
described, 11

VPN(s) (virtual private networks), 61
vulnerability, 57

w
WAN(s) (wide area networks). See also

networks
communications devices and, 152–154
described, 149
FDM and, 158
high-speed, 157
origins of, 28

Washington State University, 21–22
waterfall model, 435, 436
Watson, Thomas, 15
WAV audio format, 268
Web browser(s)

described, 30
FTP and, 181
HTML and, 190–192
OSI layers and, 148
privacy issues and, 85
protocols and, 181, 182
security and, 65–66, 70, 85
user interface design and, 389–390

Web page(s)
creating simple, 190–191
deconstructing, 391–394
design, 389–394
navigation, 492
use of the term, 188

Web server(s). See also servers
described, 188
software, 193
user interface design and, 389–390

Web service(s), 194
WebSecure, 86
WebWasher, 86
WHERE clause, 235–237
while statement(s), 494, 548–550, 600
widgets, 392
wildcard(s), 341
Windows (Microsoft), 26, 33, 390, 423

browsers and, 31
calculator, 261
described, 324
Explorer, 335, 337, 339–340
file systems and, 338–339, 354, 362
firewalls and, 154
formatting disks and, 336, 337
the history of computing and, 26, 31, 33
managing resources and, 332–333

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

644 index

multitasking and, 327
original release of, 26
partitions and, 336
processes and, 330
security and, 69
user interface, 328–329
versions of, 325, 326

wireless networks, 142, 144, 159. See also
WLAN(s) (wireless LANs)

Wirth, Niklaus, 472
WLAN(s) (wireless LANs), 29, 150, 152–154.

See also wireless networks
described, 149
specifications, 142, 144

Woodbury, Max, 14
Word (Microsoft), 27, 29, 326, 388
WordPerfect, 27, 29, 33
words, use of the term, 262
World Trade Center attacks, 84
World War II, 10, 11–12, 381
World Wide Web. See also browsers; HTML

(HyperText Markup Language); Internet;
Web pages; Web servers

development of, 29–32
parallel processing and, 34
security and, 52

worm(s), 51, 77
described, 53
ethics and, 82
speed of attacks by, 52
spyware and, 85

Wozniak, Steve, 22–23, 36
Wright, Frank Lloyd, 394

x
Xerox PARC (Palo Alto Research Center), 25
XHTML (Extensible HTML), 194
XML (Extensible Markup Language), 194, 195
XOR gate, 110
XOR operator, 110

y
Yahoo!, 84, 197, 379

z
Z1 computer, 12
z80 processor, 22
zero(s)

invention of, 6
TTL fields and, 179

Zuse, Conrad, 12

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

	Front Cover
	Title Page
	Copyright
	table of contents
	chapter 1 history and social implications of computing
	in this chapter you will
	the lighter side of the lab
	why you need to know about . . .
	ancient history
	Pascal and Leibniz start the wheel rolling
	Joseph Jacquard
	Charles Babbage
	Herman Hollerith

	progression of computer electronics
	wartime research drives technological innovation
	ENIAC and EDVAC

	the computer era begins:the first generation
	UNIVAC
	IBM (Big Blue)

	transistors in the second generation
	circuit boards in the third generation
	time-sharing

	living in the ‘70s with the fourth generation
	the personal computer revolution
	Intel
	the Altair 8800
	enter Bill Gates, Paul Allen, and Microsoft
	the microcomputer begins to evolve
	an Apple a day…

	IBM offers the PC
	MS-DOS

	the Apple Macintosh raises the bar
	other PCs (and one serious OS competitor) begin to emerge
	the latest generation (fifth)
	the Internet
	LANs and WANs and other ANs
	super software and the Web

	the Microsoft era and more
	what about the future?
	one last thought
	chapter summary
	key terms
	test yourself

	practice exercises
	digging deeper
	discussion topics
	internet research

	chapter 2 computing security and ethics
	in this chapter you will
	the lighter side of the lab by spencer
	why you need to know about...
	the intruder
	how do they get in?
	holes in the system
	viruses, worms, and other nasty things
	the human factor: social engineering
	types of attacks

	managing security: the threat matrix
	vulnerabilities
	threat: agents
	threat: targets and events
	measuring total risk

	managing security: countermeasures
	clean living (or only the paranoid survive)
	passwords
	antivirus software
	using encryption to secure transmissions and data
	securing systems with firewalls
	protecting a system with routers
	the DMZ
	protecting systems with machine addressing
	putting it all together

	computer crime
	defining computer crime
	prosecuting computer crime
	I fought the law and the law won

	ethics in computing
	software piracy
	viruses and virus hoaxes
	weak passwords
	plagiarism
	cracking
	health issues

	privacy
	one last thought
	chapter summary
	key terms
	test yourself
	practice exercises
	digging deeper
	discussion topics
	internet research

	chapter 3 computer architecture
	in this chapter you will
	the lighter side of the lab by spencer
	why you need to know about...
	inside the box
	the CPU
	how transistors work

	digital logic circuits
	the basic Boolean operators
	digital building blocks
	gate behavior
	complex circuits

	von neumann architecture
	buses
	peripheral buses

	storage
	memory
	mass storage

	input/output systems
	input devices
	output devices

	interrupts and polling
	choosing the best computer hardware
	one last thought
	chapter summary
	key terms
	test yourself
	practice exercises
	digging deeper
	discussion topics
	internet research

	chapter 4 networks
	in this chapter you will
	the lighter side of the lab by spencer
	why you need to know about...
	connecting computers
	transmission media
	guided media
	unguided media: wireless technologies
	protocols
	ISO OSI reference model

	network types
	LAN topologies
	LAN communication technologies
	network communication devices
	NIC
	repeater
	hub
	switch
	bridge
	gateway
	router
	firewall

	switched networks
	high-speed WANs
	multiple access
	DSL
	cable modems
	wireless technologies
	satellite technologies

	one last thought
	chapter summary
	key terms
	test yourself
	practice exercises
	digging deeper
	discussion topics
	internet research

	chapter 5 the internet
	in this chapter you will
	the lighter side of the lab by spencer
	why you need to know about...
	what is the internet
	the architecture of the internet
	protocols
	TCP and IP
	DHCP

	routers
	high-level protocols
	SMTP
	FTP
	SSH
	HTTP

	URLs and DNS
	port numbers
	NAT
	checking your configuration
	HTML
	creating a simple Web page
	XML

	ising the internet
	search engines

	one last thought
	chapter summary
	key terms
	test yourself
	practice exercises
	digging deeper
	discussion topics
	internet research

	chapter 6 database fundamentals
	in this chapter you will
	the lighter side of the lab by spencer
	why you need to know about...
	database applications
	brief history of database management systems
	database management system fundamentals
	database concepts

	normalization
	preparing for normalization: gathering columns
	first normal form
	second normal form
	third normal form

	the database design process
	step 1: investigate and define
	step 2: make a master column list
	step 3: create the tables
	step 4: work on relationships
	step 5: analyze the design
	step 6: reevaluate

	Structured Query Language (SQL)
	CREATE TABLE statement
	INSERT INTO statement
	SELECT statement
	WHERE clause
	ORDER BY clause

	one last thought
	chapter summary
	key terms
	test yourself
	practice exercises
	digging deeper
	discussion topics
	internet research

	chapter 7 numbering systems and data representations
	in this chapter you will
	the lighter side of the lab by spencer
	why you need to know about...
	powers of numbers: a refresher
	counting things
	positional value
	how many things does a number represent?

	converting numbers between bases
	converting to base 10
	converting from base 10
	binary and hexadecimal math

	data representation in binary
	representing whole numbers
	representing fractional numbers
	representing characters
	representing images
	representing sounds

	one last thought
	chapter summary
	key terms
	test yourself
	practice exercises
	digging deeper
	discussion topics
	internet research

	chapter 8 data structures
	in this chapter you will
	the lighter side of the lab by spencer
	why you need to know about...
	data structures
	arrays
	how an array works
	multidimensional arrays
	uses of arrays

	lists
	linked lists
	stacks
	queues

	trees
	uses of binary trees
	searching a binary tree

	sorting algorithms
	selection sort
	bubble sort
	other types of sorts

	one last thought
	chapter summary
	key terms
	test yourself
	practice exercises
	digging deeper
	discussion topics
	internet research

	chapter 9 operating systems
	in this chapter you will
	the lighter side of the lab by spencer
	why you need to know about...
	what is an operating system?
	types of operating systems

	functions of an oOperating system
	providing a user interface
	managing processes
	managing resources
	providing security

	using an operating system
	managing disk files

	one last thought
	chapter summary
	key terms
	test ypouself
	practice exercises
	digging deeper
	discussion topics
	internet research

	chapter 10 file structures
	in this chapter you will
	the lighter side of the lab by spencer
	why you need to know about...
	what does a file system do?
	file systems and operating systems
	FAT
	NTFS
	comparing file systems

	file organization
	binary or text
	sequential or random access

	hashing
	why hash?
	dealing with collisions
	hashing and computing

	one last thought
	chapter summary
	key terms
	test yourself
	practice exercises
	digging deeper
	discussion topics
	internet research

	chapter 11 the human-computer interface
	in this chapter you will
	the lighter side of the lab
	why you need to know about...
	the evolving interface
	user interface technologies
	foundations Of user interface design
	human psychology in human-computer interaction
	design criteria for a quality user interface
	designing for the Web
	the user-centric design process

	human emotion and human-computer interfaces
	personalization and customization

	one last thought
	selected references
	chapter summary
	key terms
	test yourself
	practice exercises
	digging deeper
	discussion topics
	internet research

	chapter 12 problem solving and debugging
	in this chapter you will
	the lighter side of the lab by spencer
	why you need to know about...
	the mental game of problem solving
	why are software problems so hard to solve?
	problem-solving approaches

	debugging
	rule 1: I will own the problem
	rule 2: I will remain calm and remember the mental game of debugging
	rule 3: I will use the scientific method and problem-solving approaches
	rule 4: I will read the manual
	rule 5: I will make it fail
	rule 6: I will look before I assume
	rule 7: I will divide and conquer the problem
	rule 8: I will isolate changes
	rule 9: I will write down what I do
	rule 10: I will check the fuel level
	rule 11: I will get another perspective
	rule 12: I will check that the problem is fixed
	rule 13: I will ask three questions
	the rules in action

	one last thought
	references
	chapter summary
	key terms
	test yourself
	practice exercises
	digging deeper
	discussion topics
	internet research

	chapter 13 software engineering
	in this chapter you will
	the lighter side of the lab by spencer
	why you need to know about...
	wWhat is software engineering?
	software development life cycle

	creating the design document
	step 1: learn the current system and needs
	step 2: create UML diagrams
	step 3: create the data dictionary
	step 4: design reports
	step 5: structuring the application’s logical flow
	step 6: start building the prototype
	step 7: putting all the pieces together

	avoiding the pitfalls
	userphobia
	too much work
	scope creep

	the Project development team
	project manager
	database administrator
	software developers (programmers)
	client (end user)
	tester
	customer relations representative
	generator of installation media
	installer of the application

	one last thought
	chapter summary
	key terms
	test yourself
	practice exercises
	discussion topics
	diggingdeeper
	internet research

	chapter 14 programming I
	in this chapter you will
	the lighter side of the lab by spencer
	why you need to know about...
	what is a program?
	I speak computer
	low-level languages
	assembly-language statements

	high-leve languages
	structure of a program

	syntax of a programming language
	variables
	operators
	precedence and operators
	control structures and program flow
	ready, set, go!

	object-oriented programming
	how OOP works
	inheritance
	encapsulation
	polymorphism

	choosing a programming language
	one last thought
	chapter summary
	key terms
	test yourself
	practice exercises
	digging deeper
	discussion topics
	internet research

	chapter 15 programming II
	in this chapter you will
	the lighter side of the lab by spencer
	why you need to know about...
	Java and C++ programming languages
	learning to cook with Java and C++

	variables
	variable naming conventions
	variable types
	Hungarian notation
	variable content

	Java and C++ control structures and program Ffow
	invocation
	top down (or sequence)
	blocks of code
	back to control structures
	selection
	repetition (looping)

	one last thought
	chapter summary
	key terms
	test yourself
	practice exercises
	digging deeper
	discussion topics
	internet research

	appendix A: answers to test yourself questions
	appendix B: ASCII (American Standard Code for Information Interchange) table
	appendix C: Java and C++ reserved words
	glossary
	Index

