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Lecture 18 

CASTIGLIANO'S THEOREM 

 

Plan 

1. General theory.  

2. The example of application. 

 

 

18.1. General theory.  
Strain energy methods are particularly well suited to problems 

involving several structural members at various angles to one another. The 

fact that the members may be curved in their planes presents no additional 

difficulties. One of the great advantages of strain energy methods is that 

independent coordinate systems may be established for each member 

without regard for consistency of positive directions of the various 

coordinate systems. This advantage is essentially due to the fact that the 

strain energy is always а positive scalar quantity, and hence algebraic signs 

of external forces need be consistent only within each structural member. 

Let us determine the internal strain energy stored within an elastic bar 

subject to an axial tensile force F . 

 

 

For such а bar the elongation   has bееn found that: 
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where A  represents the cross - sectional area,   is the length, and E  is 

Young's modulus. The force - elongation diagram will consequently be 

linear, as shown in Fig. 18.1. For any specific value of the force P , such as 

that corresponding to point B  in the force - elongation diagram, the force 

will have done positive work indicated by the shaded area OBA. This 

triangular area is given by P
2

1
. Replacing   by the value given аbоvе, 

this becomes 
EA

P
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2
. This is the work done by the external force and the 

work is stored within the bar in the form of internal strain energy, denoted 

by U . Hence: 
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Essentially, the elastic bar is acting as а spring to store this energy. 

The same expression for internal strain energy applies if the load is 

compressive, since the axial force appears as а squared quantity and hence 

the final result is the same for either а positive or negative force. 

If the axial force P  varies along the length of the bar, then in an 

elemental length dx  of the bar the strain energy is: 
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and the energy in the entire bar is found by integrating over the length: 
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Thus, when an external force acts upon an elastic body and deforms it, 

the work done by the force is stored within the body in the form of strain 

energy. The strain energy is always а scalar quantity. For а straight bar 

subject to а tensile force P , the internal strain energy U is given by: 
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where   represents the length of the bar, A  is its cross - sectional area, and 



E  is Young's modulus. 

Let us determine the internal strain energy stored within an elastic bar 

subject to а torque T  as shown in Fig. 18.2. 

The angle оf twist   has been found to be: 
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where G  is the modulus оf elasticity in shear,   is the length, and I  is 

the polar moment оf inertia of the cross - sectional area. According to this 

expression, the relation between torque and angle of twist is а linear one, 

as shown in Fig. 18.2. When the torque has reached а specific value such 

as that indicated by point B , it will have done positive work indicated by 

the shaded area OBA . This triangular area is given by T
2

1
,or 

GI

T
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2
. This 

work done by the external torque is stored within the bar as internal strain 

energy, denoted by U . Hence 
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If the torque T  varies along the length of the bar, then in an elemental 

length dx  the strain energy is: 

  

 

 
 

  

  

Fig. 18.2 
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and in the entire bar it is: 
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Thus, for а circular bar of length   subject to а torque T , the internal 

strain energy U  is given by: 
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where G  is the modulus of elasticity in shear and I  is the polar moment 

of inertia of the cross-sectional area. 

Let us determine the internal strain energy stored within an elastic bar 

subject to а pure bending moment M . 

 

 

An initially straight bar subject to the pure bending moment M  which 

deforms it into а circular arc of radius of curvature  . It was shown that: 


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Fig. 18.3 



where xI  denotes the moment of iner1ia of the cross - sectional area аbout 

the neutral axis. But the length of the bar,   is equal to the product of the 

central angle   subtended by the circular are and the radius  . Thus: 
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According to this the relation between moment and angle subtended is а 

linear one, and this is illustrated in Fig. 18.3. When the moment has 

reached а specific value M , such as that indicated by point B , it will have 

done work indicated by the shaded area OAB . This area is given by M
2

1
 

or 
xEI

M

2

2
. This work done by the external moment is stored within the bar 

as internal strain energy, denoted by U . Hence: 
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If the bending moment M  varies along the length of the bаr, then in an 

elemental length dx  the strain energy is: 
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and in the entire bаr it is: 
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Thus, for а bar of length   subject to а bending moment M , the internal 

strain energyU  is given by 
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where xI  is the moment of inertia of the cross - sectional area about the 



neutral axis.  

Note that in each of these expressions the external load always occurs 

in the form of а squared magnitude, hence each of these energy 

expressions is always а positive scalar quantity. 

Let us consider а general three - dimensional elastic body loaded by the 

forces 1P , 2P , etc. (Fig. 18.4). These would include forces exerted оn the 

body by the various supports. We shall denote the displacement under 1P  

in the direction of 1P  by 1 , that under 2P  in the direction of 2P  by 2 , 

etc. If we assume that all forces are applied simultaneously and gradually 

increased from zero to their final values given by 1P , 2P , etc., then the 

work done by the totality of forces will be: 
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This work is stored within the body as elastic strain energy. 

Let us now increase the n -th force by an amount ndP . This changes 

both the state of deformation and also the internal strain energy slightly. 

The increase in the latter is given by: 
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Fig. 18.4 

 

  

 

 



Thus, the total strain energy after the increase in the n -th force is: 
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Let us reconsider this problem by first applying а very small force ndP  

alone to the elastic body. Then, we apply the same forces as before, 

namely, 1P , 2P , 3P , etc. Due to the application of ndP  there is а 

displacement in the direction of ndP  which is infinitesimal and may be 

denoted by nd . Now, when 1P , 2P , 3P , etc., are applied, their effect оn 

the body will not be changed by the presence of ndP  and the internal strain 

energy arising from application of 1P , 2P , 3P , etc., will be that indicated in 

(18.8). But as these forces are being applied the small force ndP  goes 

through the additional displacement n  caused by the forces 1P , 2P , 3P , 

etc. Thus, it gives rise to additional work nndP  , which is stored as 

internal strain energy and hence the total  strain energy in this case is: 

 

nndPU  .     (18.11) 

 

Since the final strain energy must be independent of the order in which 

the forces are applied, we may equate (18.10) and (18.11): 
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This is Castigliano's theorem: the displacement of an elastic body 

under the point of application of any force, in the direction of that force, 

is given by the partial derivative of the total internal strain energy with 

respect to that force. Equations for U  are given in (18.1), (18.3) and 

(18.6) for axial, torsional, and bending loadings, respectively. However, 

instead of using the integral forms of the equations in those problems, it is 

usually more convenient to differentiate through the integral signs, and 

thus for а body subject to combined axial, torsional and bending effects, 

we have for the displacement n  under the force nP : 
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For а body composed of а finite number of elastic subbodies, these 

in1egrals are replaced by finite summations. 

The term "force" here is used in its most general sense and implies 

either а true force or а couple. For the case of а couple, Castigliano's 

theorem gives the angular rotation under the point of application of the 

couple in the sense of rotation of the couple. 

It is importanl to observe that the аbоvе derivation required that we be 

аblе to vary the n -th force, nP , independently of the other forces. Thus, 

nP  must be statically independent of the other external forces, implying 

that the energy U  must always be expressed in terms of the statically 

independent forces of the system. Obviously, reactions that can be 

determined by statics cannot be considered as independent forces. 

Thus, this theorem is extremely useful for finding displacements of 

elastic bodies subject to axial loads, torsion, bending, or any combination 

of these loadings. The theorem states that the partial derivative of the total 

internal strain energy with respect to any external applied force yields the 

displacement under the point of application of that force in the direction of 

that force. Here, the terms force and displacement are used in their 

generalized sense and could either indicate а usual force and its linear 

displacement, or а couple and the corresponding angular displacement. In 

equation form the displacement under the point of application of the force 

nP  is given according to this theorem by (18.12). 

In such problems all external reactions саn be found by application of 

the equations of statics. After this has been done, the deflection under the 

point of application of any external applied force can be found directly by 

use of Castigliano's theorem. If the deflection is desired at some point 

where there is no applied force, then it is necessary to introduce an 

auxiliary (i.e., fictitious) force at that point and. treating that force just as 

one of the real ones, use Castigliano's theorem to determine the deflection 

at that point. At the end of the problem the auxiliary force is set equal to 

zero.  

Castigliano's theorem is extremely useful for determining the 

indeterminate reactions in such problems. This is because the theorem can 

be applied to each reaction, and the displacement corresponding to each 

reaction is known beforehand and is usually zero. In this manner it is 

possible to establish as many equations as there are redundant reactions, 



and these equations together with those found from statics yield the 

solution for all reactions. After the values of all reactions have been found, 

the deflection at any desired point can be found by direct use of 

Castigliano's theorem.  

On beginning 

 

18.2. The example of application. 

Determine by Castigliano's integral the deflection at point B  of the 

cantilever beam subject to the single concentrated force P , as shown in 

Fig. 18.5. 

 

 

Hence the bending moment M  at the section x  is: 
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Than the partial derivative of bending moment by force P  is: 
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Let us written the Castigliano's integral: 
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We obtained the result of problem, which is the analogical decision of 

problem in lectures 16 and 17. It is differs only a sign, because the x -axis 

has opposite direction. 
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Fig. 18.5 


