Lecture 27
THE OFF-CENTRE ACTING OF FORCE OF TENSION OR
COMPRESSION

Plan
1. General theory.
2. The core of the cross-section.
3. Example of calculation of beam on the off-centre acting of force.

27.1 General theory

In practice, the case where the longitudinal loading is applied not in
the centre of the weight of the cross-section of the beam, but at a certain
distance from it is quite often encountered. This distance is called the
eccentricity relative to the principal axes of inertia. Such problems are
often encountered in bridge construction when calculating bridge supports,
in civil engineering at calculations of columns of buildings, etc.

Assume that the compressive force F is applied at the point
(Fig. 27.1) with coordinates relative to the central axis of inertia of the
cross section zg and Yyg .
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Fig 27.1

Let us give the force F to the centre of weight of cross-section. To do
this, we load the beam by two forces which are equal in magnitude F and



which have opposite directions, in point O. As a result, the central force F
will cause compression stresses in arbitrary cross-section of the bar.

In this case, two forces, which are indicated by crossed lines in
Fig. 27.1, form a pair with the moment:

Mg =F-OK,

that the bar will bending.
If we decompose the moment M into two components relative to the

axes z and y, we will obtain:

It is assumed that the bar is characterized by a sufficient rigidity.
Accordingly, it is possible to neglect its deformations, which will lead to a
change in the coordinates of force F.

We apply the principle of the independence of the forces acting on
stresses at an arbitrary point of the cross-section with coordinates z and .

Then, in the case of the off-centre acting of longitudinal force, the stresses
are determined from the dependence:

) M, -z
o= Mgy My 2 (27.2)
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or

_F _FYyey F-zp-z (27.3)
A l, ly
In the case of acting a tensile force the formula (27.3) will look like:

_F, FYry Fzp-z (27.4)
A 1, ly
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In general case, basing on the formulas (27.3) and (27.4), the formula
for determining stresses in the case of off-centre action of longitudinal
force can be written in the following form:



ot FYEY, Fr2p-Z (27.5)
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Given that i, = IKZ and Iy = Ky formula (27.5) can be represented

as.
o+ FYEY F-2p-2
A iZA L iG-A

... F :
If the multiplier " to factor out, we will get:

F YE'Y ,ZF ‘Z
o=—|+1£7F T , (27.6)
A iz g

where iz2 and i§ are squares radii of inertia relative to the principal axes of

inertia z and .
Conditions strength of materials with different tensile and
compression resistance is written as follows:

F iliyfz'yizF'Z <lop],

O =
A E i32,
(27.7)
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27.2. The core of the cross-section.

As with complex bending, and with off-centre acting of longitudinal
loading, it is very important to know the position of the neutral axis of the
cross-section. Knowing the location of the neutral axis, it is easy to
determine the dangerous points of the cross-section, based on the
properties of the materials. For brittle materials (cast iron, concrete, etc.) is



the most dangerous in terms of tensile stresses and for plastic is less
dangerous within the allowable stresses.

In the equation (27.7) we denote the coordinates of the neutral axis of
the cross section by zg and yg. Equating the first part of the equation

(27.7) to zero, we have:
14 JF YO ZE220 (27.8)
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From Equation (27.8) it follows that the neutral axis never passes
through the centre of weight of cross-section. It cuts off the axes z and vy

the segments, which equal in magnitude a, and ay (see Fig. 27.2).

let us suppose, that yg =0, the point of application of force F is on
the axle z, then zp =a,.
From equation (27.8) we get:

|
a, =——. (27.9)
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Fig 27.2

For the case when zg =0, it is the case when the point of application
of force F lies on the axis with similarly we have:



ay =—-L-. (27.10)

From the formula (27.8) it follows that the position of the neutral axis
of the cross section depends on its shape and size, and also on the
coordinates of application of force F. At the same time, it absolutely does
not depend on the magnitude of force F.

Some building materials (concrete, brickwork) and as well as
machine-building (cast iron) can withstand only very small stresses of
tension. Therefore, it is not desirable to use them for fabrication of
structural elements working on bending, torsion, central and off-central
tension.

It was found that if compressive force F, which is located not central
relative to principal central axes of inertia, the neutral axis passes near the
centroid of cross-section. Then in the cross-section will be stresses of
tension and compression. But you can apply the compressive force in such
a way that at arbitrary point of the cross-section only the stresses of
compression will arise. This is possible only when the point of application
of compressive stresses is in the middle of central part of cross- section,
which is called the core of the cross-section.

Consequently, the central part of the cross-section, in which or at
its limit, the application of compressive force, causes only compressive
stresses at all points of the cross-section is called the core of the cross-
section. i1

If the compressive force is
applied outside the core of the cross i
section, then in the cross section there
will be both tension and compressive
stresses. Therefore, it is important to
know the shape and size of the core of ~
the cross-section when we calculate  * -
the off-centre compression of the
beam which is made from materials
that are poorly perceive stresses of
tension.

In order to build the core of the Y
cross-section, it is necessary to
consider all possible variants of et -
applying the compressive force. In _
this case, it is necessary to ensure that Fig. 27.3




the neutral axis of the cross-section is tangent to the contour of the cross-
section. And in no case it can not passes through the cross-section.

Let us consider the process of building the core of the cross-section on
example of the rectangular cross-section, which is presented on Fig. 27.3.

Assume that the neutral axis of the cross-section at a certain point of
force application is located on the contour | — | of the cross-section
(Fig. 27.3). Then the first coordinate of the core of the cross- section is
determined from formula (27.10):

7
YF——E
o h .o h? .
Taking into account that a = > and iy = 'ER we obtain:
yeo_hZ/h__h
" 12/ 27 6

Thus, point 1 lies on the axis y at a distance which is —%. This

distance is postponed in the negative direction of the coordinate axis Yy, as
it is presented on Fig. 27.4.
Similarly, the point 3 for the tangent Il - 111 will lie on the axis y and

. . h
at a distance is E also.

Similarly, we can find the vertices of the core of the cross-section
relative to the tangents Il — Il and IV — IV. They will be equal

accordingly zg = J_rg.

To complete the construction of the core of the cross-section, you need
to go around the whole contour of cross-section by tangent. This will be
done by rotating tangents around the angular points of the section A
(Fig. 27.4), which we have as poles. Each such rotation corresponds to a

straight line, which is on the core of a cross-section. Thus, the cross-
section will have the form of a rhomb, as shown in Fig. 27.4.



Fig. 27.4

The force of F =14 kN, which with the vertical axis y forms an

angle, which is equal 30° (Fig. 27. 3), is applied to the free end of the
hinge supported beam. The uniformly distributed loads, that equal
g=12 kN/m is acting on the portion of beams, which has length of
AB =a=2 min the plane xz.

On beginning

27.3. Example of calculation of beam on the off-centre acting of
force.

For a given cross section, shown in Fig. 27.5, build the core of
the cross-section, if a=3 dm, b=2 dm.

Check whether the force will be applied to the core of cross-section if
its point of application is at the intersection of lines, which are shown
dotted lines on Fig. 27.5.

First we will determine the coordinates of the point, where the force is
applied. To do this, we construct the equations for the straight lines |
and Il, which are shown in Fig. 27.6.
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Fig. 27.6

To do this, we introduced a coordinate system Oqxy (Fig. 27.7). Then
the equation of the line I will have the form:

Y1 =k1X.

From Fig. 27.7 it is seen that this line passes through a point with
coordinates (2b +a,b), we can write:

b= kl(Zb + a),
Where
b
ki = .
1 2b+a

Consequently, the equation of the line I will be finally written as follows:

b
= X
2b+a

Y1

Equation of the line 1l will look like this:

Yo =k2X+d.
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Fig. 27.7

Given that it passes through a point (from Figure 27.7), we get:
a+b+3=ky-0+d,
where
d=a+b+3.

Then the equation for the line Il will look like:

Yo =Kkox+(a+b+3).

This line still passes through the point (2b+%,0) (Fig. 27.7), but

because:



0= k2(2b+gj+(a+b+3),
where

~a+b+3_ 2a+2b+6

ko =
2b+2 4b + a

Consequently, the equation of the line Il will have the form:

_2a+2b+6
4bh + a

Yo = X+(a+b+3).

To find the coordinates of the force application point, we need to solve
a system that has the following form:

b

y= X
2b+a _
—2a+2b+6x+(a+b+3)
4b + a

The solution of this system will look like:

_ (2b+a)4b+a)b+a+3) .
8b2 + 7ab+2a2 +12b+6a

_ Db(4b+a)b+a+3)
8b2 +7ab + 2a2 +12b + 6a '

Substituting the numerical values of the cross section parameters a
and b, finally, we obtain the coordinates of the point of application of
force F in the system Oqxy:

Xg =4,597 dm; yg =1,313 dm.



Let us determine the position of the centroid of a given cross-section,
that is, the position of its central axes. Since the given cross-section has a
vertical axis of symmetry, it will be one of its central axes. Therefore, we
need to find only one coordinate of the centroid of the cross-section. It
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Fig. 27.6

Let us divide the conditionally given cross-section into three
components according to Fig. 27.6. We compute the area of each of the
constituent of cross-section and write the coordinates of their centres of
weight relative to the axes x and y:

A =2b-(b+a+3)=4-8=32 dm’, YC1=b+g+3:4dm;

A2 —a-b=3.2=6 dmz, yC2 2221 dm,

A3:A2=32dm2, ycsz—:4dm
Then using the formula for centroid of complex cross-section, we
obtain:
_2Aye, A2 Yo, 2-32-4+6-1 262

~ 3,74 dm.
2A + A 2-32+6 70

yc



We calculate the coordinates of the centres of weight for the
components of cross-sections relative to the central axes u and v:

Ay =32 dm?, Uc, =-35 dm; v, =0,257 dm;
Ay =6 dm’, uc, =0; Ve, =—2,74 dm;
Ag =32 dm?, Uc, =35dm; vc, =0,257 dm.

We calculate the values of the central moments of inertia of a given
section:

|u:(|ui +véi -AJ:

3 3
= 2{412 +0,257° -32] + (% +(-2,74Y -6} =392,705 dm*,

IV:(IVi+uéi-Ai):

3 3
_9 8 35230 |+| 237 (0P -6 |=8738 dm
12 12

We calculate the squares of the radii of inertia relative to the axes u
and v:

2Ny 302705 000
A
21y 8738 _ 15 48 am?
A 0
Then we obtain:
i2 12,48
U =— =—
ay ay
iZ 561
-VE =— =— .
Ay Ay

Let us calculate the coordinates of the core of the cross-section, which

is shown in Fig. 27.8:

1) a, =5,5dm; then: ug :—%:—2,27 dm



5,61

2) ay =8—yr =4,257 dm; then: vp =—————=-132 dm;
) ay Yc F 4.257

3) a;, =-55dm; then: ug =—%=2,27 dm;

4) a, = yc.(-1)=-3,74 dm; then: v :—%:1,5 dm.

In the coordinate system Oqxy the point of application of the force F
had coordinates:
Xg =4,597 dm; yg =131 dm,

and in the coordinate system Ouv it has the following coordinates:

Ug =4,597-5,5=-0,903 dm;
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VE =131-3,74=-2,43 dm.

This point does not get into the core of the cross-section, because the
core of the cross-section has not the points with coordinates
VE <-132 dm.

On beginning



