
Lecture 27 

THE OFF-CENTRE ACTING OF FORCE OF TENSION OR 

COMPRESSION 

 

Plan 
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3. Example of calculation of beam on the off-centre acting of force. 

 

27.1 General theory 

In practice, the case where the longitudinal loading is applied not in 

the centre of the weight of the cross-section of the beam, but at a certain 

distance from it is quite often encountered. This distance is called the 

eccentricity relative to the principal axes of inertia. Such problems are 

often encountered in bridge construction when calculating bridge supports, 

in civil engineering at calculations of columns of buildings, etc. 

Assume that the compressive force F  is applied at the point 

(Fig. 27.1) with coordinates relative to the central axis of inertia of the 

cross section Fz  and Fy . 

 

 

Let us give the force F  to the centre of weight of cross-section. To do 

this, we load the beam by two forces which are equal in magnitude F  and 

 

 

  

 

 

 
  

 
 

 

Fig 27.1 



which have opposite directions, in point O. As a result, the central force F  

will cause compression stresses in arbitrary cross-section of the bar.  

In this case, two forces, which are indicated by crossed lines in 

Fig. 27.1, form a pair with the moment: 

 

OKFMO  , 

 

that the bar will bending. 

If we decompose the moment OM  into two components relative to the 

axes z  and y , we will obtain: 

 

Fz yF M , Fy zF M .      (27.1) 

 

It is assumed that the bar is characterized by a sufficient rigidity. 

Accordingly, it is possible to neglect its deformations, which will lead to a 

change in the coordinates of force F . 

We apply the principle of the independence of the forces acting on 

stresses at an arbitrary point of the cross-section with coordinates z  and y . 

Then, in the case of the off-centre acting of longitudinal force, the stresses 

are determined from the dependence: 
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In the case of acting a tensile force the formula (27.3) will look like: 
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In general case, basing on the formulas (27.3) and (27.4), the formula 

for determining stresses in the case of off-centre action of longitudinal 

force can be written in the following form: 
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If the multiplier 
A

F
 to factor out, we will get:  
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where 2
zi  and 2

yi  are squares radii of inertia relative to the principal axes of 

inertia z  and y . 

Conditions strength of materials with different tensile and 

compression resistance is written as follows: 
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On beginning 

 

27.2. The core of the cross-section. 

As with complex bending, and with off-centre acting of longitudinal 

loading, it is very important to know the position of the neutral axis of the 

cross-section. Knowing the location of the neutral axis, it is easy to 

determine the dangerous points of the cross-section, based on the 

properties of the materials. For brittle materials (cast iron, concrete, etc.) is 



the most dangerous in terms of tensile stresses and for plastic is less 

dangerous within the allowable stresses. 

In the equation (27.7) we denote the coordinates of the neutral axis of 

the cross section by 0z  and 0y . Equating the first part of the equation 

(27.7) to zero, we have: 
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From Equation (27.8) it follows that the neutral axis never passes 

through the centre of weight of cross-section. It cuts off the axes z  and y  

the segments, which equal in magnitude za  and ya  (see Fig. 27.2). 

let us suppose, that 00 y , the point of application of force F  is on 

the axle z , then zaz 0 .  

From equation (27.8) we get: 
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For the case when 00 z , it is the case when the point of application 

of force F  lies on the axis with similarly we have: 

 

Fig 27.2 
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From the formula (27.8) it follows that the position of the neutral axis 

of the cross section depends on its shape and size, and also on the 

coordinates of application of force F . At the same time, it absolutely does 

not depend on the magnitude of force F . 

Some building materials (concrete, brickwork) and as well as 

machine-building (cast iron) can withstand only very small stresses of 

tension. Therefore, it is not desirable to use them for fabrication of 

structural elements working on bending, torsion, central and off-central 

tension. 

It was found that if compressive force F , which is located not central 

relative to principal central axes of inertia, the neutral axis passes near the 

centroid of cross-section. Then in the cross-section will be stresses of 

tension and compression. But you can apply the compressive force in such 

a way that at arbitrary point of the cross-section only the stresses of 

compression will arise. This is possible only when the point of application 

of compressive stresses is in the middle of central part of cross- section, 

which is called the core of the cross-section. 

Consequently, the central part of the cross-section, in which or at 

its limit, the application of compressive force, causes only compressive 

stresses at all points of the cross-section is called the core of the cross-

section. 
If the compressive force is 

applied outside the core of the cross 

section, then in the cross section there 

will be both tension and compressive 

stresses. Therefore, it is important to 

know the shape and size of the core of 

the cross-section when we calculate 

the off-centre compression of the 

beam which is made from materials 

that are poorly perceive stresses of 

tension. 

In order to build the core of the 

cross-section, it is necessary to 

consider all possible variants of 

applying the compressive force. In 

this case, it is necessary to ensure that Fig. 27.3 



the neutral axis of the cross-section is tangent to the contour of the cross-

section. And in no case it can not passes through the cross-section. 

Let us consider the process of building the core of the cross-section on 

example of the rectangular cross-section, which is presented on Fig. 27.3. 

Assume that the neutral axis of the cross-section at a certain point of 

force application is located on the contour I – I of the cross-section 

(Fig. 27.3). Then the first coordinate of the core of the cross- section is 

determined from formula (27.10): 
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Thus, point 1 lies on the axis y  at a distance which is 
6

h
 . This 

distance is postponed in the negative direction of the coordinate axis y , as 

it is presented on Fig. 27.4. 

Similarly, the point 3 for the tangent III - III will lie on the axis y  and 

at a distance is 
6

h
 also. 

Similarly, we can find the vertices of the core of the cross-section 

relative to the tangents II – II and IV – IV. They will be equal 

accordingly 
6

b
zF  . 

To complete the construction of the core of the cross-section, you need 

to go around the whole contour of cross-section by tangent. This will be 

done by rotating tangents around the angular points of the section iA  

(Fig. 27.4), which we have as poles. Each such rotation corresponds to a 

straight line, which is on the core of a cross-section. Thus, the cross-

section will have the form of a rhomb, as shown in Fig. 27.4. 

 



 

The force of 14F  kN, which with the vertical axis y  forms an 

angle, which is equal 030  (Fig. 27. 3), is applied to the free end of the 

hinge supported beam. The uniformly distributed loads, that equal 

12q  kN/m is acting on the portion of beams, which has length of 

2 aAB  m in the plane xz. 

On beginning 

 

27.3. Example of calculation of beam on the off-centre acting of 

force. 
For a given cross section, shown in Fig. 27.5, build the core of 

the cross-section, if 3a  dm, 2b  dm. 

Check whether the force will be applied to the core of cross-section if 

its point of application is at the intersection of lines, which are shown 

dotted lines on Fig. 27.5. 

First we will determine the coordinates of the point, where the force is 

applied. To do this, we construct the equations for the straight lines I 

and II, which are shown in Fig. 27.6. 

 

 

Fig. 27.4 



 

To do this, we introduced a coordinate system xyO1  (Fig. 27.7). Then 

the equation of the line I will have the form: 

 

xky 11  . 

 

From Fig. 27.7 it is seen that this line passes through a point with 

coordinates  bab ,2  , we can write: 

 

 abkb  21 , 
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Consequently, the equation of the line I will be finally written as follows: 

 

x
ab

b
y




2
1 . 

 

Equation of the line II will look like this: 

 

dxky  22 . 

Fig. 27.6 



 

 

Given that it passes through a point (from Figure 27.7), we get: 

 

dkba  03 2 , 

where 
3 bad . 

 

Then the equation for the line II will look like: 

 

 322  baxky . 

 

This line still passes through the point 
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Consequently, the equation of the line II will have the form: 
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To find the coordinates of the force application point, we need to solve 

a system that has the following form: 
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The solution of this system will look like: 
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Substituting the numerical values of the cross section parameters a  

and b , finally, we obtain the coordinates of the point of application of 

force F  in the system xyO1 : 

 

597,4Fx  dm; 313,1Fy  dm. 

 



Let us determine the position of the centroid of a given cross-section, 

that is, the position of its central axes. Since the given cross-section has a 

vertical axis of symmetry, it will be one of its central axes. Therefore, we 

need to find only one coordinate of the centroid of the cross-section. It 

is Cy . 

Let us divide the conditionally given cross-section into three 

components according to Fig. 27.6. We compute the area of each of the 

constituent of cross-section and write the coordinates of their centres of 

weight relative to the axes x  and y : 
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Fig. 27.6 



We calculate the coordinates of the centres of weight for the 

components of cross-sections relative to the central axes u  and v : 
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We calculate the values of the central moments of inertia of a given 

section: 
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We calculate the squares of the radii of inertia relative to the axes u  

and v : 
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Let us calculate the coordinates of the core of the cross-section, which 

is shown in Fig. 27.8: 

1) 5,5ua  dm;    then: 27,2
5,5
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Fu  dm  



2) 257,48  Cv ya  dm;  then: 32,1
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4)   74,31  Cv ya  dm;  then: 5,1
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


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In the coordinate system xyO1  the point of application of the force F  

had coordinates: 

597,4Fx  dm; 31,1Fy  dm, 

 

and in the coordinate system Ouv  it has the following coordinates: 

 

903,05,5597,4 Fu  dm; 

 

43,274,331,1 Fv  dm. 

 

This point does not get into the core of the cross-section, because the 

core of the cross-section has not the points with coordinates 

32,1Fv  dm. 

On beginning 
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