Lecture 4
 THE METHOD OF CALCULATION THE BAR ON RIGIDITY

Assos. Prof. A. Kutsenko

Plan of lecture

- 1. Introduction
- 2. Consideration of some typical examples
- 3. Thin-walled pressure vessels

Introduction

Normal stresses is described by formula:

$$
\sigma=\frac{F}{A}
$$

Fig. 1
or
From Hook's Law we could write

$$
E=\frac{\sigma}{\varepsilon}=\frac{F / A}{\Delta \ell / \ell}=\frac{F \ell}{\Delta \ell A}
$$

$$
\begin{equation*}
\Delta \ell=\frac{F \ell}{E A} \tag{1}
\end{equation*}
$$

Introduction

Introduction

Calculate the value of elongation on each of bar portion:

$$
\begin{aligned}
& \Delta \ell_{I}=\frac{N_{I} \cdot \ell_{I}}{E \cdot A_{1}}=0 \quad \Delta \ell_{I I}=\frac{N_{I I} \cdot \ell_{I I}}{E \cdot A_{1}}=\frac{30 \cdot 10^{3} \cdot 0,5 \cdot 10^{3}}{2 \cdot 10^{5} \cdot 1,9 \cdot 10^{2}}=0,394 \mathrm{~mm} \\
& \Delta \ell_{I I I}=\frac{N_{I I I} \cdot \ell_{I I I}}{E \cdot A_{2}}=\frac{30 \cdot 10^{3} \cdot 0,1 \cdot 10^{3}}{2 \cdot 10^{5} \cdot 3,1 \cdot 10^{2}}=0,0484 \mathrm{~mm} \\
& \Delta \ell_{I V}=\frac{N_{I V} \cdot \ell_{I V}}{E \cdot A_{2}}=-\frac{8 \cdot 10^{3} \cdot 0,4 \cdot 10^{3}}{2 \cdot 10^{5} \cdot 3,1 \cdot 10^{2}}=-0,0516 \mathrm{~mm} \\
& \Delta \ell_{V}=\frac{N_{V} \cdot \ell_{V}}{E \cdot A_{2}}=-\frac{50 \cdot 10^{3} \cdot 0,2 \cdot 10^{3}}{2 \cdot 10^{5} \cdot 3,1 \cdot 10^{2}}=-0,161 \mathrm{~mm}
\end{aligned}
$$

Introduction

Finally we get:

$$
\Delta \ell=0,384+0,0484-0,0516-0,161 \cong 0,23 \mathrm{~mm}
$$

A solid truncated conical bar of circular cross section

Fig. 2

Introduction

The radius of small element is readily found by similar triangles:

$$
r=\frac{d}{2}+\frac{x}{\ell}\left(\frac{D-d}{2}\right)
$$

the element, this expression becomes:

$$
d \Delta \ell=\frac{F \cdot d x}{\pi\left(\frac{d}{2}+\frac{x}{\ell}\left(\frac{D-d}{2}\right)\right)^{2} E}
$$

Introduction

A bar of constant cross section

$$
\begin{equation*}
\Delta \ell=\int_{0}^{L} d \Delta \ell=\int_{0}^{L} \frac{F \cdot d x}{\pi\left(\frac{d}{2}+\frac{x}{\ell}\left(\frac{D-d}{2}\right)\right)^{2} E}=\frac{4 F L}{\pi D d E} \tag{2}
\end{equation*}
$$

The elongation of the element of thickness by shown is:

$$
d \Delta \ell=\frac{A \cdot y \cdot \gamma}{A \cdot E} d y
$$

The total elongation of the bar is:
Fig. 3

$$
\begin{equation*}
\Delta \ell=\int_{0}^{\ell} \frac{A \cdot y \cdot \gamma}{A \cdot E} d y=\frac{A \cdot \gamma}{A \cdot E} \frac{\ell^{2}}{2}=\frac{A \ell}{2 A E} \ell=\frac{W \ell}{2 A E} \tag{3}
\end{equation*}
$$

Consideration of some typical examples

Example $1 \quad A=500 \mathrm{~mm}^{2} \quad E=200 \mathrm{GPa}$

Fig. 4
The elongation of portion $A B$ is:

Fig. 5

Consideration of some typical examples

The elongation of the segment between B and C is :

$$
\Delta \ell_{2}=\frac{35000 \cdot 1}{500 \cdot 10^{-6} \cdot 200 \cdot 10^{9}}=0,00035 \mathrm{~m}
$$

Fig. 6

Consideration of some typical examples

The elongation of CD is:

Fig. 7
The total elongation is:

$$
\Delta \ell=\Delta \ell_{1}+\Delta \ell_{2}+\Delta \ell_{3}=0,00121 \mathrm{~m}
$$

Consideration of some typical examples

Example 2

In 1989, Jason, a research-type submersible with remote
TV monitoring capabilities and weighing $35,200 \mathrm{~N}$ was lowered to a depth of 646 m in an effort to send back to the attending surface vessel photographs of a sunken Roman ship offshore from Italy.
The submersible was lowered at the end of a hollow steel cable having an area of m^{2} and GPa. The central core of the cable contained the fiber-optic system for transmittal of photographic images to the surface ship.

Consideration of some typical examples

The total cable extension is the sum of the extensions due to (1) the weight of Jason:

$$
\Delta \ell_{1}=\frac{F \ell}{E A}=\frac{35,2 \cdot 646}{452 \cdot 10^{-6} \cdot 200 \cdot 10^{9}}=0,252 \mathrm{~m}
$$

From (3) we have for the weight of the steel cable:

$$
\Delta \ell_{2}=\frac{W \ell}{2 A E} \quad \text { where } \mathrm{W} \text { is the weight of the cable }
$$

Weight may be found as the volume of the cable:

$$
452 \cdot 10^{-6} \cdot 646=0,292 \mathrm{~m}^{3}
$$

Consideration of some typical examples

Thus, the cable weight is:

$$
W=0,292 \cdot 77=22,484 \mathbf{N}
$$

The elongation due to the weight of the cable is:

$$
\Delta \ell_{2}=\frac{22,484 \cdot 646}{2\left(452 \cdot 10^{-6} \cdot 200 \cdot 10^{9}\right)}=0,080 \mathrm{~m}
$$

The total elongation is:

$$
\Delta \ell=\Delta \ell_{1}+\Delta \ell_{2}=0,252+0,080=0,332 \mathrm{~m}
$$

