Lecture 15. CALCULATION OF SIMPLY SUPPORTED BEAMS

Assos. Prof. A. Kutsenko

Plan of lecture

- 1. The determination of the reactions of beam supports
- 2. The building of diagrams of the shearing forces and the bending moments for given beam
- 3. The selection of cross-section for a given beam

The determination of the reactions of beam supports

$$
\left.\right) \quad \begin{aligned}
& F_{2}=30 \mathrm{kN} \\
& M_{1}=20 \mathrm{kNm} \\
& M_{2}=10 \mathrm{kNm}
\end{aligned}
$$

The determination of the reactions of beam supports

From statics we have: $\sum_{i=1}^{n} F_{i x}=0 \quad R_{B x} \equiv 0$

Fig. 2

$$
\begin{aligned}
R_{B_{y}} & =\frac{M_{1}-F_{2} \cdot C D-M_{2}+F_{1} \cdot O D}{B D}= \\
& =\frac{20-30 \cdot 6-10+18 \cdot 15}{10}=10
\end{aligned}
$$

The determination of the reactions of beam supports

From statics we have: $\quad \sum M_{B}=0$

Fig. 2

$$
-F_{1}+R_{B y}-R_{D}+F_{2}=-18+10-22+30=-8+8=0
$$

The building of diagrams of the shearing forces and the bending moments

Let us divide a beam into portions by characteristic cross - sections O, B, C, D

Definition the value of shear force
$Q_{y_{O}}^{r t}=-F_{1}=-18 \mathbf{k N} \quad Q_{y_{O}}^{l t}=-F_{1}=-18 \mathbf{k N}$
$Q_{y_{B}}^{r t}=-F_{1}+R_{B}=-18+10=-8 \mathbf{k N}$
$Q_{y_{C}}^{l_{t}}=-F_{1}+R_{B}=-18+10=-8 \mathbf{k N}$
$Q_{y_{C}}^{r t}=-F_{1}+R_{B}+F_{2}=-18+10+30=22 \mathrm{kN}$
$Q_{y_{D}}^{l t}=-F_{1}+R_{B}+F_{2}=-18+10+30=22 \mathbf{k N}$

The building of diagrams of the shearing forces and the bending moments

Diagram of shear force Qy

Fig. 3

The building of diagrams of the shearing forces and the bending moments

Definition the value of bending moment $M_{0}=0$

$$
M_{B}=-F_{1} \cdot A B=-18 \cdot 5=-90 \mathrm{kNm}
$$

$$
M_{B}^{l t}=-F_{1} \cdot O C+R_{B} \cdot B C=-18 \cdot 9+10 \cdot 4=-122 \mathrm{kNm}
$$

$$
M_{B}^{l t}=-F_{1} \cdot O C+R_{B} \cdot B C+M_{2}=
$$

$$
=-18 \cdot 9+10 \cdot 4+10=-112 \mathrm{kNm}
$$

$$
M_{D}^{l t}=-F_{1} \cdot O D+R_{B} \cdot B D+M_{2}+F_{2} \cdot C D=
$$

$$
=-18 \cdot 15+10 \cdot 10+10+306=20 \mathrm{kNm}
$$

The building of diagrams of the shearing forces and the bending moments

Diagram of bending moment Mx

Fig. 4

The selection of cross-section

The section of rectangle cross - section:

$$
W_{x}=\frac{M_{x_{\max }}}{[\sigma]}=\frac{122 \cdot 10^{3}}{160 \cdot 10^{6}}=0,762 \cdot 10^{-3} \mathrm{~m}^{3}
$$

Taking into account, that $h=1,5 b$, we find that:

$$
b=\sqrt[3]{\frac{6 W_{x}}{2,25}}=\sqrt[3]{\frac{6 \cdot 0,762 \cdot 10^{6}}{2,25}}=127 \mathrm{~mm}
$$

The selection of cross-section

The section of circle cross - section:

$$
W_{x}=\frac{\pi d^{3}}{32}
$$

we find a diameter of circle:

$$
d=\sqrt[3]{\frac{32 W_{x}}{\pi}}=\sqrt[3]{\frac{32 \cdot 0,762 \cdot 10^{6}}{3,14}}=196 \mathrm{~mm}
$$

Thank you!

Good bye!

