Lecture 10. THE CALCULATION OF THE BAR ON STRENGTH AND RIGIDITY BY TORSION

Assos. Prof. A. Kutsenko

Plan of lecture

- 1. The determination of the inside and outside diameter of the shaft from on rigidity by torsion
- 2. Typical example of calculation of shaft by torsion
- 3. The statically indeterminate problem under torsion

The determination of the inside and outside diameter of the shaft

Given shaft has:

$$
\begin{array}{ll}
\mathrm{L}=3 \mathrm{~m} & \mathrm{~T}=25 \mathrm{kNm} \\
\mathrm{G}=3 \mathrm{GPa} & {[\tau]=90 \mathrm{MPa}}
\end{array}
$$

Determine the inside and outside diameter of the shaft

The determination of the inside and outside diameter of the shaft

The angle of twist is equal: $\theta=T \ell / G I \rho$
Thus, in the 3-m length we have:

$$
\frac{2,5}{57,3}=\frac{25000 \cdot 3}{85 \cdot 10^{9} \frac{\pi}{32}\left(D^{4}-d^{4}\right)}
$$

or:

$$
D^{4}-d^{4}=206 \cdot 10^{-6} \mathrm{~m}^{3}
$$

The determination of the inside and outside diameter of the shaft

From Eq. (9.2), we get:
or:

$$
90 \cdot 10^{6}=\frac{25000 \cdot D / 2}{\frac{\pi}{32}\left(D^{4}-d^{4}\right)}
$$

$$
D^{4}-d^{4}=1414 \cdot D \cdot 10^{-6}
$$

Comparison of the right-hand sides of these equations indicates that:

$$
206 \cdot 10^{-6}=1414 \cdot D \cdot 10^{-6}
$$

The determination of the inside and outside diameter of the shaft

Thus, finally we get that:

$$
D=0,145 \mathrm{~m}
$$

or:

$$
D=145 \mathrm{~mm}
$$

Substitution of this value into either of the equations then gives:

$$
d=0,125 \quad \mathrm{~m}
$$

or:

$$
d=125 \quad \mathrm{~mm}
$$

Typical example of calculation of shaft by torsion

Given shaft has:

$$
\begin{aligned}
& M_{1}=M_{2}=M_{3}=M_{4}=150 \mathrm{Nm} \\
& {[\tau]=55 \mathrm{kPa}}
\end{aligned}
$$

Fig. 1

Typical example of calculation of shaft by torsion

Drawing the diagram of torques T
I portion $0 \leq x_{1} \leq 1,5 \mathrm{~m} \quad T_{1}=M_{4}=150 \mathrm{Nm}$
II portion $1,5 \leq x_{2} \leq 3 \mathrm{~m} \quad T_{2}=M_{4}-M_{3}=0 \mathrm{Nm}$
III portion $3 \leq x_{3} \leq 4,5 \mathrm{~m}$

$$
T_{3}=M_{4}-M_{3}-M_{2}=-150 \mathrm{Nm}
$$

IV portion $4,5 \leq x_{4} \leq 6 \mathrm{~m}$

$$
T_{4}=M_{4}-M_{3}-M_{2}+M_{1}=0
$$

Typical example of calculation of shaft by torsion

Diagram of torques T

Fig. 2

Typical example of calculation of shaft by torsion

From the condition of durability the diameter of shaft is:

$$
d \geq \sqrt[3]{\frac{16 \cdot T_{\max }}{\pi \cdot[\tau]}}
$$

in this case we have: $T_{\max }=150 \mathrm{Nm}$
so

$$
d \geq \sqrt[3]{\frac{16 \cdot 150}{3,14 \cdot 55 \cdot 10^{3}}} \approx 0,024 \mathrm{~m}
$$

Thus, $\mathrm{d}=30 \mathrm{~mm}$
and

$$
I_{\rho}=\frac{\pi d^{4}}{32}=\frac{3,14 \cdot 3^{4}}{32} \approx 7,95 \mathrm{~cm}
$$

Typical example of calculation of shaft by torsion

Drawing the diagram of the angle of twist
I portion $0 \leq x_{1} \leq 1,5 \mathrm{~m} \quad \varphi_{1}=0$
II portion $1,5 \leq x_{2} \leq 3 \mathrm{~m}$

$$
\varphi_{2}=\frac{-150 \cdot 1,5}{8,1 \cdot 10^{10} \cdot 7,95 \cdot 10^{-8}} \approx 3,49 \cdot 10^{-2} \mathrm{rad}
$$

III portion $3 \leq x_{3} \leq 4,5 \mathrm{~m}$

$$
\varphi_{3}=\varphi_{2}=3,49 \cdot 10^{-2} \mathrm{rad}
$$

Typical example of calculation of shaft by torsion

$$
\text { IV portion } 4,5 \leq x_{4} \leq 6 \mathrm{~m} \varphi_{4}=\varphi_{3}+\frac{150 \cdot 1,5}{8,1 \cdot 10^{10} \cdot 7,95 \cdot 10^{-8}}=0
$$

$\varphi \cdot 10^{2}, \operatorname{rad}$

Fig. 3

The statically indeterminate problem under torsion

Let us determine the reactive torques at the fixed ends of the circular shaft loaded by the couples

Fig. 4

The statically indeterminate problem under torsion

Let us assume that the reactive torques and are positive in the directions shown in Fig. 5.

From static we have:

$$
T_{A}-T_{1}+T_{2}-T_{B}=0
$$

The statically indeterminate problem under torsion

we immediately have:

$$
\theta_{1}=\frac{T_{A} \ell_{1}}{G I \rho} \quad \text { and } \quad \theta_{2}=\frac{T_{B} \ell_{3}}{G I_{\rho}}
$$

The statically indeterminate problem under torsion

Hence, since the torque causing this deformation is $T_{1}-T_{A}$, we have

$$
\theta_{1}+\theta_{2}=\frac{\left(T_{1}-T_{A}\right) \ell_{2}}{G I}
$$

we find:

$$
T_{A}=T_{1} \frac{\ell_{2}+\ell_{3}}{\ell} \text { and } T_{B}=-T_{1} \frac{\ell_{1}}{\ell}+T_{2} \frac{\ell_{1}+\ell_{2}}{\ell}
$$

Thank you!

Good bye!

