Lecture 20
THE CONSTRUCTION METHOD OF THE DIAGRAMS OF SHEAR-FORCE AND BENDING-MOMENT FOR THE SIMPLE FRAME

Plan

1. Determine the reactions of supports.
2. The building the diagram of normal force.
3. The building the diagram of shear force.
4. The building the diagram of bend moment.

20.1. Determine the reactions of supports.

Earlier we considered the diagrams of internal efforts for beams. However, in addition to beams, the frames are expected to bend also.

The frame is a plane structure, which is consisting of vertical and horizontal bars.

Fig. 20.1

Today we will consider the principals of construction the diagrams of internal efforts for frame.

Let a given plane frame represented on Fig. 20.1, a, has the followings geometrical and force parameters: $a=2 \mathrm{~m}, q=2,5 \mathrm{~N} / \mathrm{m}, F=2 \mathrm{~N}$.

Determine the reactions of supports of frame.

From statics let us determine the reactions of supports of frame (Fig. 20.1, b):

$$
\begin{array}{cc}
\sum F_{y i}=0, & R_{B y}-F=0, \quad R_{B y}=F=2 \mathrm{~N} ; \\
\sum M_{B_{i}}=0, & F \cdot a-0,5 q(2 a)^{2}+R_{A x} \cdot a=0, \\
& R_{A x}=2 q a-P=2 \cdot 2,5 \cdot 2-2=8 \mathrm{~N} ; \\
\sum M_{A_{i}}=0, & R_{B y} \cdot 2 a-R_{B x} \cdot a-F \cdot a=0, \\
& R_{B x}=R_{B y} \cdot 2-F=2 \cdot 2-2=2 \mathrm{~N} .
\end{array}
$$

Let us execute verification of obtained reactions: $\sum F_{x i}=0$:
or

$$
-R_{A x}-R_{B x}+2 q a=-8-2+2 \cdot 2,5 \cdot 2=-10+10=0 .
$$

Thus, reactions are correctly determined.
On beginning

20.2. The building the diagram of normal force.

Let us draw the diagram of normal force N_{x} (Fig. 20.2). To do this, we should project all forces applied to the bar on its longitudinal axis:

I portion. $0 \leq y_{1} \leq 2 \mathrm{~m}$.

$$
N_{y_{1}}=0
$$

II portion. $0 \mathrm{~m} \leq x_{2} \leq 2 \mathrm{~m} . N_{x_{2}}=R_{A x}=8 \mathrm{~N}$.

III portion. $2 \mathrm{~m} \leq x_{3} \leq 4 \mathrm{~m} . N_{x_{3}}=R_{A x}=8 \mathrm{~N}$.

IV portion. $0 \mathrm{~m} \leq y_{4} \leq 4 \mathrm{~m} . \quad N_{y_{4}}=-R_{B y}=-2 \mathrm{~N}$.

$N_{x}, \mathrm{~N}$
Fig. 20.2

20.3. The building the diagram of shear force.

Let us draw the diagram of shearing force Q_{x} (Fig. 20.3). To do this, we should project all forces applied to the bar on axis, which is perpendicular located to its longitudinal axis:

I portion. $0 \leq y_{1} \leq 2 \mathrm{~m} . \quad Q_{y_{1}}=R_{A x}=8 \mathrm{~N}$,
II portion. $0 \mathrm{~m} \leq x_{2} \leq 2 \mathrm{~m} . Q_{x_{2}}=0$.

III portion. $2 \mathrm{~m} \leq x_{3} \leq 4 \mathrm{~m} . Q_{x_{3}}=-F=-2 \mathrm{~N}$,

IV portion. $0 \mathrm{~m} \leq y_{4} \leq 4 \mathrm{~m} . \quad Q_{y_{4}}=R_{B x}-q y_{4}$,

$$
Q(0)=2 \mathrm{~N}, \quad Q(4)=-8 \mathrm{~N}
$$

20.4. The building the diagram of bend moment (Fig. 20.4):

I portion. $0 \leq y_{1} \leq 2 \mathrm{~m}$. $M_{y_{1}}=R_{A x} \cdot y_{1}$,

$$
M(0)=0, \quad M(2)=16 \mathrm{~N} \cdot \mathrm{~m} ;
$$

II portion. $0 \mathrm{~m} \leq x_{2} \leq 2 \mathrm{~m} . \quad M_{x_{2}}=16 \mathrm{~N} \cdot \mathrm{~m}$;
III portion. $2 \mathrm{~m} \leq x_{3} \leq 4 \mathrm{~m} . \quad M_{x_{3}}=16-F \cdot\left(x_{3}-a\right)$,

$$
M(4)=12 \mathrm{~N} \cdot \mathrm{~m} .
$$

IV portion. $0 \mathrm{~m} \leq y_{4} \leq 4 \mathrm{~m} . \quad M_{y_{4}}=-R_{B x} \cdot y_{4}+\frac{q y_{4}^{2}}{2}$,

$$
M(0)=0 \mathrm{~N} \cdot \mathrm{~m}, \quad M(4)=-0,74 \mathrm{~N} \cdot \mathrm{~m},
$$

$$
\frac{\partial M_{y_{4}}}{\partial y_{4}}=-R_{B}^{x}+q y_{4}=0, \quad \Rightarrow y_{4}=\frac{R_{B}^{x}}{q}=\frac{2}{2,5}=0,8 \mathrm{~m}
$$

$$
M(0,8)=-0,8 \mathrm{~N} \cdot \mathrm{~m} .
$$

Fig. 20.4

On beginning

